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» Goal: find integer polynomials wherever NLR has integer affine functions

> for increased expressive power in general
> to capture any kind of accumulation (e.g., ranks)
> (as a natural next step)

— Polynomial Loop Recognition (PLR)



Background on NLR
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BACKGROUND ON NLR / IN A NUTSHELL

vl vuv

the input is made of tagged vectors of numbers
shift-reduce strategy
incoming data is shifted to a stack

sometimes, reductions happen:

> anew loop is formed
> an existing loop gets a new iteration

vector elements and loop bounds are affine
functions of counters in scope

the stack holds a mixture of vectors and loops

val
for

val
for

val
for

A, 10

j=0 to 5

val B, 100+10xj
A, 20

j=0 to 15

val B, 200+10%j
A, 30

j=0 to 25 (loop!)
val B, 300+10%j
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BACKGROUND ON NLR / IN A NUTSHELL

. . - for i=0 to 3
the input is made of tagged vectors of numbers for j20 to 5+10%i
shift-reduce strategy val B, 100+100xi+10%]

incoming data is shifted to a stack

vl vuv

sometimes, reductions happen:

> anew loop is formed
> an existing loop gets a new iteration

» vector elements and loop bounds are affine
functions of counters in scope

» the stack holds a mixture of vectors and loops

» incremental (the stack holds the current model)

» greedy (reduce as soon as possible)



BACKGROUND ON NLR / SEARCH STRATEGY

Two reduction operations: length stack (top on the right) attempt
» form a new loop 2 (w)m] iter
(from 3 blocks) 3 (w][m]m] loop
(mm_m] iter

» recognize a new iteration

(for an existing loop) g @@)@} :IZ:
Search the stack: 6 (@ m][m mj[m"m] loop
9 " = mm m u[m mm loop

» on increasingly long segments

12 mEmmusnenmnmnnan loop

» considering blocks of up to K items
(here with K = 4)



BACKGROUND ON NLR / REcocGNIzING LooPs

When
» 2+1 isomorphic blocks

(syntactic criterion)

» with constants in
arithmetic progression
(numeric criterion)

Then form a new loop
Note:

» constants interpolated into
affine functions

» coefficients of existing
variables must match

val
for
val
for
val
for

o]
25
i=20 to
49
i=0 to
73
i=0to
L]
0 to 3
25 + 24j
i=0to

15 { val 13 + 7i;

27 { val 19 + 7i;

39 { val 25 + 7i;

15 + 123 { val 13

+ 6] + 7i; }



BAcCKGROUND ON NLR / RECOGNIZING ITERATIONS

When [...1]
- for j =0 to 3
. o [val 25 + 24j
» its extrapolated next |terat|on_ 3//3{%'” i=0to 8% 125 { val A3%65 + 7i: )
j=

» aloop on the stack, followed by

|- val 97
- for i =0 to 51 { val 31 + 7i; }

Then, increment upper bound of the ... ]
- for j =0 to 4
val 25 + 24j

loop, drop the rest
J{for i=0tod5+12j { val 13 %6 + 7i; 3



BAcCKGROUND ON NLR / RECOGNIZING ITERATIONS

When [...1]

- for j =0 to 3

val 25 + 24j

{fori=®to15+12j{val 13 + 6 + 71; 3}

» aloop on the stack, followed by

» its extrapolated next iteration — ]

ol

N - val 97
- for i =0 to 51 { val 31 + 7i; }

Then, increment upper bound of the ... ]

loop, drop the rest - for j =0 to 4
.{val 25 + 24j

Ylfor i =0 to 15+ 12j { val A3 + 65 + 7i; )

(actually slightly more complex,
because sub-loops may vanish for
some iterations)



BACKGROUND ON NLR / EXTENSION TO POLYNOMIALS

Roadmap:

» What exactly is an integer polynomial?
— not exactly what we thought they were...

» Interpolation and loop formation?
— any efficient way?

> (Recognizing iteration?)

— very little change expected here

» Search strategy?

