
Polynomial Loop Recognition in Traces

(tool paper)

Alain Ketterlin

/ Camus / ICube / ICPS

IMPACT 2025: January 22, 2025



Loop Recognition in Traces 1

20

▶ Nested Loop Recognition (NLR)

▶ takes a trace as input

▶ outputs one or more affine loops

▶ such that the loops produce the trace

▶ NLR has been used for

▶ trace compression

▶ memory address prediction

▶ also on parallel (MPI) traces

▶ dynamic optimization

▶ assisted static analysis

▶ Goal: find integer polynomials wherever NLR has integer affine functions

▶ for increased expressive power in general

▶ to capture any kind of accumulation (e.g., ranks)

▶ (as a natural next step)

→ Polynomial Loop Recognition (PLR)



Loop Recognition in Traces 1

20

▶ Nested Loop Recognition (NLR)

▶ takes a trace as input

▶ outputs one or more affine loops

▶ such that the loops produce the trace

▶ NLR has been used for

▶ trace compression

▶ memory address prediction

▶ also on parallel (MPI) traces

▶ dynamic optimization

▶ assisted static analysis

▶ Goal: find integer polynomials wherever NLR has integer affine functions

▶ for increased expressive power in general

▶ to capture any kind of accumulation (e.g., ranks)

▶ (as a natural next step)

→ Polynomial Loop Recognition (PLR)



Loop Recognition in Traces 1

20

▶ Nested Loop Recognition (NLR)

▶ takes a trace as input

▶ outputs one or more affine loops

▶ such that the loops produce the trace

▶ NLR has been used for

▶ trace compression

▶ memory address prediction

▶ also on parallel (MPI) traces

▶ dynamic optimization

▶ assisted static analysis

▶ Goal: find integer polynomials wherever NLR has integer affine functions

▶ for increased expressive power in general

▶ to capture any kind of accumulation (e.g., ranks)

▶ (as a natural next step)

→ Polynomial Loop Recognition (PLR)



Background on NLR

Integer Polynomial Interpolation

Polynomial Loop Recognition

Examples

Final Remarks



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack

▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack

▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– val B, 100



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack

▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– val B, 100
– val B, 110



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– val B, 100
– val B, 110
– val B, 120 (loop)



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 3

val B, 100+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 3

val B, 100+10*j
– val B, 130 (iter)



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 4

val B, 100+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 4

val B, 100+10*j
– val B, 140 (iter)



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– val B, 200



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– val B, 200
– ...



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– for j=0 to 15

val B, 200+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– for j=0 to 15

val B, 200+10*j
– val A, 30



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– for j=0 to 15

val B, 200+10*j
– val A, 30
– ...



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– val A, 10
– for j=0 to 5

val B, 100+10*j
– val A, 20
– for j=0 to 15

val B, 200+10*j
– val A, 30
– for j=0 to 25 (loop!)

val B, 300+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– for i=0 to 3
for j=0 to 5+10*i

val B, 100+100*i+10*j



Background on NLR / In a Nutshell 2

20

▶ the input is made of tagged vectors of numbers

▶ shift-reduce strategy

→ incoming data is shifted to a stack
▶ sometimes, reductions happen:

▶ a new loop is formed

▶ an existing loop gets a new iteration

▶ vector elements and loop bounds are affine

functions of counters in scope

▶ the stack holds a mixture of vectors and loops

▶ incremental (the stack holds the current model)

▶ greedy (reduce as soon as possible)

– for i=0 to 3
for j=0 to 5+10*i

val B, 100+100*i+10*j
– ...



Background on NLR / Search Strategy 3

20

Two reduction operations:

▶ form a new loop
(from 3 blocks)

▶ recognize a new iteration
(for an existing loop)

Search the stack:

▶ on increasingly long segments

▶ considering blocks of up to 𝐾 items

length stack (top on the right) attempt

2 iter

3 loop

iter

4 iter

5 iter

6 loop

9 loop

12 loop

(here with 𝐾 = 4)



Background on NLR / Recognizing Loops 4

20

When

▶ 2+1 isomorphic blocks

(syntactic criterion)

▶ with constants in

arithmetic progression

(numeric criterion)

[. . . ]

– val 25

– for i = 0 to 15 { val 13 + 7i; }

– val 49

– for i = 0 to 27 { val 19 + 7i; }

– val 73

– for i = 0 to 39 { val 25 + 7i; }

j=0

j=1

j=2

Then form a new loop

Note:

