Recover Polyhedral Transformations From Polyhedral
Scheduler

Nelson Lossing Walid Astaoui Gianpietro Consolaro
Huawei Technologies France Huawei Technologies France Huawei Technologies France
France France France

Harenome Razanajato Zhen Zhang Denis Barthou
Huawei Technologies France Huawei Technologies France Huawei Technologies France
France France France

Abstract

While Polyhedral optimization offers good performance re-
sults, it is often at the price of understandability. The Chlore
project — using Clay transformations — is a first attempt at
describing Polyhedral optimizations as sequences of high-
level transformations. However, Chlore’s output may of-
ten be overly complex or contain redundant transformation
passes.

In this paper, we extend on Chlore’s ideas. We present tech-
niques to reduce the number of generated transformation
primitives and to optimize the recovery algorithm, showing
some important speedups compared to the original Chlore
algorithm.

Keywords: Loop Transformations; Polyhedral Scheduling;
Polyhedral Transformations

1 Introduction

The polyhedral model is used in optimizing compilers to
find and apply loop transformations automatically in order
to maximize the input kernel performance. While much of
the research focuses on developing better heuristics used
by the polyhedral scheduler, a significant amount of effort
has also been directed towards the explainability of the final
transformation. A deeper understanding of this process can
reveal the drawbacks of current heuristics and help iden-
tify areas for improvement, particularly when dealing with
the heterogeneous characteristics of different architectures.
Moreover, frameworks such as Halide [10] or TVM [5] pro-
vide users with high-level interfaces for manual scheduling
and understanding good automatic optimization may help
leveraging such frameworks, especially if the developper is
not a polyhedral model expert.

Chlore [2, 12] attempted to translate the full polyhedral
transformation, which is typically described as an algebraic
transformation, into a series of transformation primitives.
These transformation primitives include loop reordering,
loop fusion, shifting, and more. This type of translation, or

IMPACT 2024, January 17, 2024, Munich, Germany
2024.

recovery, allows for a better understanding of the transforma-
tion applied by the polyhedral scheduler. However, Chlore’s
output may sometimes remain overly complex or contain
redundant transformation passes.

In this paper, we propose extensions to address these is-
sues. Experiments show that our approach significantly re-
duces the required number of transformations to retrieve an
equivalent polyhedral optimization. Moreover, our recovery
is much faster.

Section 2 will present related work, mostly Chlore, and
its drawbacks. We redefine a smaller set of transformation
primitives presented in Section 3. Section 4 explains our
recovery algorithm. Experimental results are presented in
Section 5, and some future work is proposed in Section 6.

2 Related Work

Chlore [2, 12] uses Clay as the set of primitives to recover.
Clay provides a series of scheduling primitives covering the
full space of polyhedral scheduling transformation. It can be
used to apply a list of transformations directly.

Chlore is a tool that translates polyhedral scheduling func-
tions into a list of scheduling primitives. This list of primi-
tives represents an equivalent transformation and is chosen
from the set defined by Clay. The main advantage is that
lists of scheduling primitives are oftentimes far easier to
understand and customize for humans than mathematical
formulas. Chlore expects as input two polyhedral schedules,
in Openscop format [3]: a source and a target schedule. The
recovery algorithm will try to generate a list of scheduling
primitives that transforms the former into the latter.

The algorithm assumes that the source and target schedul-
ing is represented using the 2d+1 format [11]. In this repre-
sentation, even dimensions, named a-dimensions, represent
loop iterator transformations while odd dimensions, named
pB-dimensions, represent statement orderings. If this repre-
sentation is not respected, an initial preprocessing may be
necessary.

The recovery algorithm implemented in Chlore can be de-
composed into two components: a-recovery and f-recovery.

IMPACT 2024, January 17, 2024, Munich, Germany

Lossing N. et al.

Name Type Description

Reorder(, p) p-primitive | Reorder inner-loops or statements di-

rectly beneath the given outer-loop.

Split(B) p-primitive | Split outer-loop just before given inner-
loop or statement.

Fuse(f) f-primitive | Fuse given loop with the next one on
the same depth.

Embed(L) - a-primitive | Embed given statements beneath an in-

Unembed(L)

nermost one-iteration extra loop. Un-
embed removes the added innermost
extra loop.

Reverse(L,d) a-primitive | Reverse given output dimension for

given statements.

Grain(L,d, c)

s a-primitive | Add some pad between consecutive
Densify(L,d, c)

iterations in given output dimension
for given statements. Densify removes
some/all of the pad.

Shift(L,d, c,C) a-primitive | Shift given output dimension by some
(parametric) coefficient(s) for given

statements.

