
Dead Iteration Elimination
Cedric Bastoul

Qualcomm France S.A.R.L.
France

Maxime Schmitt
Qualcomm France S.A.R.L.

France

Benoît Meister
Qualcomm Technologies, Inc.

USA

Chandan Reddy
Qualcomm France S.A.R.L.

France

inputA[M][P]

BandPart

MatMul

inputB[P][M]

tmp[M][M]

output[M][M]

// MatMul Operator
for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.;
for (k = 0; k < P; k++)
tmp[i][j] += inputA[i][k] * inputB[k][j];

}
// BandPart Operator (set to upper triangular)
for (i = 0; i < M; i++)
for (j = i; j < M; j++)
output[i][j] = tmp[i][j];

// Fused MatMul-BandPart Operator after DIE
for (i = 0; i < M; i++)

for (j = i ; j < M; j++) {

tmp[i][j] = 0.;
for (k = 0; k < P; k++)
tmp[i][j] += inputA[i][k] * inputB[k][j];

}
for (i = 0; i < M; i++)
for (j = i; j < M; j++)
output[i][j] = tmp[i][j];

(a) High-Level Subgraph (b) Fused Operator Code Corresponding to (a) (c) Fused Operator Code After DIE

Figure 1. Goal: Automatically Generate (c) From (b) and Information From (a) to Remove Dead Iterations

Abstract
Dead code elimination (DCE) is a compiler technique that
aims at increasing the program performance and reducing
the executable size by removing program parts which do not
contribute to the program output. Usual DCE implementa-
tions identify instructions not producing live-out data and
remove them entirely. However, it may happen that only
some dynamic executions of the instruction are dead. This
situation notably arises when an instruction is enclosed in-
side a loop and some iterations of that loop do not contribute
to the program output.

In this paper we present dead iteration elimination (DIE),
a technique to identify and to remove those iterations. DIE
relies on polyhedral analysis to compute the required data
space and the iterations which contributed them. It enables
the safe removal of parts of the iteration space, possibly up
to complete statement removal, in a complementary way to
DCE. It also makes it possible to consider required output
specification which opens new applications such as auto-
matic specialization, sparsification or subsampling.

1 Introduction
There exists a number of situations where only a subset of
the dynamic executions of an instruction actually contributes
to a program output. In such cases, dead code elimination
(DCE) techniques fail at removing them because they ad-
dress only complete instruction removal. The problem may
be particularly prominent when applications are built from
a limited set of pre-defined high-level operators, such as
in artificial intelligence and deep learning frameworks. In
this context, the output of some operators may not be used
entirely by subsequent operators. An illustration is shown
in Fig. 1(a) where the composition of MatMul and BandPart

IMPACT, 2025 , Barcelona, Spain
.

TensorFlow-like operators filters only upper triangular el-
ements of a matrix-multiplication output. The compound
operator code built from the concatenation of each operator
code is shown in Fig. 1(b). It features many "dead iterations",
i.e. loop iterations not contributing to the program output.
In this paper we present a polyhedral compilation approach
called dead iteration elimination (DIE) to remove them and
generate the code in Fig. 1(c).1 DIE enables a number of
advances:

1. We achieve finer-grain optimization w.r.t. DCE by act-
ing at the loop iteration level rather than at full state-
ment level, allowing the composition of AI/DL opera-
tors with auto-removal of non-pertinent computation,
reducing the need for specialized custom operators;

2. We apply full statement removal in dead iteration
space situations that could not be identified by DCE,
in a complementary way;

3. We enable new applications when a specification of
the output dataspace exists, e.g., specialization, spar-
sification or subsampling of AI/DL operators which
inactivate parts of their original computation space.

4. We provide static analysis information exposing poten-
tial programming mistakes during software develop-
ment, e.g., ill-formed loops or out-of-bound accesses.

2 Dead Iteration Analysis and Removal
DIE’s flow is depicted in Fig. 3. It takes as input the program
code as well as an optional specification of the desired out-
put data, i.e., which parts of the data space the code should
actually compute. This specification can be used to special-
ize the code (e.g., to compute only a given data tile) and/or
to inject regular sparsity or subsampling information (e.g.,
to compute only half the data according to a checkerboard
1In this example, the temporary tensor tmp may be removed as well using
specific analysis oustide the scope of this paper.