▶ constants interpolated into

affine functions

▶ coefficients of existing

variables must match

[. . . ]
⇒ – for j = 0 to 3

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }
j



Background on NLR / Recognizing Iterations 5

20

When

▶ a loop on the stack, followed by

▶ its extrapolated next iteration

[. . . ]
– for j = 0 to 3

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }

– val 97

– for i = 0 to 51 { val 31 + 7i; }

j

j=3

Then, increment upper bound of the

loop, drop the rest

[. . . ]
– for j = 0 to 4

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }
j

(actually slightly more complex,

because sub-loops may vanish for

some iterations)



Background on NLR / Recognizing Iterations 5

20

When

▶ a loop on the stack, followed by

▶ its extrapolated next iteration

[. . . ]
– for j = 0 to 3

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }

– val 97

– for i = 0 to 51 { val 31 + 7i; }

j

j=3

Then, increment upper bound of the

loop, drop the rest

[. . . ]
– for j = 0 to 4

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }
j

(actually slightly more complex,

because sub-loops may vanish for

some iterations)



Background on NLR / Extension to polynomials 6

20

Roadmap:

▶ What exactly is an integer polynomial?

→ not exactly what we thought they were. . .

▶ Interpolation and loop formation?

→ any efficient way?

▶ (Recognizing iteration?)

→ very little change expected here

▶ Search strategy?

→ how much of the stack must be searched



Background on NLR

Integer Polynomial Interpolation

Polynomial Loop Recognition

Examples

Final Remarks



Integer Polynomial Interpolation / Integer Polynomials 7

20

Binomial powers

𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!

Integer polynomials

𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 (𝑎𝑖 ∈ Z)

e.g., 7 + 3𝑥 1 + 5𝑥 2 = 7 − 1
2𝑥

1 + 5
2𝑥

2

Interpolation of successive values

𝑣0 = 𝑝 (0) = 𝑎0 + 𝑎1·01 + 𝑎2·02 + . . .
𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1·11 + 𝑎2·12 + . . .
𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1·21 + 𝑎2·22 + . . .
. . .

(because 𝑖𝑘 = 0 when 𝑘 > 𝑖 ; 𝑖 𝑖 = 1; 𝑖 0 = 1)
→ always a unique integer solution

Solutions

either

{
𝑎0 = 𝑣0,

𝑎𝑖 = 𝑣𝑖 −
∑𝑖−1

𝑗=0 𝑎 𝑗 · 𝑖 𝑗 (0 < 𝑖 ≤ 𝑛)

or 𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣 𝑗



Integer Polynomial Interpolation / Integer Polynomials 7

20

Binomial powers

𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!

Integer polynomials

𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 (𝑎𝑖 ∈ Z)

e.g., 7 + 3𝑥 1 + 5𝑥 2 = 7 − 1
2𝑥

1 + 5
2𝑥

2

Interpolation of successive values

𝑣0 = 𝑝 (0) = 𝑎0 + 𝑎1·01 + 𝑎2·02 + . . .
𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1·11 + 𝑎2·12 + . . .
𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1·21 + 𝑎2·22 + . . .
. . .

(because 𝑖𝑘 = 0 when 𝑘 > 𝑖 ; 𝑖 𝑖 = 1; 𝑖 0 = 1)
→ always a unique integer solution

Solutions

either

{
𝑎0 = 𝑣0,

𝑎𝑖 = 𝑣𝑖 −
∑𝑖−1

𝑗=0 𝑎 𝑗 · 𝑖 𝑗 (0 < 𝑖 ≤ 𝑛)

or 𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣 𝑗



Integer Polynomial Interpolation / Finite Differences 8

20

Finite difference (at any order)

Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥) and then Δ(0) 𝑓 = 𝑓 , Δ(𝑑+1) 𝑓 = Δ
(
Δ(𝑑 ) 𝑓

)
(𝑑 ≥ 0)

For binomial powers and polynomials

Δ𝑥 𝑘+1 = 𝑥 𝑘 and then Δ(𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 ) = 𝑎1 + · · · + 𝑎𝑛𝑥 𝑛−1

at any order Δ(𝑑 )

