
Automatic Specialization of Polyhedral Programs on
Sparse Structures

Alec Sadler
Laboratoire de l’Informatique du Parallélisme

Inria, CNRS, ENS de Lyon, UCBL
Lyon, France

Firstname.Lastname@inria.fr

Christophe Alias
Laboratoire de l’Informatique du Parallélisme

Inria, CNRS, ENS de Lyon, UCBL
Lyon, France

Firstname.Lastname@inria.fr

Abstract
Most High-Performance Computing applications manipulate
sparse data, which results in highly irregular code whose
compile-time optimization is quite challenging. One way is
to start from the original dense specification, which is usu-
ally much more regular and ready to be optimized thanks
to state-of-the-art program optimization algorithms. This
paper presents an algorithm to specialize a dense polyhedral
program on sparse inputs. Our approach is able to propagate
the input sparse structure across the computation and to
keep only the necessary computations computing non-zero
values. It is meant to be coupled with other code transfor-
mation strategies to generate efficient parallel code. The
key ingredient of our algorithm is the transitive closure of
affine relations, for which efficient and accurate heuristics
exist. Experimental evaluation assesses the scalability and
the accuracy of our approach.

CCS Concepts: • Software and its engineering → Com-
pilers; Just-in-time compilers; • Theory of computa-
tion → Program analysis; Regular languages; • Com-
puting methodologies → Distributed computing method-
ologies.

Keywords: Code optimization, Sparse computation, Run-
time specialization

1 Introduction
Since the early days of parallel computing, industry is push-
ing towards programming models, languages and compilers
to help the programmer in the tedious task to parallelize a
program. Automatic parallelization focuses on programming
automatically parallel computers from a sequential specifi-
cation. In the past decades, a general unified framework, the
polyhedral model [19], was designed to solve that problem
for regular loop kernels manipulating dense tensors (arrays).
With the polyhedral model, compilers may reason about pro-
grams at iteration-level, giving rise to powerful automatic
parallelization algorithms [2, 10, 28].
However, most kernels of interest in high-performance

computing manipulate sparse tensors which can also appear
in pruned machine learning models. Sparse codes are highly

IMPACT, 2025, Barcelona, Spain
.

irregular and make use of array indirections and dynamic
control which jeopardize static automatic parallelization al-
gorithms. Hence, alternative directions are investigated, such
as runtime parallelization of sparse code and compile-time
code generation from a dense code specification when the
sparse input data are available.
Runtime sparse parallelizers [37, 39, 40] parallelize the

sparse code during the execution by relying on an inspec-
tor/executor scheme. The inspector retrieves the dependences
at runtime from the sparse data and makes the paralleliza-
tion decisions. Then, the executor executes the parallelized
code. Compile-time sparse code generators on the other hand
produce an optimized sparse code from a dense code specifi-
cation with annotations. Since the seminal work of Bik [6] on
efficient sparse data structure selection, several approaches
were proposed to produce a sparse code with a minimal
amount of computations. Kjolstad [26] proposes a source-to-
source code generator, TACO, exploiting the properties of
the integer ring (Z,+,×) (no multiplication by 0) and gen-
eralized to any pool of user defined operators over integers
with a set of axiomatic properties [20]. Some approaches
[12, 47] have shown the importance of decoupling the sym-
bolic analysis phase from the latter numerical computation
stage. The symbolic phase apply code transformations by
reasoning over the input sparse structures, and then give the
hand to the numerical phase to perform the computation.
While these approaches target a multitude of kernels, it still
is a sub-set of SCoP programs which the polyhedral model
manipulates.
In this paper, we propose a general method for the auto-

matic specialization of dense polyhedral programs on sparse
input tensors. We introduce the concept of sparse propa-
gation in the program, where only iterations in loops that
generate a non-zero value are kept in the final code. Our
approach has many applications in sparse code optimization.
It could be used at compile time coupled with various sym-
bolic phase techniques to produce a versionning on different
sparse matrix shapes; or at runtime with inspector/executor
methods to specialize dynamically a code once the sparse
structure is known, and then enable deeper optimizations
than those taking the sparse code without any knowledge of
the original dense code. Specifically, we make the following
contributions:

1

IMPACT, 2025, Barcelona, Spain Alec Sadler and Christophe Alias

C[i] [j] = reduce (+ , (i , j , k−>i , j) ,
1 <= i , j , k <= N ,
A[i] [k] ∗ B [k] [j]) ;

(a) Dense kernel

A=

B=
i

j

k

(b) Sparse specialization

Figure 1. Motivating example 1: reduction

• We propose an algorithm for specializing (dense) poly-
hedral programs given a sparse data description. Our
approach is based on the direct resolution of fixpoint
equations using an abstraction to a formal language.

