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Arithmetic intensity and stencil algorithms

Arithmetic intensity
? 𝐼 = 𝑂/𝐷,
� 𝑂 is the number of arithmetic

operations,
� 𝐷 is amount of data traffic to a

memory level.

? Has different value for each memory
level.

? Is proportional to performance for
memory bound problems.

? May be improved with tiling /
temporal blocking.

? Is there an upper bound?

Stencil algorithm
? Grid corresponds to a data array, but

memory layout is not specified.

? Uniform stencil applied to each point.

Example

x

t
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Geometric inequalities Simplified cache model

Cache model
? Single cache level.

? Fully-associative.

? Holds all data tile needs for
calculation.

? Discards tile data after it has been
calculated.

Example

x

t

Definition (Minkowski sum)
𝐴+𝐵 = {𝑎+ 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Arithmetic intensity for tile 𝑇
? 𝑂 = |𝑇 |,
� |𝑇 | is the number of points in 𝑇 .

? 𝐷 = |𝑇 + 𝑆 ∖ 𝑇 |,
� 𝑆 is the stencil.

? 𝐼 =
|𝑇 |

|𝑇 + 𝑆| − |𝑇 | .

Brunn–Minkowski inequalities in R𝑛

? Continuous
ℒ (𝐴+𝐵)

1
𝑛 ≥ ℒ (𝐴)

1
𝑛 + ℒ (𝐵)

1
𝑛 ,

� ℒ (𝐴) is Lebesgue measure of 𝐴.

? Discrete
|𝐴+𝐵| 1𝑛 ≥ |𝐴| 1𝑛 +𝑛!−

1
𝑛 (|𝐵| − 𝑛)

1
𝑛 . 4 16



Geometric inequalities Simplified cache model

Cache model
? Single cache level.

? Fully-associative.

? Holds all |𝑇 + 𝑆| − |𝑇 | data points.

? Discards tile data after it has been
calculated.

Example

x

t

Arithmetic intensity for tile 𝑇

? 𝐼 =
|𝑇 |

|𝑇 + 𝑆| − |𝑇 | .

Brunn–Minkowski inequalities in R𝑛

? Discrete
|𝐴+𝐵| 1𝑛 ≥ |𝐴| 1𝑛 +𝑛!−

1
𝑛 (|𝐵| − 𝑛)

1
𝑛 .

Isoperimetric-like inequality derivation

|𝑇 + 𝑆| ≥ |𝑇 |+ 𝑛

𝑛!
1
𝑛

|𝑇 |𝑛−1
𝑛 (|𝑆| − 𝑛)

1
𝑛

�����������������

+

𝑛∑︁
𝑘=2

Ç
𝑛

𝑘

å
|𝑇 |𝑛−𝑘 𝑛!−

𝑘
𝑛 (|𝑆| − 𝑛)

𝑘
𝑛 .
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? 𝐼 =
|𝑇 |

|𝑇 + 𝑆| − |𝑇 | .

Brunn–Minkowski inequalities in R𝑛

? Discrete
|𝐴+𝐵| 1𝑛 ≥ |𝐴| 1𝑛 +𝑛!−

1
𝑛 (|𝐵| − 𝑛)

1
𝑛 .

Isoperimetric-like inequality
𝑛!

𝑛𝑛

1

|𝑆| − 𝑛
≥ 𝐼𝑛−1

|𝑇 + 𝑆| − |𝑇 | .

Example
? Isoperimetric 1

4 ≥ |𝑇 |
(|𝑇+𝑆|−|𝑇 |)2 .

? For Diamond Tile 𝑘2

(2𝑘+1)2
−−−→
𝑘→∞

1
4 .
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Geometric inequalities More realistic cache model

Cache model
? Single cache level.

? Fully-associative.

? Holds all data tile needs for
calculation.

? Discards tile data once it has been
calculated.

Example

x

t

? Uncached loads occur only through
solid arrows.

? Cache size 𝐷cache is larger than
cross-section.

? For this example: 𝐼 = 𝐷cache.
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Geometric inequalities More realistic cache model
Cache model
? Single cache level.

? Fully-associative.

Continuous cache fragment

x

t

A

B

C

Conjecture
For a stencil algorithm in 𝑛-dim plus
time: 𝐼 ≤ 𝐶 · 𝑛

√
𝐷cache.

Example

x

t

? For this example: 𝐼 = 𝐷cache.

Isoperimetric-like inequality

(𝑛+ 1)!

(𝑛+ 1)𝑛+1

|𝑇 |
|𝑆| − 𝑛− 1

≥ 𝐼𝑛+1.
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Geometric locality model

How to estimate 𝐶?

1. Describe a model of continuous tilings.

2. Show that every discrete tiling corresponds to at least one continuous tiling.

3. Use the continuous model to obtain an intensity limit using an isoperimetric-like
inequality.
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Geometric locality model

Atomic tiling
? Tiling is a general tessellation /

honeycomb.

? Tiling provides a way to split big task
in smaller ones.

? Atomic equals valid.

Underlying space
? Vector space with a norm.

? Dependencies described with the
cone Cone𝑑 (similar to light cone in
Minkowski space).