— how much of the stack must be searched



Integer Polynomial Interpolation
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INTEGER POLYNOMIAL INTERPOLATION / INTEGER POLYNOMIALS

Binomial powers Integer polynomials
xﬁé(;z):x~(x—1)-l~<-(x—k+1) p(x) = ag+arxl+ -+ gpx (a; €7)
!
eg., 7+ 3xd+5x28 =7 %xl + %xz
Interpolation of successive values Solutions
v =p(0)=a . aop = o,
0_p(1)_ 0 1 either { ©  °
=p(1) =a+ar- a; =v; — Joa] il (0<i<n)

[p) :p(Z) =dap+ (,11’2L + (12‘2;‘

(because il = 0 when k > i; i = 1; 1% = 1)
— always a unique integer solution



INTEGER POLYNOMIAL INTERPOLATION / FINITE DIFFERENCES

Finite difference (at any order)

Af(x)=f(x+1) - f(x)  andthen A@f=F A@DfF-p (A<d>f) (d > 0)
For binomial powers and polynomials

Axkl = K and then A(ap+aix?+ - +a,x™) = a; + - - - + apx™!

at any order A (Z ) Za xi=dl = ADp(0) = ag

i=0

e.g., p(x) =7+ 3x2 + 5x2
AWp(x)= 3  +5x8
AP p(x) = 5
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Considering all finite differences simultaneously
0 d n
0

values coefficients

= AOp(x) T T AP = ADp(0)



INTEGER POLYNOMIAL INTERPOLATION / FINITE DIFFERENCES

Considering all finite differences simultaneously

0

0
values A(d)p(x) \ coefficients

=AOp(x) T~ = ADp(0)

Local differentiation relation

d d+1

Xt e e ADp(x)  + AHVp(x)

x+1 ° ADp(x +1)



INTEGER POLYNOMIAL INTERPOLATION / DIFFERENCE-BASED INTERPOLATION

Enumeration Interpolation

ADp(x+1) = ADp(x) + A Vp(x) 1 A Dpx) = A p(e+1) = ADp(x)

aO::lo ,/If ‘/12 /3 Uo=ao7>a7az7>a3
Veve

[P] L] Uy—> e
L/
U3 U3

// t is [ag,. . . ,an] // t is [oug,. . . ,0,]

for (i=1; i<=n; i++) for (i=1; i<=n; i++)
for (j=n; j>=i; j--) for (j=n; j>=i; j--)
tL3] += 31l t[3] -= t03-13;

// t is [vg,. . . ,0,] // t is [ag,. . . ,an]

(exactly (n + 1)2 additions or subtractions)



INTEGER POLYNOMIAL INTERPOLATION / DIFFERENCE-BASED INTERPOLATION

Enumeration Interpolation

ADp(x+1) = ADp(x) + A Vp(x) 1 A Dpx) = A p(e+1) = ADp(x)

aO::lo ,/If ‘/12 /3 Z’0:‘10;,’611;,612;,’03
Veve

[P] L] Uy—> e
L/
U3 U3
// t is [ag,. .. ,an] // t is [vg,. .. ,0,]
for (i=1; i<=n; i++) for (i=1; i<=n; i++)
for (j=n; j>=i; j--) for (j=n; j>=i; j--)
tljl += t[j-11; t[jl -= tlj-11;
// t is [vg,. . . ,0,] // t is Lag,. . . ,an]

(exactly (n + 1)2 additions or subtractions)



Polynomial Loop Recognition



PoLyNOMIAL LooP RECOGNITION / NLR ADJUSTMENTS

» Goal: recognize polynomials wherever NLR recognizes affine functions

» Loops are arbitrarily nested
— multivariate polynomials in all variables in scope

> First adjustment: when forming a new loop, all numbers are interpolated

jze[— for i =0 to ... { val 13 + Bi; }
j=1[- for i =0 to ... { val 19 + 7i; }
j=2[- for i = @ to ... { val 25 + 9i; }

[...]1 {val 13 + 6] + (5+2j)1i; }

— introduces “non-linear” terms (here 2-j-1)



PoLYyNOMIAL LooP RECOGNITION / HIGHER-DEGREE POLYNOMIALS

» Second adjustment: consider more blocks, allow higher-degree polynomials

j=o[~ for i = @ to ... { val 13 + 7i; } 13lel2lo
j=1[- for i =0 to ... { val 19 + 7i; } 19] 8 |2
j=2[- for i = @ to ... { val 27 + 7i; } 27| 10
j=3[- for i = @ to ... { val 37 + 7i; } 37

[...] {val 13 + 634 + 234 + 7i; }
Rule: n + 2 blocks & degree at most n — form a new loop
(intuition: a model must be smaller than the data it covers)

— a new parameter D bounds the degree
(the algorithm will not consider segments with more than D + 2 blocks)

» Recognizing new iterations does not require significant change
(only more arithmetic)