• We have evaluated our approach on large sparse ma-
trices. The results show that our method is accurate
and that the bottlenecks are easily parallelizable.

This paper is structured as follows. Section 3 introduces
the polyhedral model and the mathematical tools used in the
algorithm description. Section 4 presents the related work.
Section 5 presents our specialization algorithm. Section 6
presents our experimental validation. Finally, Section 7 con-
cludes this paper and outlines research perspectives.

2 Motivating Examples
This section presents the motivating examples, which will
be discussed throughout this paper. We first consider an
example with a reduction, an operator widely used in HPC.
For the sake of completeness, non-reduction recurrencesmust
be handled. They are addressed through a second example.

Example 1: reduction. Consider the matrix multiplica-
tion kernel depicted on Figure 1.(a). It is expressed as a single
reduction C[i, j] =

∑N
k=1A[i,k] ∗ B[k, j]. Given input sparse

matrices, our goal is to propagate the sparsity across the com-
putation, and keep only the useful computations depicted
in (b). For example here, iterations (i, j,k) are kept only if
A[i,k] , 0 and B[k, j] , 0, and finallyC[i, j] , 0 only if there
exists some k with A[i,k] , 0 and B[k, j] , 0. On our exam-
ple, we would only have relevant loop iterations depicted in
red on the picture.

Example 2: recurrence. Consider the kernel depicted on
Figure 2.(a). Again, we want to keep all iterations which
produces a non-zero element after propagating the sparse

f o r (i = 0 ; i <= N−1 ; i ++)
S : A[0 , i] = In [i] ;

f o r (t = 1 ; t <= M; t ++)
f o r (i = 1 ; i <= N−1 ; i ++)

T : A[t , i] = A[t −1 , i −1] + A[t −1 , i] ;
(a) Dense kernel

t

ii

0

1

2

3

4

1 2 3 4

N − 1

S

T

(b) Sparse specialization

Figure 2. Motivating example 2: recurrence

input In. On T , we would keep the iterations (t , i) satisfying:

A[t − 1, i − 1] , 0 or A[t − 1, i] , 0

Somehow, we need to check recursively A[t − 1, i − 1] and
A[t − 1, i] until a non-zero input In[i ′] is reached. This can
become very hard to compute as the number of dependences
grow in the program, it is also not trivial when input In also
need to be computed from other previous kernels.
The outcome of our algorithm is the set of loop itera-

tions producing a non-zero value for each statement of the
program. For instance, this could be used to generate a spe-
cialized program focusing on relevant iterations thanks to
state-of-the-art polyhedral code generation tools [4].

3 Preliminaries
This section oulines the fundamental notions behind our
algorithm. Section 3.1 presents the polyhedral model, the
general compilation framework in which our work fits. Then,
Section 3.2 presents our intermediate representation, the
systems of affine recurrence equations. Finally, Section 3.3
presents affine relations, the main mathematical tool used in
our approach.

3.1 Polyhedral model
The polyhedral model [16–19, 33, 34] is a general framework
to design loop transformations, historically geared towards
source-level automatic parallelization [19] and data locality
improvement [10]. It abstracts loop iterations as a union of
convex polyhedra – hence the name – and data accesses as
affine functions. This way, precise – iteration-level – com-
piler algorithms may be designed (dependence analysis [16],

2

Automatic Specialization of Polyhedral Programs on Sparse Structures IMPACT, 2025, Barcelona, Spain

scheduling [18] or loop tiling [10] to quote a few). The poly-
hedral model manipulates program fragments consisting of
nested for loops and conditionals manipulating arrays and
scalar variables, such that loop bounds, conditions, and array
access functions are affine expressions of surrounding loops
counters and structure parameters (input sizes, e.g.,N). Thus,
the control is static and may be analysed at compile-time.
With polyhedral programs, each iteration of a loop nest is
uniquely represented by the vector of enclosing loop coun-
ters ®i . The execution of a program statement S at iteration ®i

is denoted by ⟨S, ®i⟩ and is called an operation or an execution
instance. The setDS of iteration vectors is called the iteration
domain of S .
Example (cont’d). Both examples are clearly a polyhedral
program. Example 2 has two statements S and T , whose
iteration domains are polyhedra parametrized by andM and
N : DS = {i | 0 ≤ i ≤ N − 1}, DT = {(t , i) | 1 ≤ t ≤ M, 1 ≤

i ≤ N − 1}.

