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Abstract
Last year at Impact 2023, we presented an ongoing work of
a new tiling technique called algebraic tiling. With algebraic
tiling, tiles are defined by their volume (the number of it-
erations) instead of the size of their edges. This way tile of
quasi-equal volumes are generated at runtime, whatever are
the original loop bounds. This has many advantages, partic-
ularly it addresses load-balancing when parallelizing loops.
However, algebraic tiling poses particular challenges when
the tiled loops require a final skewing transformations of
the tiles in order to exhibit parallel loops. In this paper, we
focus on this challenge and propose a solution that makes
algebraic tiling applicable in this context too.

Keywords: loop tiling, loop skewing, parallel loop, data lo-
cality, optimizing compilers

1 Introduction
Last year at Impact 2023, a new tiling technique called alge-
braic tiling was introduced [6]. It is a novel approach of rect-
angular, parametric and fully dynamic loop tiling based on
the tile volumes instead of their edge sizes or shapes. When
the tiled loops exhibit at least one inter-tile parallel loop,
without requiring any further skewing transformation of the
tiles, it has been shown in [6] that algebraic tiling provides
a well-balanced multi-threaded parallel program: threads
perform almost the same number of iterations, whenever
the shape of the original iteration domain (rectangular, tri-
angular, ...). However, when a final skewing transformation
of the tiles is required in order to exhibit a parallel inter-tile
loop implementing wavefront parallelism, algebraic tiles of
arbitrary edge sizes pose some difficult challenges related to
data dependences among the tiles. In this paper, we focus
on this challenge and propose a solution making algebraic
tiling also applicable when skewing of tiles is required.
Our application steps for algebraic tiling are the same as

those used by the polyhedral compiler Pluto for generating
a parallel tiled program [2] :

1. Check if the original loops can be tiled as a valid serial
tiled program regarding data dependences.

2. If not and if possible, apply a skewing transformation
such that the resulting loops can be tiled as a valid
tiled serial program.
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3. Check if there is at least one outer inter-tile loop that
can be parallelized regarding data dependences.

4. If not and if possible, apply a skewing transformation
impacting the two outermost inter-tile loops such that
the second outermost loop in the resulting program
does not carry any data dependence and thus can be
parallelized.

Note that additional skewing transformations may be ap-
plied separately to the inner intra-tile loops in order to im-
prove intra-tile data locality. With algebraic tiling, the same
can be achieved without any specific difficulty.
We show in Section 3 that when a last skewing transfor-

mation is required to exhibit an inter-tile parallel loop, this
last step poses a particular challenge to algebraic tiles, due
to their arbitrary edge sizes.
The paper is organized as follows. In the next section

we remind how algebraic tiling is applied on a given loop
nest. Then in section 3, we describe how we had to adjust
this technique when transformations are required to exhibit
parallelism on the inter-tile loops. In section 4 we present
some experimental results that we obtained by comparing
algebraic tiling to standard rectangular tiling.

2 How algebraic tiling works
Algebraic tiling was introduced in [6]. Here is a reminder of
how this technique works. Algebraic tiling is a new tiling
approach based on the volumes of the tiles, i.e., the number
of iterations contained in each tile, instead of the sizes of
standard (hyper-)rectangular tiles, i.e., the sizes of the edges
of the tiles. In the proposed approach, tiles are dynamically
generated and have almost equal volumes. The iteration
domain is well covered by a minimum number of tiles that
are all almost full. Since the bounds of the generated tiles are
not linear and defined by algebraic mathematical expressions,
we call this loop tiling technique algebraic tiling.

One major difference with standard rectangular tiling is
that bounds of algebraic tiles are computed dynamically. To
do so, we use Trahrhe expressions. Those expressions are
derived from the inversion of Ranking Ehrhart polynomi-
als. Ehrhart polynomials are integer-valued and express the
exact number of integer points contained in a finite multi-
dimensional convex polyhedron which depends linearly on
integer parameters [3].