Interchange(L, d, d3) a-primitive | Interchange two given output dimen-

sions for given statements.

Skew(L, d1, d2, ¢) a-primitive | Skew first output dimension by a coef-

ficient of the second output dimension.

Reshape(L, d, dinpus,c) | a-primitive | Skew given output dimension by a co-
efficient of the given input dimension.

Table 1. List of supported primitives by the recovery tool

3 Transformation primitives

Table 1 shows the list of atomic transformations supported
by our tool along with expected parameters and short sum-
maries using the following notations:

e L : A list of schedule IDs, an injectionin [0...N — 1]
where N is the number of statements.

e f3 : A beta-vector targeting an entity (loop or state-
ment).

e p : A permutation vector of size equal to the number
of entities directly beneath the loop that is the target
of /?

o C:Alist of parametric shift coefficients of size equal
to the number of parametric bounds relevant to the
schedules, which are the target of L

e d,dy,d, : An output dimension

® dinpur : An input dimension

e ¢ : A scalar coefficient

All primitives are invertible. The a-primitives are ver-
satile and not tied to a specific scheduling representation.
Individual statements or groups of statements can be tar-
geted, no matter their inner loop placement. In contrast, the
PB-primitives, Reorder, Fuse, and Split, are inherently loop-
centric. In this context, the 2d+1 format is the most practical
for loop transformations. Hence, it is the format of choice
for the recovery algorithm.

We can note that our list of transformation primitives does
not include Stripmine or Tile transformations. Our focus in
this paper is to explain polyhedral scheduler transformations.
We omit these transformations as current polyhedral sched-
uling algorithms would not propose such transformations.

‘ Source schedule | |
T

» Alpha Minimal form |_— 3 i

Normalized Target schedule |

Target schedule |
T

Normalized Source schedule

===» Normalization (section 4.1)

— Alpharecovery (section4.2) e > Beta recovery (section 4.3)

Figure 1. Recovery Algorithm

4 Recovery Algorithm

The recovery algorithm requires a source and a target sched-
ule. Both schedules are assumed to be defined over the same
space (i.e. number of statements, identical domains, etc.).
Figure 1 illustrates the main steps of the recovery algorithm.

Before the recovery algorithm, both input schedules are
normalized. This normalization preprocessing is described
in Section 4.1. The first step of the recovery algorithm is
a-recovery and is explained in Section 4.2. The output of
the a-recovery is then inversed for the target schedule. The
second step, f-recovery is detailed in Section 4.3.

The output list of primitives is constructed as the con-
catenation of three lists: the a-recovery list for the source
schedule, the B-recovery list, and the inverted a-recovery list
for the target schedule.

4.1 Normalization step

The normalization step guarantees a normalized 2d+1 for-
mat [11] for the polyhedral representation. Indeed, polyhe-
dral scheduling algorithms may not always output schedules
in 2d+1 format.

This step is composed of three sub-steps:

B-collapsing fuse consecutive ff-dimensions into a sin-
gle f-dimension

2d+1 format insert full-zero f-dimensions between con-
secutive a-dimensions

p-normalization normalize the f-dimensions into min-
imal f vector for each statement.

Figure 2 shows an example of the normalization. This step
does not introduce, modify or drop primitives to recover
since it simply modifies the representation while preserving
the scheduling semantics.

4.2 a-recovery step

The a-recovery strategy is to transform the source and target
schedules into a common representation on the @-dimensions.
This common representation is called minimal form [12, Sec-
tion 5.3.4]. It exhibits the following properties: (1) it contains
exactly one polyhedral relation; (2) the scheduling relation
union is defined exclusively by identity equalities between
the input and the output dimensions in their respective or-
ders; (3) f-dimensions are removed.

To achieve this minimal form, the following a-primitives
are considered: Unembed, Densify, Reverse, Shift, Skew, Inter-
change and Reshape. The a-recovery algorithm will iterate

Recover Polyhedral Transformations From Polyhedral Scheduler

¢so: [5 i j 1 0 0 k] [5 i j 1 k]
$s1: [5 i j 1 1 0 k] [5 i j 2 k]
¢s2: [5-i j 1 1 0 k| [5-i j 2 k]
¢s3: [5 i j 0 0 0 k| [5 i j 0 k]
¢psa: [5 i 0 0 0 0 k| [5 i 0 0 k]

(a) Initial (b) B-collapsing

IMPACT 2024, January 17, 2024, Munich, Germany

[5 i 0 j 1 ko] [0 i 0 j 1 ko]
[5 i 0 j 2 k 0] [0 i 0 j 2 k0]
[5-i 0 j 2 k 0] [0-i 0 j 2 k 1]
[5 i 0 j 0 ko] [0 i 0 j 0 kO]
[5 i 0 0 0 ko] [0 i 0 0 0 k 1]

(c) 2d + 1 format (d) f-normalization

Figure 2. Normalization step example on a schedule for 5 statements S0...54

over these primitives and over statements. Primitives are
applied to the schedule if their application helps progressing
towards the minimal form until it is reached.

