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Loop vectorization vs. SLP

for(i = 0; i < 4; i++){
A[i] = B[i] + C[i]

}

No dependencies between iterations of the loop
A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
A[2] = B[2] + C[2]
A[3] = B[3] + C[3]

Iterations can be grouped into a vector instruction
A[0:3] = B[0:3] + C[0:3]

Only instances of the same statement can be grouped together
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SLP vectorization

All control flow removed from program
A[0] = B[0] + C[0]
A[1] = B[1] + C[1]
D[2] = B[2] + C[2]
D[3] = B[3] + C[3]

Isomorphic instructions can be grouped into vector instructions through
packing
v_out = A[0:3] + B[0:3]
A[0:1] = v_out[0:1]
D[2:3] = v_out[2:3]

Optimizations may not always be represented by affine schedules
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Polyhdedral schedulers

Polyhedral representation
Iteration domains
Data accesses
Schedules

Find a new order for the iterations of a program
Through composition of basic program transformations
By selecting a schedule in a space of legal schedules

Additionnal constraints
Data locality, loop fusion
GPU execution
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Vectorization in polyhedral schedulers

Polyhedral schedulers rely on loop vectorization
Delegate vectorization to compilers
Sink a parallel loop to the innermost dimension
Generate vector intrinsics after stripmining the innermost loop

Additional constraining of the scheduling process
Objective variables modeling stride 0/1 references and permutability,
Kong et al.
Driving the transformation process with cost modeling of
vectorization, Trifunovic et al.
Explorative constraint injection for GPU scheduling, Bastoul et al.
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Motivating example

trisolv kernel from Polybench/C

for (i = 0; i < N; i++)
x[i] = b[i]; //S1
for (j = 0; j < i; j++)

x[i] -= L[i][j] * x[j] //S2
x[i] = x[i] / L[i][i] //S3

Code generated by Pluto
for (i = 0; i < N; i++)

x[i] = b[i]
x[0] = x[0] / L[0][0]
for (i = 1; i < N ; i++)

for (j = 0; j < i; j++)
x[i] -= L[i][j] * x[j] //S2

x[i] = x[i] / L[i][i]

Transformation for vectorization
for (i=0; i < N; i++)

x[i] = b[i]
for (i = 0; i < N-1 ; i++)

x[i] = x[i] / L[i][i]
for (j = i+1; j < N; j++)

x[j] -= L[j][i] * x[i] //S2
x[N-1] = x[N-1] / L[N-1][N-1]
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Classical polyhedral workflow

Source code

Scheduled IR

Scheduled 
source

Optimized 
binary

Polyhedral 
scheduler

Compiler 
passes
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Proposed approach

Source code

Scheduled IR

Scheduled 
source

Optimized 
binary

Polyhedral 
scheduler

Compiler 
passes

SLP algorithm Vectorization
constraints
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Autovesk

Autovesk: Automatic vectorized code generation from unstructured
static kernels using graph transformations, Tayeb et al.
Based on graphs of operations generated from C++ operator
overloading

Stemming from loads
Leading to stores
No control flow

Isomorphic nodes are fused into vector instructions
Additional Extract/Merge nodes for packing
Minimization of the total number of nodes

Tested on small and simple kernels
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General approach

Execute an SLP algorithm (Autovesk)
Smaller problem sizes (N=8)
Annotate instructions with iterator information

Generate configuration files for constraint injection
Select a dimension for vectorization from program traces

Inject constraints into Pluto

Constraint injected for every statement

θS(i⃗S) = (cS1 , c
S
2 , c

S
3 , . . . , c

S
m)(i⃗S) + cS0

i⃗S ∈ Z
cSk = 0
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Generating program traces

Trisolv kernel from Polybench/C
for (i = 0; i < N; i++)

x[i] = b[i]; //S1
for (j = 0; j < i; j++)

x[i] -= L[i][j] * x[j] //S2
x[i] = x[i] / L[i][i] //S3

Tom Hammer, Stéphane Genaud, Vincent Loechner Guiding Polyhedral Schedulers for Vectorization 14 / 30



Context
Approach

Evaluation
Conclusion

Workflow
Autovesk
Implementation
Illusrated examples

Generating program traces

Trisolv kernel from Polybench/C
for (i = 0; i < N; i++)

x[i] = b[i]; //S1
for (j = 0; j < i; j++)

x[i] -= L[i][j] * x[j] //S2
x[i] = x[i] / L[i][i] //S3

N = 4

Produced execution trace
x[0] = b[0]; //S1 0
x[0] = x[0] / L[0][0]; //S3 0
x[1] = b[1]; //S1 1
x[1] -= L[1][0] * x[0]; //S2 1 0
x[1] = x[1] / L[1][1]; //S3 1
x[2] = b[2]; //S1 2
x[2] -= L[2][0] * x[0]; //S2 2 0
x[2] -= L[2][1] * x[1]; //S2 2 1
x[2] = x[2] / L[2][2]; //S3 2
x[3] = b[3]; //S1 3
x[3] -= L[3][0] * x[0]; //S2 3 0
x[3] -= L[3][1] * x[1]; //S2 3 1
x[3] -= L[3][2] * x[2]; //S2 3 2
x[3] = x[3] / L[3][3]; //S3 3
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Running Autovesk

Original trace
//S1 0
//S3 0
//S1 1
//S2 1 0
//S3 1
//S1 2
//S2 2 0
//S2 2 1
//S3 2
//S1 3
//S2 3 0
//S2 3 1
//S2 3 2
//S3 3
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Running Autovesk

Original trace
//S1 0
//S3 0
//S1 1
//S2 1 0
//S3 1
//S1 2
//S2 2 0
//S2 2 1
//S3 2
//S1 3
//S2 3 0
//S2 3 1
//S2 3 2
//S3 3