(
𝑛∑︁
𝑖=0

𝑎𝑖 ·𝑥 𝑖
)
=

𝑛∑︁
𝑖=𝑑

𝑎𝑖 ·𝑥 𝑖−𝑑 ⇒ Δ(𝑑 )𝑝 (0) = 𝑎𝑑

e.g., 𝑝 (𝑥) = 7 + 3𝑥 1 + 5𝑥 2

Δ(1)𝑝 (𝑥) = 3 + 5𝑥 1

Δ(2)𝑝 (𝑥) = 5



Integer Polynomial Interpolation / Finite Differences 9

20

Considering all finite differences simultaneously

values

= Δ(0)𝑝 (𝑥)
coefficients

= Δ(𝑑 )𝑝 (0)

0 𝑑 𝑛
0

𝑥 Δ(𝑑 )𝑝 (𝑥)

Local differentiation relation

𝑑 𝑑 + 1

𝑥

𝑥 + 1

Δ(𝑑 )𝑝 (𝑥) + Δ(𝑑+1)𝑝 (𝑥)

=

Δ(𝑑 )𝑝 (𝑥 + 1)



Integer Polynomial Interpolation / Finite Differences 9

20

Considering all finite differences simultaneously

values

= Δ(0)𝑝 (𝑥)
coefficients

= Δ(𝑑 )𝑝 (0)

0 𝑑 𝑛
0

𝑥 Δ(𝑑 )𝑝 (𝑥)

Local differentiation relation

𝑑 𝑑 + 1

𝑥

𝑥 + 1

Δ(𝑑 )𝑝 (𝑥) + Δ(𝑑+1)𝑝 (𝑥)

=

Δ(𝑑 )𝑝 (𝑥 + 1)



Integer Polynomial Interpolation / Difference-Based Interpolation 10

20

Enumeration

Δ(𝑑 )𝑝 (𝑥 + 1) = Δ(𝑑 )𝑝 (𝑥) + Δ(𝑑+1)𝑝 (𝑥)

Interpolation

Δ(𝑑+1)𝑝 (𝑥) = Δ(𝑑 )𝑝 (𝑥 + 1) − Δ(𝑑 )𝑝 (𝑥)

𝑎0=𝑣0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

𝑣0=𝑎0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

// t is [𝑎0,. . . ,𝑎𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] += t[j-1];

// t is [𝑣0,. . . ,𝑣𝑛]

// t is [𝑣0,. . . ,𝑣𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] -= t[j-1];

// t is [𝑎0,. . . ,𝑎𝑛]

(exactly (𝑛 + 1) 2 additions or subtractions)



Integer Polynomial Interpolation / Difference-Based Interpolation 10

20

Enumeration

Δ(𝑑 )𝑝 (𝑥 + 1) = Δ(𝑑 )𝑝 (𝑥) + Δ(𝑑+1)𝑝 (𝑥)

Interpolation

Δ(𝑑+1)𝑝 (𝑥) = Δ(𝑑 )𝑝 (𝑥 + 1) − Δ(𝑑 )𝑝 (𝑥)

𝑎0=𝑣0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

𝑣0=𝑎0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

// t is [𝑎0,. . . ,𝑎𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] += t[j-1];

// t is [𝑣0,. . . ,𝑣𝑛]

// t is [𝑣0,. . . ,𝑣𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] -= t[j-1];

// t is [𝑎0,. . . ,𝑎𝑛]

(exactly (𝑛 + 1) 2 additions or subtractions)



Background on NLR

Integer Polynomial Interpolation

Polynomial Loop Recognition

Examples

Final Remarks



Polynomial Loop Recognition / NLR Adjustments 11

20

▶ Goal: recognize polynomials wherever NLR recognizes affine functions

▶ Loops are arbitrarily nested

→ multivariate polynomials in all variables in scope

▶ First adjustment: when forming a new loop, all numbers are interpolated

– for i = 0 to ... { val 13 + 5i; }

– for i = 0 to ... { val 19 + 7i; }

– for i = 0 to ... { val 25 + 9i; }

[...] { val 13 + 6j + (5+2j)i; }

j=0

j=1

j=2

→ introduces “non-linear” terms (here 2·j·i)



Polynomial Loop Recognition / Higher-degree Polynomials 12

20

▶ Second adjustment: consider more blocks, allow higher-degree polynomials

– for i = 0 to ... { val 13 + 7i; }

– for i = 0 to ... { val 19 + 7i; }

– for i = 0 to ... { val 27 + 7i; }

– for i = 0 to ... { val 37 + 7i; }

[...] { val 13 + 6j1 + 2j2 + 7i; }

j=0

j=1

j=2

j=3

13 6 2 0
19 8 2
27 10
37

Rule: 𝑛 + 2 blocks & degree at most 𝑛 → form a new loop

(intuition: a model must be smaller than the data it covers)