1

IMPACT, 2025 , Barcelona, Spain Cedric Bastoul, Maxime Schmitt, Benoît Meister, and Chandan Reddy

Algorithm 1 Dead Iteration Space Analysis
Input: Augmented & inverted data-dependence graph (see step (c))
Output: Dead iteration space for each node
1: for each vertex 𝑣 , initialize 𝑅𝑣,𝑡 the required data space for the tensor 𝑡 : do
2: Entry vertex: 𝑅𝑒𝑛𝑡𝑟𝑦,𝑡 = required data space of each output tensor 𝑡
3: Other vertices: empty spaces
4: end for
5: for each vertex 𝑣 (that has iteration domain D𝑣 , writes tensor𝑤 with function 𝑓𝑤 , and reads tensors 𝑟𝑖

with function 𝑓𝑟𝑖) according to the order defined in step (c) do
6: Compute the vertex potential contribution space for𝑤 : P𝑣,𝑤 = ∪𝑖∈𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (𝑣)R𝑖,𝑤

7: Compute the vertex contributing space for𝑤 : C𝑣,𝑤 = 𝑃𝑟𝑒𝑖𝑚𝑎𝑔𝑒 (P𝑣,𝑤, 𝑓𝑤) ∩ D𝑣

8: Compute the required data spaces for 𝑣 : {R𝑣,𝑟𝑖 = 𝐼𝑚𝑎𝑔𝑒 (C𝑣,𝑤, 𝑓𝑟𝑖)}
9: Compute the dead iteration space for 𝑣 : 𝐷𝑒𝑎𝑑𝑣 = D𝑣 − C𝑣,𝑤

10: end for

Figure 2. Dead Iteration Elimination Analysis Algorithm

(a) Raising to polyhedral
representation

Input code

(b) Data dependence graph
construction

(c) Inverse dependence
graph and node ordering

Live-out
analysis

Data-space
intersection

(d) Dead iteration space
analysis

(e) Iteration domain
restriction

(f) Polyhedral code
generation

Specification of
desired output

Output code
Specification of
dead iterations

Figure 3. Dead Iteration Elimination Processing Flow

layout). That specification is combined with an automatic
live-out analysis to form the required data space. Iterations
not contributing directly or indirectly to a write on that re-
quired data space are dead. DIE follows a 6-step process to
generate both an output code cleared from dead iterations
and a specification of the dead iteration space for further
analysis (e.g., to generate compiler warnings).
The principle of DIE is to back-propagate constraints on

the required data spaces along the data dependence graph
fromnodes producing the output data to nodes reading the in-
put data.We eliminate cycles by collapsing each strongly con-
nected component into a single node, over-approximating its
requirements as the union of all its input domains. Handling
he special case of self-dependency with distance zero, e.g.,
+= operator, by removing the cycle is sufficient to handle the

class of programs we are addressing without introducing an
over-approximation. Those constraints on data translate to
constraints on the iteration space that we restrict to remove
dead iterations. The consecutive steps are as follows:

(a) Raising to polyhedral representation achieves ex-
traction of polyhedral representation, including iteration
domains, data access functions, and scheduling of the origi-
nal program as offered by polyhedral compilers [5, 9, 14].

(b) Data dependence graph construction builds the
data dependence graph (DDG) [4] and its strongly connected
component graph (enabling a convenient node ordering dur-
ing the next step). Each strongly connected component cor-
responds to a compound statement writing/reading all data
references written/read in the original nodes. In the follow-
ing, they are considered as single nodes.

(c) Inverse dependence graph andnode ordering finds
a convenient node traversal ordering for backward propa-
gation of constraints. First, it builds an inverse dependence
graph by (1) inverting all edges of the graph computed in the
previous step, (2) adding an "entry" node with edges from
that node to all nodes writing to a required output, and (3)
adding an "exit" node with edges from all nodes reading an in-
put data to that node. Finally it computes a topological order
for that graph, not taking into account self-dependencies.

(d) Dead iteration space analysis is the core of the pro-
cess and is detailed in Fig. 3(right). Without loss of generality
and for clarity reasons, we suppose each node writes only
one tensor, as it can easily be generalized. Starting from the
required data space specified for each output tensor, the al-
gorithms walks back the DDG up to the statements reading
the input data, and uses polyhedral operations such as image
or preimage by the access functions [12] to move from data
space to iteration space and conversely.

For each node, we first compute the potential contribution
space, i.e. the parts of the required data space that node

2

Dead Iteration Elimination IMPACT, 2025 , Barcelona, Spain

may contribute to. Then we compute the contributing space,
i.e., the parts of the iteration space actually contributing.
Next we compute the required data space, i.e., the parts of
the data space that node requires. Finally we compute the
dead iteration space as the difference between the iteration
domain and the contributing space.

(e) Iteration domain restriction replaces each state-
ment iteration domain with the difference between that iter-
ation domain and the dead iteration space for that statement.

(f) Polyhedral code generation finally produces the
output code without dead iterations from the modified repre-
sentation, using polyhedral code generation techniques [1].