Ranking Ehrhart polynomials are similar to Ehrhart poly-
nomials. Those polynomials compute the rank of a given
iteration 𝐼0 of a loop nest of depth 𝑛, which is equal to the



IMPACT 2024, January 17, 2024, Munich, Germany Clément Rossetti, Alexis Hamon, and Philippe Clauss

number of iterations that are executed before 𝐼0 (included),
i.e., the number of tuples 𝐼 = (𝑖1, 𝑖2, ..., 𝑖𝑛) inside the iteration
domain which are lexicographically less than or equal to 𝐼0.
Inverting those ranking polynomials allows to compute for
a given rank at what iteration 𝐼0 it would be computed.
In the case of algebraic tiling, we can compute at what

iteration 𝐼0 a given volume (or rank) will be reached, thus
resulting in the bounds of the algebraic tiles.
In order to perform algebraic tiling on an iteration do-

main of dimension 𝑛 = (𝑑0, ..., 𝑑𝑛), we divide each dimension
𝑑𝑖 in a given number of slices 𝐷𝐼𝑉𝑖 , from the outermost
to the innermost dimensions. Then for each dimension 𝑑𝑖 ,
the total volume must be computed using the correspond-
ing Ehrhart polynomial, which depends on the bounds of
the slices of the previous dimensions. We have 𝑣𝑚𝑎𝑥𝑖 =

𝐸ℎ𝑟ℎ𝑎𝑟𝑡𝑖 (𝑙𝑏0, 𝑢𝑏0, ...𝑙𝑏𝑖−1, 𝑢𝑏𝑖−1), where 𝑙𝑏𝑘 and 𝑢𝑏𝑘 denotes
the slice lower bound, respectively the slice upper bound,
of dimension 𝑘 . We define the target volume that must be
approached as closely as possible for each slice 𝑖 as being
𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑜𝑙𝑖 = 𝑣𝑚𝑎𝑥𝑖/𝐷𝐼𝑉𝑖

To compute the bounds of the slices, we instantiate the
Trahrhe expressions corresponding to each dimension. For
each dimension 𝑑𝑖 , the bounds of 𝑠 contiguous slices must be
dynamically computed, with 0 ≤ 𝑠 < 𝐷𝐼𝑉𝑖 . The lower bound
𝑙𝑏𝑖

𝑠 and upper bound 𝑢𝑏𝑖𝑠 are computed as follows:

𝑙𝑏𝑖
𝑠 = 𝑡𝑟𝑎ℎ𝑟ℎ𝑒𝑖 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑜𝑙𝑖 × 𝑠)

𝑢𝑏𝑖
𝑠 = 𝑡𝑟𝑎ℎ𝑟ℎ𝑒𝑖 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑜𝑙𝑖 × (𝑠 + 1)) − 1

where 𝑡𝑟𝑎ℎ𝑟ℎ𝑒𝑖 (𝑟 ) computes the value of loop index 𝑖 of the
tuple whose rank is 𝑟 .

3 Adapting algebraic tiling to skewing tiles
When algebraic tiling was introduced in [6], we explained
that it has the the same validity requirements as standard
rectangular tiling regarding data dependences. So whenever
standard rectangular tiling is a valid transformation (i.e that
result in a correct program), algebraic tiling is also valid.
However, following the four main steps sketched in Section
1, the fourth step may not result in a valid program with
algebraic tiles.

Indeed, if a skewing transformation of the inter-tile loops
is required to exhibit a parallel inter-tile loop, the partic-
ular shapes of algebraic tiles may yield some dependence
violations.

Let us consider the seidel-2d stencil computation from the
polybench benchmark suite [5]. In this program, a grid of
points of size 𝑁 ×𝑁 is updated _𝑃𝐵_𝑇𝑆𝑇𝐸𝑃𝑆 times as shown
in Figure 1a. Each point is the average value of its neighbors.
Therefore there is a dependence carried by index 𝑡 : to update
a point, it is required that all its neighbors have been updated
at iteration 𝑡−1. There are also dependences carried by loops
𝑖 and 𝑗 as neighbors of a point that are lexicogaphically less
must have been computed before.