→ a new parameter 𝐷 bounds the degree

(the algorithm will not consider segments with more than 𝐷 + 2 blocks)

▶ Recognizing new iterations does not require significant change

(only more arithmetic)



Polynomial Loop Recognition / Updating the Search Strategy 13

20

▶ Two independent parameters to bound

complexity:

▶ 𝐾 (syntactic)

▶ 𝐷 (numeric)

▶ Enumerating attempts:

for every segment length ℓ

for every degree 𝑑 between 0 and 𝐷
if 𝑑 + 2 evenly divides ℓ and ℓ

𝑑+2 ≤ 𝐾

attempt to form a new loop

▶ Somewhat coherent:

▶ for a given block size: attempt degree 𝑑

if lower degrees have failed

▶ for a given degree: attempt size 𝑘 is

shorter blocks have failed

length stack (top on the right) attempt

2 loop (𝑑 = 0)
iter

3 loop (𝑑 = 1)
iter

4 loop (𝑑 = 0)
loop (𝑑 = 2)
iter

5 loop (𝑑 = 3)
iter

6 loop (𝑑 = 0)
loop (𝑑 = 1)

8 loop (𝑑 = 0)
loop (𝑑 = 2)

[. . . ]

15 loop (𝑑 = 3)
16 loop (𝑑 = 2)
20 loop (𝑑 = 3)



Background on NLR

Integer Polynomial Interpolation

Polynomial Loop Recognition

Examples

Final Remarks



Examples / Toy Examples 14

20

An artificial example

for i0 = 0 to 10
val 7 + 3*i0 + 5*i0~2
for i1 = 0 to 8 + 1*i0~2
val 3 + 35*i0~2 + 11*i1 + 5*i0~2*i1 + 7*i0*i1~2

binomial

power

conventional

counter names

𝑥 2𝑦 2
over [−10, 10]2

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

3025
2475
1980
1540
...

for i0 = 0 to 21
for i1 = 0 to 21
val 3025 - 550*i0 + 55*i0~2

- 550*i1 + 100*i0*i1 - 10*i0~2*i1
+ 55*i1~2 - 10*i0*i1~2 + 1*i0~2*i1~2

normalized

ranges

= (i0 − 10) 2 · (i1 − 10) 2

fully expanded form



Examples / Toy Examples 14

20

An artificial example

for i0 = 0 to 10
val 7 + 3*i0 + 5*i0~2
for i1 = 0 to 8 + 1*i0~2
val 3 + 35*i0~2 + 11*i1 + 5*i0~2*i1 + 7*i0*i1~2

binomial

power

conventional

counter names

𝑥 2𝑦 2
over [−10, 10]2

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

3025
2475
1980
1540
...

for i0 = 0 to 21
for i1 = 0 to 21
val 3025 - 550*i0 + 55*i0~2

- 550*i1 + 100*i0*i1 - 10*i0~2*i1
+ 55*i1~2 - 10*i0*i1~2 + 1*i0~2*i1~2

normalized

ranges

= (i0 − 10) 2 · (i1 − 10) 2

fully expanded form



Examples / Array Memory Accesses 15

20

Question: can PLR help understand memory accesses?

▶ An unspecified kernel:

▶ with 3 parameters 𝑁 ,𝑀 , 𝑃
▶ instrumented to trace memory accesses

▶ NLR/PLR single-execution model (𝑁 = 10, 𝑀 = 15, 𝑃 = 20):
for i0 = 0 to 10
for i1 = 0 to 20

for i2 = 0 to 15
val 0x560edc3692a0 + 120*i0 + 8*i2
val 0x560edc3699b0 + 8*i1 + 160*i2

val 0x560edc36a0c0 + 160*i0 + 8*i1

→ arrays?

▶ Explore parameter space, build a concatenated trace:

for (N=10; N<15; N++)
for (M=10; M<15; M++)

for (P=10; P<15; P++)
kernel (N, M, P, ...);



Examples / Array Memory Accesses 16

20

▶ PLR output:

for i0 = 0 to 5
for i1 = 0 to 5
for i2 = 0 to 5

for i3 = 0 to 10 + 1*i0
for i4 = 0 to 10 + 1*i2
for i5 = 0 to 10 + 1*i1

val 0x[...]92a0 + 80*i3 + 8*i1*i3 + 8*i5
val 0x[...]99b0 + 8*i4 + 80*i5 + 8*i2*i5

val 0x[...]a0c0 + 80*i3 + 8*i2*i3 + 8*i4

parameter space

parameterized kernel

▶ Analysis: array delinearization

address major
index range

minor
index range array?