PoLYNOMIAL LooP RECOGNITION / UPDATING THE SEARCH STRATEGY

length stack (top on the right) attempt

» Two independent parameters to bound
complexity: 2 @m loop (d =0)

. @m iter
- D (umerc) : @8 loop (=)
@== iter
» Enumerating attempts: 4 @aEw loop (d=0)
for every segment length ¢ E==E  loop (d=2)
for every degree d between 0 and D @E== iter ~
if d + 2 evenly divides £ and 75 < K > E])E]E]E]E] :?;p (d=3)
attempt to form a new loop 6 EesEss  loop (d=0)
» Somewhat coherent: Eamwms loop (d=1)
> for a given block size: attempt degree d 8 Easm@aas loop(d=0)
if lower degrees have failed 0 FEEsEaEs loop (d=2)
> for a given degree: attfempt size k is 1 S N T
shorter blocks have failed -
16 Eessssssmsssmasw loop(d=2)

20 T O O OO O O O] IOOp (d = 3)
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An artificial example

conventional —+for i1 = @ to 8 + 1%i0~2
counter names val 3 + 35%i0~2 + 11%i1 + 5%i0~2%i1 + 7*i0*i1~2

f\»for i0 = @ to 10 binomial
val 7 + 3*%i0 + 5%i0~2 / power



ExampPLES / Toy EXAMPLES

An artificial example

conventional —+for i1 = @ to 8 + 1%i0~2
counter names val 3 + 35%i0~2 + 11%i1 + 5%i0~2%i1 + 7*i0*i1~2

f\»for i0 = @ to 10 binomial
val 7 + 3*%i0 + 5%i0~2 / power

xZy? over [-10,10]?

for 10 = 1to 21— noymalized
for i1 = @ to 21
val 3025 - 550*i@ + 55%x10~2
- 550%i1 + 100%10*1i1 - 10*10~2*x1i1
+ 55%11~2 - 10*%10*1i1~2 + 1%10~2%11~2
= (i0 — 10)&.(i1 - 10)2
fully expanded form




ExAMPLES / ARRAY MEMORY ACCESSES

Question: can PLR help understand memory accesses?
» An unspecified kernel:

> with 3 parameters N, M, P
> instrumented to trace memory accesses

» NLR/PLR single-execution model (N = 10, M = 15, P = 20):
for i0 = 0 to 10
for i1 = @ to 20
for i2 = @ to 15
val 0x560edc3692a0 + 120%iQ + 8xi2
val 0x560edc3699b@ + 8xil1 + 160%i2
val 0x560edc36a0c@ + 160*i0Q + 8*il

— arrays?

> Explore parameter space, build a concatenated trace:
for (N=10; N<15; N++)
for (M=10; M<15; M++)
for (P=10; P<15; P++)
kernel (N, M, P, ...);



ExAMPLES / ARRAY MEMORY ACCESSES

» PLR output:
for i@ = 0 to 5
for i1 = 0 to 5 parameter space
for i2 = 0 to 5
for i3 = @ to 10 + 1%i0
for i4 = @ to 10 + 1%xi2

for i5 = 0 to 10 + 1x*i1
val Ox[...]92a0 + 80%i3 + 8xil1xi3 + 8%i5
val Ox[...]99b0 + 8xi4 + 8@xi5 + 8*xi2*i5

val Ox[...]a@c@ + 80xi3 + 8*i2xi3 + 8x%i4

parameterized kernel

» Analysis: array delinearization

major minor
index range index range

i3%x(i1+10)+i5 i3 € [0,10+10) i5 € [0,11+10) (10+10)x(i1+10) (= N x M)
i5%(i2+10)+i4  i5 € [0,11+10) i4 € [0,12+10) (i1+10)x(i2+10) (= M X P)
i3%(i2+#10)+i4 i3 € [0,10+10) i4 € [0,12+10) (i0+10)x(i2+10) (= N X P)

address array?




ExAmMPLES / INSTRuUCTION RANKS

Question: is PLR able to recognize ranking polynomials?