The a-recovery algorithm may either first iterate over
statements or over primitives. Option alpha-priority controls
this behaviour:

schedule prioritize statement-by-statement recovery.
The process iterates focuses on a single statement and
modifies only on scheduling function.

primitive prioritize the recovery of a given primitive
over all statements before another primitive is consid-
ered. It is applied if it useful for at least one statement.

The schedule option is more intuitive and groups transfor-
mations by statements. This option is equivalent to Chlore’s
behaviour. The primitive option has the advantage of group-
ing similar transformations together.

4.3 f-recovery step

The f-recovery focus on the f dimensions of the source sched-
ule to transform it to the target schedule. The f-recovery re-
peatedly considers the following S-primitives: Reorder, Split
and Fuse.

Multiple strategies for f-recovery may be selected using
option beta-strategy. The first two strategies, maxfuse and
maxsplit attempt to find a common form, as in a-recovery,
considering a maximum fused form or a maximum split
form. Strategy isolate attempts to directly find a path from
the source schedule to the target schedule since -dimensions
intuitively express an explicit order. None of the presented
strategies is optimal for all the source and target schedules
tried in our results section.

The f-recovery can be configured to attempt correcting
a block of statements at once instead of one by one. Option
beta-targeting can be set to statement, segment or group. For
all variations, the first element of the said target, the anchor
remains unchanged but the sizes of the blocks may vary.

The recovery iterates from outermost to innermost dimen-
sions. Anchors are chosen by finding mismatches in f values
at the current depth between the source and target sched-
ules. If multiple anchors candidates are found, the anchor is
selected as follows: (1) it has not been correctly recovered in
the source schedule and (2) its f-vector in the target sched-
ule is the lexicographic minimum (among the anchors that

8 [
%7 = our recovery over Chlore ﬁ
a 20 N
B 95 | .
]
@ 24 - |
a2 .
22 :
2' :
1T 111111 T-T-"T""T"T" T"T" T T T°7T
PO IS TEE SEFETSFSES
FIIFSESY SV a8 958
v LS LS v ¢ S
hed
%9‘%

Figure 3. Speedup to recover transformations in comparison
with Chlore

satisfy the first condition). Thanks to this choice, correctly
placed statements are never impacted by subsequently found
p-primitives.

Option block-targeting influences how blocks expand. For
segment targeting, they will expand as long as the next entity
(loop or statement at the same depth as the anchor) is a
statement and is also mismatched. For group targeting, blocks
will expand as long as the next entity is also mismatched.
The bigger the blocks corrected in one iteration, the better,
which is why the default group option usually provides the
simplest and fastest results.

5 Results

We implement our approach into PolyTOPS [6]. We exper-
iment on the Polybench [9] and compare Polytops result
with Chlore. Results show that, with our sub-set of transfor-
mation primitive defined in Section 3 and the new recovery
algorithm defined in Section 4, we can (1) greatly reduce the
recovery time and (2) reduce the number of transformation
primitives to apply.

Figure 3 shows the speed up comparing our recovery algo-
rithm to Chlore. Our algorithm is at least x18 and up to x300
faster than Chlore recovery time. These experiments were
done on an AMD EPYC 7452, 32 cores (2 threads per core), 2
sockets, 256 MiB of L3 cache. The compiler is gec-11.3.

Table 2 shows the number of transformations found for
some Polybench cases by, respectively, Chlore and PolyTOPS.
Test cases atax, deriche, nussinov, adi are not present in the

IMPACT 2024, January 17, 2024, Munich, Germany

Name Chlore | PolyTOPS
correlation NA 45
covariance NA 21
2mm 16 7
3mm 22 13
bicg 14 10
cholesky 13 9
doitgen 1 5
durbin 40 28
gemm 3 3
gemver 7 6
gesummv 7 5
gramschmidt* 29 13
lu 2 4
mvt 2 2
symm 3 5
syr2k 3 3
syrk 3 3
trisolv 9 5
trmm 3 2
floyd-warshall 0 0
fdtd-2d 41 15
heat-3d 38 12
jacobi-1d 16 4
jacobi-2d 26 8
seidel-2d 12 3