1 for (t = 0; t <= _PB_TSTEPS - 1; t++)

2 for (i = 1; i <= _PB_N - 2; i++)

3 for (j = 1; j <= _PB_N - 2; j++)

4 A[i][j] = (A[i - 1][j - 1]

5 + A[i - 1][j] + A[i - 1][j + 1]

6 + A[i][j - 1] + A[i][j]

7 + A[i][j + 1] + A[i + 1][j - 1]

8 + A[i + 1][j] + A[i + 1][j + 1])

9 / SCALAR_VAL (9.0); // S1

(a) Seidel-2d loop kernel.

t

i

(b) Iteration domain representation, with dependence vectors.

Figure 1. Seidel-2d kernel.

If we try to tile the original program, it will end up break-
ing data dependences, thus creating an incorrect program.
So a skewing transformation must be applied before any
type of tiling. The skewing indicated by Pluto’s heuristic is
the following:

(𝑡, 𝑖, 𝑗) → (𝑡, 𝑡 + 𝑖, 2𝑡 + 𝑖 + 𝑗)

This skewing results in the code shown in Figure 2.
Once the skewing, we can perform a tiling, either rectan-

gular or algebraic as illustrated in Figure 3.
But in this program, there is no parallel inter-tile parallel

loop. An additional skewing transformation is required to
exhibit a parallel inter-tile loop. Pluto suggests the following
skewing transformation:

(𝑧𝑡0, 𝑧𝑡1, 𝑧𝑡2, 𝑡0, 𝑡1, 𝑡2) → (𝑧𝑡0 + 𝑧𝑡1, 𝑧𝑡1, 𝑧𝑡2, 𝑡0, 𝑡1, 𝑡2)

where the 𝑧𝑡𝑖 ’s denote the inter-tile loops and the 𝑡𝑖 ’s are the
initially skewed dimensions (i.e. 𝑡0 = 𝑡, 𝑡1 = 𝑡+𝑖, 𝑡2 = 2𝑡+𝑖+ 𝑗 ).

But when applying the same skewing on algebraic loops,
we break some data dependences as illustrated in Figure 4a.
On this figure, tiles that have the same color should be ex-
ecuted concurrently. This ends up in an incorrect program
because almost all the tiles computed in parallel have a de-
pendence among each other (a (1, 0) dependence vector).
Unlike standard rectangular tiles, algebraic tiles are not

aligned and do not have the same height, thus making it
difficult to determine a valid skewing transformation on the
inter-tile loops.
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1 for (t0 = 0; t0 <= _PB_TSTEPS - 1; t0++) {

2 for (t1 = t0+1; t1 <= t0 + _PB_N -2; t1++) {

3 for (t2=t0+t1+1; t2 <= t0+t1+_PB_N -2; t2++) {

4 S1(t0 , -t0+t1, -t0 - t1 + t2);

5 }

6 }

7 }

(a) Loop kernel.
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i

(b) Iteration domain representation, with dependence vectors.

Figure 2. Seidel-2d after the first skewing transformation.
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(a) Rectangular tiling.
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(b) Algebraic tiling.

Figure 3. Applying tiling on seidel-2d.
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(a) incorrect.

t

i

(b) correct.

Figure 4. Seidel-2d algebraic tiling dependence violation.
Tiles of same color should be executed concurrently.