» cholesky (polybench v3) > trace (tagged) memory accesses
» run with n = 256 — 5,658,112 entries

f i=0; i<n; ++i i
or (170; ixn; 1) » post-processing: add

S1:  x = A[i][i];

for (j=0; j<=i-1; ++j) > global sequence number
S2: x -= ALil[j] * A[il[3]; > local (per-access) sequence number

S3: plil = 1.0 / sart(x);

» final trace:
for (j=i+1; j<n; ++3) {

S1  @x7ffec37b92a0

;S 00
S4: x = ALLLG); 3 @x7ffec38392b@ 1 0
for (k=0; k<=i-1; ++k) S4  ox7ffec37b92al 2 @

S5: x -= A[jI[k] * ALil[k]; S6a Ox7ffec38392b0 3 @
S6: A[jI[i] = x * p[il; S6b 0x7ffec37b93a0 4 @
3 } S4  ox7ffec37b92a2 5 1
61

S6a 0x7ffec38392b0
[...1



ExAmMPLES / INSTRuUCTION RANKS

for i0 = @ to 256
val S1 , ox7ffec37b92a0 + 257xi0 , // tag , memory address
767%10 + 506%10~2 - 4x10~3 , 1%i0 // global rank , local rank
for i1 = @ to 1*i0
val S2 , ox7ffec37b92a@ + 256%i0 + 1xil ,
1 + 767%10 + 506%10~2 - 4%i0~3 + 1*xi1 , 1xi0~2 + 1xil
val S3 , Ox7ffec38392b0 + 1xi0 ,
1 + 768%i0 + 506%i0~2 - 4%i0~3 , 1*i0
for i1 = @ to 255 - 1*i0
val S4 | 0x7ffec37b92al + 257xi0 + 1%i1 ,
2 + 768%1i0 + 506%10~2 - 4xi0~3 + 3*xi1 + 2xi0%i1 , 255%i0
for i2 = @ to 1x*i0
val S5a , 0x7ffec37b93a@ + 256%i0 + 256%i1 + 1xi2 ,
3 + 768%10 + 506%10~2 - 4*10~3 + 3*i1 + 2*1i0xi1 + 2%i2 , 254%10~2 - 2*i0~3 + 1*iQ*i1 + 1%xi2
val S5b , 0x7ffec37b92a0 + 256*i0Q + 1*xi2 ,
4 + 768%i0 + 506%i0~2 - 4xi0~3 + 3xi1 + 2xi0Q*i1 + 2%i2 , 254%i0~2 - 2xi0~3 + 1*xi0xi1 + 1%i2
val S6a , 0x7ffec38392b0 + 1%iQ ,
3 + 770%10 + 506*%10~2 - 4xi0~3 + 3xi1 + 2%i0Qxi1 , 255%i0Q - 1%i0~2 + 1*il
val S6b , 0x7ffec37b93a@ + 257%i0Q + 256%i1 ,
4 + 770%i0Q + 506%i0~2 - 4%iQ~3 + 3%i1 + 2*xi0*i1 , 255%i0

1xi0~2 + 1xi1

1xi0~2 + 1xi1



ExAmMPLES / INSTRuUCTION RANKS

» Variants: remove some fields (among Tag, Address, Global, Local)
— similar output as long as one of Tag or Address is included
» Using only ranks:

— interleaved monotonously increasing counters



ExAmMPLES / INSTRuUCTION RANKS

» Variants: remove some fields (among Tag, Address, Global, Local)
— similar output as long as one of Tag or Address is included
» Using only ranks:

— interleaved monotonously increasing counters

> Output:
for i@ = @ to 5
val @ , 1xi0

for i@ = @ to 254
for i1 = @ to 3
val 1 + 1xiQ , 5 + 3xi0Q + 1%i]
val 1 , 767
[...]

for i@ = @ to [:::]

. (same loop as in Figure 1) ...

— reaHy(notthat)bad
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» Polynomial loop recognition in traces, with a few caveats

for j ... val 1+2j7+3j%+4;7+5j% 40/
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for j ... val B+6jY-3j%+6j"+9j%+0;"
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FINAL REMARKS

» Polynomial loop recognition in traces, with a few caveats

for j ... val 1+2j7+3j%+4;7+5j% 40/
for j ... val ‘2+4jg+0jg‘+‘5jg+7jﬂ+0jj‘ would be broken prematurely
for j ... val B+6jY-3j%+6j"+9j%+0;"

> Binomial powers & integer polynomials are crucial enablers (again)

— last year: integration & counting;
— this year: differentiation & interpolation

» Polynomial loops? Is this a thing?
+ counts, ranks, all forms of accumulation
— polynomial bounds: never seen one, never written one
+ may be useful for analysis; e.g.,
every affine (polynomial) loop nest has
an equivalent polynomial perfect loop
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