3 Related Work
Dead code elimination is a classical optimization present
since early compilers [6]. Modern solutions are based on
static single assignment form, identifying instructions not
producing live-out data to remove them entirely [2]. Par-
tial dead code removal is possible by moving that code to
branches where it actually contributes to the output while it
is dead in others [7]. Differently, we propose to reason and
to remove partial dead code at the loop iteration level, with
the support of polyhedral techniques. Sharing data-space
analysis, Feautrier addressed the dual problem for a single
reference [3] and overlapped tiling computes parts of a tiled
iteration space contributing to tiles [8]. Our work differs as
the analysis targets full kernels or functions and applies to
conservative and efficient iteration removal.

Verdoolaege suggested a dead code elimination approach
by iteratively applying dataflow analysis [13]. As this ap-
proach may add only isolated iterations at each step, it is not
practical unless the number of iterations is small and it is
not applicable when the number of iterations is parametric.
Verdoolaege suggests to use widening to overcome those
limitations, which may itself be limited (e.g., PPCG 0.09.2
keeps all iterations for the example in Fig. 1). Differently,
our approach reasons on spaces for excellent scaling and
support of parametric loops: it applies to subsets of iteration
domains, enabling sparsification and subsampling scenarios.
Dead code elimination based on polyhedral representa-

tions also appear in implemented forms in source code of
Polly [5] where it is described as related to PPCG’s
approach [13], or of AlphaZ [15] in the context of systems
of affine recurrence equations to ensure that AlphaZ gener-
ates a C code that covers only the useful data/iterations of a
program. The implementation nature of those related work
makes it difficult to make a precise comparison, instead our
paper explicits a practical approach to achieve this task.

4 Conclusion
This paper presents an approach to dead iteration elimina-
tion, leveraging polyhedral analysis to generate a code where
loop iterations not contributing to the output are removed.

Our technique supports desired output data specification,
enabling a number of applications including code specializa-
tion, sparsification and subsampling. A notable application
in the context of large language models based on the trans-
former architecture [11] is the removal of all iterations not
participating to the computation of the output logits (only
the last row of the logit matrix being useful in most sce-
narios), strongly reducing the cost of the last decoder layer
(about 3% overall time reduction of prompt processing for
LLaMa 3.1 8B [10]). Ongoing work aims at removing dead
output dependencies.

References
[1] Cédric Bastoul. 2004. Code Generation in the Polyhedral Model Is

Easier Than You Think. In PACT’13 IEEE International Conf. on Parallel
Architecture and Compilation Techniques. Juan-les-Pins, France, 7–16.

[2] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (oct 1991).

[3] P. Feautrier. 1988. Parametric Integer Programming. RAIRO Recherche
Opérationnelle 22, 3 (1988), 243–268.

[4] P. Feautrier. 1991. Dataflow Analysis of Scalar and Array References.
International Journal of Parallel Programming 20, 1 (Feb. 1991), 23–53.

[5] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Grösslinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral
optimization in LLVM. In IMPACT 2011 First International Workshop
on Polyhedral Compilation Techniques. Chamonix, France.

[6] Kenneth W. Kennedy. 1973. Global dead computation elimination.
Technical Report. Tech. Rep. SETL Newsl. 111, Courant Institute of
Mathematical Sciences, New York Univ., New York, N.Y.

[7] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial dead
code elimination. ACM Sigplan Notices 29, 6 (1994), 147–158.

[8] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ra-
manujam, Atanas Rountev, and P Sadayappan. 2007. Effective Auto-
matic Parallelization of Stencil Computations. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Diego, California) (PLDI ’07). 235–244.

[9] Benoît Meister, Nicolas Vasilache, David Wohlford, Muthu Manikan-
dan Baskaran, Allen Leung, and Richard Lethin. 2011. R-Stream Com-
piler. In Encyclopedia of Parallel Computing. 1756–1765.
Now Qualcomm® Polyhedral Mapper2

[10] Llama Team. 2024. The Llama 3 Herd of Models. arXiv:2407.21783
[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Proceedings of the 31st Intl. Conf. on Neural
Information Processing Systems (Long Beach, California). 6000–6010.

[12] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral
Model. In ICMS 2010, Third International Congress on Mathematical
Software, Vol. 6327. Kobe, Japan, 299–302.

[13] Sven Verdoolaege. 2015. PENCIL support in pet and PPCG. Technical
Report RT-0457. INRIA Paris-Rocquencourt.

[14] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral Extraction
Tool. In IMPACT’12 International Workshop on Polyhedral Compilation
Techniques. Paris, France.

[15] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and
Sanjay Rajopadhye. 2013. AlphaZ: A System for Design Space Explo-
ration in the Polyhedral Model. In Languages and Compilers for Parallel
Computing. Springer, 17–31.

2Qualcomm Polyhedral Mapper is a product of Qualcomm Technologies,
Inc. and/or its subsidiaries.

3

http://arxiv.org/abs/2407.21783

	Abstract
	1 Introduction
	2 Dead Iteration Analysis and Removal
	3 Related Work
	4 Conclusion
	References