Table 2. Number of primitives recovered with Chlore and
our approach in PolyTOPS

array because no new schedule is found. For correlation and
covariance, Chlore recovery falls into an infinite loop. For
gramschmidt”, Chlore and PolyTOPS do not use exactly the
same target schedule, but an equivalent one. Over the 25
cases, 11 cases have more than 10 transformations for Chlore,
when only 6 cases are over 10 transformations for PolyTOPS.
Moreover, except doitgen and lu, our solution always find
the same number of transformation or much more less than
Chlore solution. We can highlight all the stencil cases, fdtd-2d,
heat-3d, jacobi-1d, jacobi-2d and seidel-2d, where PolyTOPS
find at least 3 times less transformations to apply than Chlore.

6 Future Work

We focused on understanding the output of a polyhedral
scheduler and hence omitted stripmining and tiling. Future
work may extend the scope to arbitrary polyhedral schedules.
Future work may build upon this approach to make it
possible to use polyhedral optimization in a wider variety
of scenarios. In particular, translating automatic polyhedral
schedules into sequences of transformations may ease the
use of frameworks such as TVM [5] or Halide [10] where
experts need to provide manual schedules. This could also
increase inter-operability with existing work such as Clay [2],
CHILL [4], URUK [7], Tiramisu [1], or even MLIR [8].

Lossing N. et al.

7 Conclusion

In this paper, we present new techniques to recover transfor-
mation primitives from the output of a polyhedral scheduler.
We show that an efficient recovery algorithm can be designed
with a limited number of transformation primitives. There
is no unique way to recover the transformation primitives
that correspond to the output of a polyhedral scheduler and
corresponding decisions can greatly influence the length of
recovered sequences. Indeed, our experiments on PolyBench
show that a good set of options can result in very short trans-
formation primitive sequences for simple cases. Recovering
transformation primitives can help non-experts understand
and possibly tailor polyhedral scheduling. It may be useful
in future work to leverage existing manual-scheduling tools
such as TVM or Halide.

References

[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral
compiler for expressing fast and portable code. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 193-205.
Lénaic Bagneéres, Oleksandr Zinenko, Stéphane Huot, and Cédric Bas-
toul. 2016. Opening polyhedral compiler’s black box. In Proceedings of
the 2016 International Symposium on Code Generation and Optimization.
128-138. https://doi.org/10.1145/2854038.2854048
Cédric Bastoul. 2011. Openscop: A specification and a library for data
exchange in polyhedral compilation tools. Technical Report. Université
Paris-Sud. 22 pages.
[4] Chun Chen, Jacqueline Chame, and Mary W. Hall. 2007. CHIiLL : A
Framework for Composing High-Level Loop Transformations.
[5] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 578-594.
Gianpietro Consolaro, Zhen Zhang, Harenome Razanajato, Nelson
Lossing, Nassim Tchoulak, Adilla Susungi, Artur Cesar Araujo Alves,
Renwei Zhang, Denis Barthou, Corinne Ancourt, and Cedric Bastoul.
2024. PolyTOPS: Reconfigurable and Flexible Polyhedral Scheduler.
In 2024 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO).
Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. 2006. Semi-automatic com-
position of loop transformations for deep parallelism and memory
hierarchies. International Journal of Parallel Programming 34 (2006),
261-317.
Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 2-14.
https://doi.org/10.1109/CG0O51591.2021.9370308
Louis-Noél Pouchet et al. 2010. Polybench: The polyhedral benchmark
suite. https://sourceforge.net/projects/polybench
[10] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices 48, 6 (2013), 519-530.

[2

—

3

—

[6

—

7

—

[8

[}

[

—

https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1109/CGO51591.2021.9370308
https://sourceforge.net/projects/polybench

Recover Polyhedral Transformations From Polyhedral Scheduler IMPACT 2024, January 17, 2024, Munich, Germany

[11] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. [12] Oleksandr Zinenko. 2016. Interactive Program Restructuring. Ph.D.
2014. Schedule Trees. In 4th International Workshop on Polyhedral Dissertation. Université Paris Saclay (COmUE). https://theses.hal.
Compilation Techniques (IMPACT 14). Vienna, Austria. science/tel-01414770

https://theses.hal.science/tel-01414770
https://theses.hal.science/tel-01414770

	Abstract
	1 Introduction
	2 Related Work
	3 Transformation primitives
	4 Recovery Algorithm
	4.1 Normalization step
	4.2 -recovery step
	4.3 -recovery step

	5 Results
	6 Future Work
	7 Conclusion
	References