i3*(i1+10)+i5 i3 ∈ [0,i0+10) i5 ∈ [0,i1+10) (i0+10)×(i1+10) (≡ 𝑁 ×𝑀)
i5*(i2+10)+i4 i5 ∈ [0,i1+10) i4 ∈ [0,i2+10) (i1+10)×(i2+10) (≡ 𝑀 × 𝑃)
i3*(i2+10)+i4 i3 ∈ [0,i0+10) i4 ∈ [0,i2+10) (i0+10)×(i2+10) (≡ 𝑁 × 𝑃)



Examples / Instruction Ranks 17

20

Question: is PLR able to recognize ranking polynomials?

▶ cholesky (polybench v3)

for (i=0; i<n; ++i) {
S1: x = A[i][i];

for (j=0; j<=i-1; ++j)
S2: x -= A[i][j] * A[i][j];
S3: p[i] = 1.0 / sqrt(x);

for (j=i+1; j<n; ++j) {
S4: x = A[i][j];

for (k=0; k<=i-1; ++k)
S5: x -= A[j][k] * A[i][k];
S6: A[j][i] = x * p[i];
} }

▶ trace (tagged) memory accesses

▶ run with 𝑛 = 256 → 5,658,112 entries
▶ post-processing: add

▶ global sequence number

▶ local (per-access) sequence number

▶ final trace:

S1 0x7ffec37b92a0 0 0
S3 0x7ffec38392b0 1 0
S4 0x7ffec37b92a1 2 0
S6a 0x7ffec38392b0 3 0
S6b 0x7ffec37b93a0 4 0
S4 0x7ffec37b92a2 5 1
S6a 0x7ffec38392b0 6 1
[...]



Examples / Instruction Ranks 18

20

for i0 = 0 to 256
val S1 , 0x7ffec37b92a0 + 257*i0 , // tag , memory address

767*i0 + 506*i0~2 - 4*i0~3 , 1*i0 // global rank , local rank
for i1 = 0 to 1*i0
val S2 , 0x7ffec37b92a0 + 256*i0 + 1*i1 ,

1 + 767*i0 + 506*i0~2 - 4*i0~3 + 1*i1 , 1*i0~2 + 1*i1
val S3 , 0x7ffec38392b0 + 1*i0 ,

1 + 768*i0 + 506*i0~2 - 4*i0~3 , 1*i0
for i1 = 0 to 255 - 1*i0
val S4 , 0x7ffec37b92a1 + 257*i0 + 1*i1 ,

2 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1
for i2 = 0 to 1*i0

val S5a , 0x7ffec37b93a0 + 256*i0 + 256*i1 + 1*i2 ,
3 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 + 2*i2 , 254*i0~2 - 2*i0~3 + 1*i0*i1 + 1*i2

val S5b , 0x7ffec37b92a0 + 256*i0 + 1*i2 ,
4 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 + 2*i2 , 254*i0~2 - 2*i0~3 + 1*i0*i1 + 1*i2

val S6a , 0x7ffec38392b0 + 1*i0 ,
3 + 770*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1

val S6b , 0x7ffec37b93a0 + 257*i0 + 256*i1 ,
4 + 770*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1



Examples / Instruction Ranks 19

20

▶ Variants: remove some fields (among Tag, Address, Global, Local)
→ similar output as long as one of Tag or Address is included

▶ Using only ranks:

→ interleaved monotonously increasing counters

▶ Output:

for i0 = 0 to 5
val 0 , 1*i0

for i0 = 0 to 254
for i1 = 0 to 3
val 1 + 1*i0 , 5 + 3*i0 + 1*i1

val 1 , 767
[...]
for i0 = 0 to 252
... (same loop as in Figure 1) ...

→ really (not that) bad



Examples / Instruction Ranks 19

20

▶ Variants: remove some fields (among Tag, Address, Global, Local)
→ similar output as long as one of Tag or Address is included

▶ Using only ranks:

→ interleaved monotonously increasing counters

▶ Output:

for i0 = 0 to 5
val 0 , 1*i0

for i0 = 0 to 254
for i1 = 0 to 3
val 1 + 1*i0 , 5 + 3*i0 + 1*i1

val 1 , 767
[...]
for i0 = 0 to 252
... (same loop as in Figure 1) ...