Vectorized trace
// Vec node:
S1 0
S1 1
S1 2
S1 3
// End
S3 0
// Vec node:
S2 1 0
S2 2 0
S2 3 0
// End
S3 1
// Vec node:
S2 2 1
S2 3 1
// End
S3 2
S2 3 2
S3 3
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Generating configuration files

Count the occurrences of increments by one of each iterator within
vector nodes
Select the dimension with the max count for vectorization

S1: [3]
S2: [3, 0]
S3: [0]

↓

S1
1
S2
1 0
S3
0
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Constraint injection

S1[1] : vectorized on i

ci = 0 for 0 dimensions

S2[1, 0] : vectorized on i

ci = 0 for 1 dimension

S3 left unconstrained
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Constraint injection

S1[1] : vectorized on i

ci = 0 for 0 dimensions

S2[1, 0] : vectorized on i

ci = 0 for 1 dimension

S3 left unconstrained

Code generated by our modified
Pluto algorithm

for (i=0; i < N; i++)
x[i] = b[i]

for (i = 0; i < N-1 ; i++)
x[i] = x[i] / L[i][i]
for (j = i+1; j < N; j++)

x[j] -= L[j][i] * x[i] //S2
x[N-1] = x[N-1] / L[N-1][N-1]

Tom Hammer, Stéphane Genaud, Vincent Loechner Guiding Polyhedral Schedulers for Vectorization 17 / 30



Context
Approach

Evaluation
Conclusion

Workflow
Autovesk
Implementation
Illusrated examples

Problematic cases

In some cases, selected dimensions may not represent the traces
generated

Seidel-2d kernel from Polybench/C
for (t = 0; t <= T_STEPS - 1; t++)

for (i = 1; i <= N - 2; i++)
for (j = 1; j <= N - 2; j++)

A[i][j] = (A[i-1][j-1]+A[i-1][j]+
A[i-1][j+1]+A[i][j-1]+A[i][j]+
A[i][j+1]+A[i+1][j-1]+A[i+1][j]+
A[i+1][j+1])/SCALAR_VAL(9.0);

Partial trace produced by Autovesk
// Vec node:
S1 0 4 1
S1 1 1 4
// End
S1 1 2 2
S1 2 1 1
S1 0 2 6
S1 0 3 4
// Vec node:
S1 0 4 2
S1 1 1 5
// End
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Problematic cases

In some cases, selected dimensions may not represent the traces
generated

// Vec node:
S1 0 4 1
S1 1 1 4
// End
S1 1 2 2
S1 2 1 1
S1 0 2 6
S1 0 3 4
// Vec node:
S1 0 4 2
S1 1 1 5
// End

Generated configuration
S1
1 0 0

It is impossible to vectorize all
iterations on dimension t
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Problematic cases

In some cases, selected dimensions may not represent the traces
generated

// Vec node:
S1 0 4 1
S1 1 1 4
// End
S1 1 2 2
S1 2 1 1
S1 0 2 6
S1 0 3 4
// Vec node:
S1 0 4 2
S1 1 1 5
// End

Generated configuration
S1
1 0 0

It is impossible to vectorize all
iterations on dimension t

In this case, we apply a constraint relaxation algorithm
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Experimental setup

Intel 12th gen i7-12700H (6 P-Cores, 8 E-Cores)
80KB L1, 1.25MB L2, 24MB L3 caches
AVX2 vector instructions

Polybench/C benchmark suite
Custom problem sizes
Excluding deriche and nussinov
Parameters set to 8 in Autovesk
Double precision float

GCC, Clang, ICC
Profiled with perf-cpp
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Speedup
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Benchmark breakdown

2 kernels could not be scheduled by either Pluto and our approach
adi and ludcmp

8 kernels produced the same schedule with both versions
durbin, floyd-warshall, gesummv, heat-3d, jacobi-1d, jacobi-2d,
seidel-2d, syr2k

10 kernels yield a speedup and 8 yield a slowdown
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Vector instructions
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Vector instructions

Our constraints do not hinder vectorization in any cases
GCC is able to generate vector instructions for 2 kernels where there
were previously none

cholesky and trisolv

We improved the number of vector instructions for 3 kernels
lu, symm, fdtd-2d

Some other metrics might explain the speedups or slowdowns
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Cache misses
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Loads and stores
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Metric evaluation

Our approach enables the generation of vector instructions on many
kernels
The number of vector instructions is not directly correlated with
performance

Gains can be outweighed by losses in data locality
Cache misses above a certain threshold greatly impact execution time
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Metric evaluation

Our approach enables the generation of vector instructions on many
kernels
The number of vector instructions is not directly correlated with
performance

Gains can be outweighed by losses in data locality
Cache misses above a certain threshold greatly impact execution time

for (i=0; i < N; i++)
x[i] = b[i]

for (i = 0; i < N-1 ; i++)
x[i] = x[i] / L[i][i]
for (j = i+1; j < N; j++)

x[j] -= L[j][i] * x[i] //S2
x[N-1] = x[N-1] / L[N-1][N-1]

Vectorization enabled on the j
dimension
The schedule reads from a
different row of L at every
iteration
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Conclusion

Improvements in the number of vector instructions
Data locality is not taken into account by our model
Gains in performance when the locality is preserved, losses otherwise

In some cases, we get the same results as Pluto
Pluto does not enforce vectorization during the scheduling process
Pluto relies on post-processing the produced schedule for
vectorization
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Further work

Implementation of finer grained constraints
Scalar dimensions for fusion/fission, and interleaving
Constraints on data locality and memory layout

Testing on architectures presenting larger vector registers
AVX512
ARM SVE/SVE2
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