In order to generate valid algebraic tiled loops in such
cases, we use the following strategy: when tiling loops after
the first skewing transformation (step 2), the second inter-
tile loop is tiled independently to the algebraic bounds of the
outermost inter-tile loop. In this way, slices are performed
on the whole dimension of this second loop, and not slice per
slice regarding the outermost dimension. The resulting tiled
program can then support a final skewing transformation
of the inter-tile loops which is valid, similarly to standard
rectangular tiling. Thus, the same skewing transformation
as the one suggested by Pluto for standard tiling can now be
applied for algebraic tiling.
For seidel-2d, it is shown on Figure 4b the result of this

strategy, where each concurrent tile does not break any de-
pendence anymore, leading to a correct program.
Figure 5 presents the final algebraically tiled seidel-2d

code. A skewing of the inter-tile loops was achieved so the
second inter-tile loop can be parallelized using OpenMP
directive. Note that this code implements a hybrid tiling,
since the innermost dimension uses a standard rectangular
tile approach. This was made necessary by the very high
complexity of the Ehrhart ranking polynomials and Trahrhe
expressions associated to this dimension. Thus 𝐷𝐼𝑉𝑖 denotes
either dividers, for both outermost dimensions, or a tile size,
for the innermost dimension.

Some statements are also added to compute the bounds of
the tiled loops:

lines 1-3: the upper bounds𝑢𝑏𝑡𝑖 of each inter-tile loop
are computed. If the loop is tiled using the standard
approach, then the upper bound is computed by divid-
ing the number of iteration by the tile size. If the loop
is tiled algebraically, then it is the number of slices.
lines 4-7: Variable 𝑡0_𝑝𝑐𝑚𝑎𝑥 is the total number of
iterations of the loop nest. This volume is computed
by calling the Ehrhart function. By dividing this quan-
tity by divider 𝐷𝐼𝑉0, we dynamically compute a target
volume for each of the slices over the outermost di-
mension, stored in variable 𝑇𝐴𝑅𝐺𝐸𝑇_𝑉𝑂𝐿_𝐿0. Each
slice volume will be as close as possible to this vol-
ume. The same process is achieved for the next inner
slices with variables 𝑡1𝑝𝑐𝑚𝑎𝑥 , 𝑇𝐴𝑅𝐺𝐸𝑇_𝑉𝑂𝐿_𝐿1 and
divider 𝐷𝐼𝑉1.
lines 12-20: upper and lower bounds of the two out-
ermost slices are computed at every iteration of the
second outermost loop.

4 Experiments
Some experiments were conducted on five stencil programs
from the polybench benchmark suite using the data size
EXTRALARGE.

Details about the machine used for those experiments can
be found in Table 1. Runs were performed using 64 threads af-
ter having set the environment variable OMP_PROC_BIND=true
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1 ubt0 = DIV0 - 1;

2 ubt1 = DIV1 - 1;

3 ubt2 = ceild(_PB_N - 2, DIV2);

4 t0_pcmax = t0_Ehrhart(_PB_TSTEPS , _PB_N);

5 TARGET_VOL_L0 = t0_pcmax / DIV0;

6 t1_pcmax = t1_Ehrhart(_PB_TSTEPS , _PB_N);

7 TARGET_VOL_L1 = t1_pcmax / DIV1;

8 for (zt0 = 0; zt0 <= ubt0 + ubt1 - 1; zt0++) {

9 #pragma omp parallel for private(lb0 , ub0 , lb1 , ub1 , lb2 , ub2 , zt2 , t0, t1, t2)

10 for (zt1 = max(0, zt0 - ubt0); zt1 <= min(ubt1 , zt0); zt1++) {

11 lb0 = t0_trahrhe_t0(max((zt0 - zt1) * TARGET_VOL_L0 , 1), _PB_TSTEPS , _PB_N);

12 ub0 = t0_trahrhe_t0(min((zt0 - zt1 + 1) * TARGET_VOL_L0 , t0_pcmax), _PB_TSTEPS , _PB_N) - 1;

13 if (zt0 - zt1 == DIV0 - 1)

14 ub0 = _PB_TSTEPS - 1;

15 lb1 = t1_trahrhe_t1(max(1, zt1 * TARGET_VOL_L1), _PB_TSTEPS , _PB_N);

16 ub1 = t1_trahrhe_t1(min(t1_pcmax , (zt1 + 1) * TARGET_VOL_L1), _PB_TSTEPS , _PB_N) - 1;

17 if (zt1 == DIV1 - 1)

18 ub1 = _PB_N - 2 + ub0;