→ really (not that) bad



Background on NLR

Integer Polynomial Interpolation

Polynomial Loop Recognition

Examples

Final Remarks



Final Remarks 20

20

▶ Polynomial loop recognition in traces, with a few caveats

for j ... val 1 + 2 𝑗 1 + 3 𝑗 2 + 4 𝑗 3 + 5 𝑗 4 + 0 𝑗 5

for j ... val 2 + 4 𝑗 1 + 0 𝑗 2 + 5 𝑗 3 + 7 𝑗 4 + 0 𝑗 5 would be broken prematurely

for j ... val 3 + 6 𝑗 1 − 3 𝑗 2 + 6 𝑗 3 + 9 𝑗 4 + 0 𝑗 5

▶ Binomial powers & integer polynomials are crucial enablers (again)

— last year: integration & counting;

— this year: differentiation & interpolation

▶ Polynomial loops? Is this a thing?

+ counts, ranks, all forms of accumulation

− polynomial bounds: never seen one, never written one

+ may be useful for analysis; e.g.,

every affine (polynomial) loop nest has
an equivalent polynomial perfect loop



Final Remarks 20

20

▶ Polynomial loop recognition in traces, with a few caveats

for j ... val 1 + 2 𝑗 1 + 3 𝑗 2 + 4 𝑗 3 + 5 𝑗 4 + 0 𝑗 5

for j ... val 2 + 4 𝑗 1 + 0 𝑗 2 + 5 𝑗 3 + 7 𝑗 4 + 0 𝑗 5 would be broken prematurely

for j ... val 3 + 6 𝑗 1 − 3 𝑗 2 + 6 𝑗 3 + 9 𝑗 4 + 0 𝑗 5

▶ Binomial powers & integer polynomials are crucial enablers (again)

— last year: integration & counting;

— this year: differentiation & interpolation

▶ Polynomial loops? Is this a thing?

+ counts, ranks, all forms of accumulation

− polynomial bounds: never seen one, never written one

+ may be useful for analysis; e.g.,

every affine (polynomial) loop nest has
an equivalent polynomial perfect loop



Final Remarks 20

20

▶ Polynomial loop recognition in traces, with a few caveats

for j ... val 1 + 2 𝑗 1 + 3 𝑗 2 + 4 𝑗 3 + 5 𝑗 4 + 0 𝑗 5

for j ... val 2 + 4 𝑗 1 + 0 𝑗 2 + 5 𝑗 3 + 7 𝑗 4 + 0 𝑗 5 would be broken prematurely

for j ... val 3 + 6 𝑗 1 − 3 𝑗 2 + 6 𝑗 3 + 9 𝑗 4 + 0 𝑗 5

▶ Binomial powers & integer polynomials are crucial enablers (again)

— last year: integration & counting;

— this year: differentiation & interpolation

▶ Polynomial loops? Is this a thing?

+ counts, ranks, all forms of accumulation

− polynomial bounds: never seen one, never written one

+ may be useful for analysis; e.g.,

every affine (polynomial) loop nest has
an equivalent polynomial perfect loop



Final Remarks 20

20

▶ Polynomial loop recognition in traces, with a few caveats

for j ... val 1 + 2 𝑗 1 + 3 𝑗 2 + 4 𝑗 3 + 5 𝑗 4 + 0 𝑗 5

for j ... val 2 + 4 𝑗 1 + 0 𝑗 2 + 5 𝑗 3 + 7 𝑗 4 + 0 𝑗 5 would be broken prematurely

for j ... val 3 + 6 𝑗 1 − 3 𝑗 2 + 6 𝑗 3 + 9 𝑗 4 + 0 𝑗 5

▶ Binomial powers & integer polynomials are crucial enablers (again)

— last year: integration & counting;

— this year: differentiation & interpolation

▶ Polynomial loops? Is this a thing?

+ counts, ranks, all forms of accumulation

− polynomial bounds: never seen one, never written one

+ may be useful for analysis; e.g.,
every affine (polynomial) loop nest has
an equivalent polynomial perfect loop


	Loop Recognition in Traces
	Background on NLR
	In a Nutshell
	Search Strategy
	Recognizing Loops
	Recognizing Iterations
	Extension to polynomials

	Integer Polynomial Interpolation
	Integer Polynomials
	Finite Differences
	Difference-Based Interpolation

	Polynomial Loop Recognition
	NLR Adjustments
	Higher-degree Polynomials
	Updating the Search Strategy

	Examples
	Toy Examples
	Array Memory Accesses
	Instruction Ranks

	Final Remarks