? Base of the dependence cone is a
metric ball corresponding to a norm.

Restrictions on the stencil
? Full-dimensional

? Bounded

? Centrally symmetrical (space part)

? Convex

Example
t

y
x
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Geometric locality model Continuous dependence model

Definition
If the interior of tile 𝐵 intersects with the
dependence cone of tile 𝐴, then 𝐴
depends on 𝐵.

Example

AB1

B2 B3

B3

B4 B5

D

E1

Definition (Conoid)
We will call a set 𝐴 conoid iff 𝐴 =
𝐴+ Int (−Cone𝑑) ∩𝐴+ Int (Cone𝑑).

Example

Theorem
Every atomic tiling consists of conoids.

Proof
For any given shape other than a conoid,
there is other tile, which simultaneously
depends and is dependent on it.

Note
Tiling which consists of conoids is not
necessarily atomic.
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Geometric locality model Atomic tilings

Example

Proposition
Tiling with exactly two conoids is atomic.
We call such tilings binary.

Proposition
Intersection of two atomic tilings is
atomic.

Theorem
Tiling is atomic iff it can be produced by
an intersection of binary tilings.

Proof
? If case
� Direct consequence of

propositions.

? Only if case
� For atomic tiling there exist a

total order on tiles, which is
compatible with dependencies.

� For any tile 𝑇 we can split the
tiling into two sets:
� 𝑇< = every tile before 𝑇 ,
� 𝑇≥ = 𝑇 and every tile after

it.
� {𝑇<, 𝑇≥} is the atomic tiling.
� Intersection of all such tilings

gives the initial tiling.
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Geometric locality model Discrete and continuous correspondence

Theorem
There exists an atomic tiling corresponding to any given valid discrete tiling.

Proof sketch
1. There exists an atomic tiling:

1.1 each tile contains at most one point of the lattice,
1.2 dependence relation on tiles which contain points equals to dependence relation

on points.
2. It is possible to join tiles in atomic tiling to get another atomic tiling.
3. The set of rules governing such joins is the same as for joining tiles in a valid discrete

tiling to get a valid discrete tiling.
4. A valid discrete tiling can be constructed from points using valid joining rules.
5. The same joins may be performed for the atomic tiling in the step 1.

Example (Obtaining the limit)
For the example scheme: 𝐼 ≤ 𝐷cache.
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Lifting restrictions Convexity

Example

x

y
Transformation
? 𝑧 is a periodic axis,

(𝑧 = −2) ≡ (𝑧 = 2).
for subgrid (0, 0), we add 𝑧 = 0,
for subgrid (1, 0), we add 𝑧 = −1,
for subgrid (0, 1), we add 𝑧 = 1,

for subgrid (1, 1), we add 𝑧 = 2.
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Lifting restrictions Convexity

Example (transformed)
z∗

y

x
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Lifting restrictions Non-convex tilings

Initial kernel
for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {
for(int j=2; j<M-3; j++) {

A[t+1][i][j] = f(A[t][i-2][j], A[t][i-1][j], A[t][i][j], A[t][i+1][j],
A[t][i+2][j], A[t][i][j-2], A[t][i][j-1], A[t][i][j+1], A[t][i][j+2]);

} } }

Transformed kernel
for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {
for(int j=2; j<M-3; j++) {

for(int p=0; p<2; p++){
for(int q=0; q<2; q++){

if ((i%2==p) && (j%2==q)) {
A[t+1][i][j] = f(A[t][i-2][j], A[t][i-1][j], A[t][i][j],

A[t][i+1][j], A[t][i+2][j], A[t][i][j-2], A[t][i][j-1],
A[t][i][j+1], A[t][i][j+2]);

} } } } } }
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Lifting restrictions Non-convex tilings

Initial kernel
for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {
for(int j=2; j<M-3; j++) {

S1;
} } }

Transformed kernel
for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {
for(int j=2; j<M-3; j++) {

for(int p=0; p<2; p++){
for(int q=0; q<2; q++){

if ((i%2==p) && (j%2==q)) {
S1;

} } } } } }

Old dependence cone
±𝑖± 𝑗 + 2𝑡 ≥ 0.

New dependence cone
? ±𝑖± 𝑗 ± 𝑝± 𝑞 + 2𝑡 ≥ 0.

? All tiling hyperplanes allowed by
initial loop are also allowed by the
new one.

Example (new allowed tiling)
? Tiling hyperplanes:
� 𝑖+ 𝑝+ 2𝑡 = 0,

� 𝑗 + 𝑞 + 2𝑡 = 0,

� −𝑖− 𝑗 − 𝑝− 𝑞 + 2𝑡 = 0,
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Conclusion

? Geometric inequalities help to estimate the upper bound on arithmetic intensity of a
stencil algorithm.

? We propose a conjecture that a bound has a form 𝐼 ≤ 𝐶 𝑛
√
𝐷cache.

? The continuous geometric locality model was introduced to simplify estimations of
𝐶 in the asymptotic limit.

? The opportunity to lift the model restrictions was demonstrated on the example of
non-linear transformation.

? Same transformation may be useful to extend the space of achievable tilings in
polyhedral model.
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Thank you!
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