19 for (zt2 = 0; zt2 < ubt2; zt2++) {

20 lb2 = zt2 * DIV2 + lb0 + lb1 + 1;

21 ub2 = (zt2 + 1) * DIV2 + lb0 + lb1;

22 for (t0 = max(0, lb0); t0 <= min(_PB_TSTEPS - 1, ub0); t0 += 1)

23 for (t1 = max(t0 + 1, lb1); t1 <= min(ub1 , _PB_N + t0 - 2); t1 += 1)

24 for (t2 = max(t0 + t1 + 1, lb2); t2 <= min(_PB_N + t0 + t1 - 2, ub2); t2 += 1)

25 S1(t0, t1 - t0, t2 - t1 - t0);

26 }

27 }

28 }

Figure 5. Algebraic tiling on seidel-2d loop kernel.

Table 1. Details of architecture used for experiments.

AMD EPYC 7502

Micro-architecture Zen2

Clock Speed 2.5Ghz
Cores / socket 32
Total cores 64

L1 cache / core 32kB
L2 cache / core 512kB
L3 cache / core 128MB

Compiler gcc 11.4.0
Compiler flags -O3 -fopenmp -march=native
Linux kernel 5.15.0

Pluto version 0.11.4
Pluto flags –tile –parallel –nounroll –noprevector

to avoid thread migration and bind the threads to processor
cores.
Standard (hyper-)rectangular tiling and OpenMP paral-

lelization were automatically applied thanks to Pluto. Note
however that four of the five target programs may be han-
dled using non-rectangular tiling techniques as diamond

tiling [1, 4], that do not require any skewing transforma-
tion. But our goal in this paper is to discuss exclusively the
issues related to the skewing of rectangular tiles, without
competing with other tiling techniques.

For each benchmark, the program has been run five times,
and the average execution time of the three median runs has
been retained. If standard deviation is above 5% for a given
set of instantiated algebraic tiling dividers, then the result
has not been retained. The tile sizes resulting in the fastest
codes were found through an exhaustive search among com-
binations of powers of 2 from 2 to 128. Similarly, the best
dividers for algebraic tiling were also selected through an
exhaustive search among combinations of powers of 2 from
256 to 2048.

The results of our experiments are presented in Figure 6a
with automatic vectorization activated (a) and deactivated
(b). Execution times are displayed in seconds (lower is better)
using a logarithmic scale. Algebraically tiled benchmarks
are displayed in green, while red and blue bars correspond
to standard rectangular tiling. The blue bars correspond to
programs using the OpenMP static schedule while the red
ones correspond to the use of the OpenMP dynamic schedule.



Algebraic Tiling facing Loop Skewing IMPACT 2024, January 17, 2024, Munich, Germany
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Figure 6. Performance of algebraic tiling vs rectangular tiling (lower is better).

Programs with algebraic tiling have their execution times
always higher than those obtained with standard tiling, how-
ever very close in some cases (e.g. jacobi-1d and seidel-2d).
Although the presented strategy allows to generate valid
parallel programs with algebraic tiles when skewing of inter-
tile loops is required, it leads to a loss of the load balance
that algebraic tiling is supposed to provide: dividers 𝐷𝐼𝑉𝑖 are
no more directly related to the number of parallel threads,
and partial algebraic tiles are generated.

This means that for better performance, another strategy
similar to diamond tiling [1] or split tiling [4] should be
investigated, in order to get better control on the number,
the volume and the density of the parallel algebraic tiles.

5 Conclusion
We have proposed a strategy for applying algebraic tiling
when a skewing transformation is required, in order to ex-
hibit a parallel inter-tile loop. Although valid programs are
generated with this strategy, the resulting runtime perfor-
mance is not satisfactory enough. Indeed, the main advan-
tages of algebraic tiling related to load balancing are lost
with the skewing of inter-tile loops.

In the near future, another strategy must be elaborated,
where parallel algebraic tiles are defined precisely regarding
the potential wavefront parallelism of the skewed loops.
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