3.2 Systems of Affine Recurrence Equations
Usually, polyhedral programs are not manipulated directly
but through an intermediate dataflow representation called a
system of affine recurrence equations (SARE) which focuses
on the computation itself and abstracts away the storage
allocation and the execution order [16]. In a nutshell, a SARE
is a dynamic single assignment form manipulating arrays.
This means that each array cell is defined (e.g. written once)
by a recurrence involving other arrays.
Example (cont’d).

• Example 1. The SARE is:

C[i, j] =
∑

(i, j)=Π(i, j,k),1≤i, j,k≤N A[i,k] ∗ B[k, j]

Π is defined as Π(i, j,k) = (i, j). This means that the
result C[i, j] is obtained by reducing all the iterations
(i, j,k) ∈ D.

• Example 2. The SARE is:

S[i] = if 0 ≤ i ≤ N − 1 then In[i]
else ⊥

T [t , i] = if (t , i) ∈ DT then
(if t = 1 or i = 1 then S[i − 1]
else T [t − 1, i − 1]) +

(if t = 1 then S[i]
else T [t − 1, i])

else ⊥

To simplify the presentation, the constraints 1 ≤ t ≤
M, 1 ≤ i ≤ N − 1 are written (t , i) ∈ DT .

There are several equivalent ways to define a SARE. In this
paper, we consider the arrays as infinite objects where mean-
ingless cells are filled with the undefined symbol ⊥. Note
that ⊥ is absorbing for any operator. Also, we will consider
arrays as mappings assigning a value to each index of Zd .
Arrays will be defined with functional equations by means

Sare ::= Def+

Def ::= Array := i 7→ Expr

Expr ::= Constant | Array[ϕ(i)]

| if Cond then Expr else Expr

| Expr + Expr | Expr ∗ Expr | ⊥

|
∑

i=Π(j), j ∈D

Expr

Figure 3. SARE syntax

of a composition of functions (array reindexing, conditions as
functions, constants as functions, etc):

• Example 1.

C = (i, j) 7→
∑

(i, j)=Π(i, j,k),1≤i, j,k≤N A[i,k] ∗ B[k, j]

• Example 2.

S := i 7→ if 0 ≤ i ≤ N − 1 then In[i]
else ⊥

T := (t , i) 7→ if (t , i) ∈ DT then
(if t = 1 or i = 1 then S[i − 1]
else T [t − 1, i − 1]) +

(if t = 1 then S[i]
else T [t − 1, i])

else ⊥

Syntax. The SARE syntax is depicted on Figure 3, where
Constant denotes a constant value, Array denotes an array
identifier, ϕ denotes an affine function and Cond denotes an
affine condition. We assume the SARE to be well formed.
The affine expressions defining ϕ and Cond should only in-
volve the indices of the written left hand side array and the
structure parameters (e.g. N). The reduction is instanciated
with a + operator, but it could be any associative/commuta-
tive operator with the neutral element 0. Also, the SARE is
assumed to be computable – here, it is always the case since
it is derived from a polyhedral program and not considered
as a standalone input.

Semantics. The SARE semantics is depicted on Figure
4. The semantics of a SARE array M is a mapping SJMK
which assigns to each array index the value stored at that
index. Each subexpression e is naturally viewed in the same
way, this enable the definition of SJMK with functional equa-
tions. For instance, the expression Array[ϕ(i)] is view as the
remapped array i 7→ Array[ϕ(i)]. Our semantic relies on
a straightforward expression semantics EJ.K and condition
semantics BJ.K. Note that the parameter values are implicit,
x : k 7→ xk only contains the binding for each indice value.
Finally, the set of values taken by array cells is enriched with
the undefined symbol ⊥, the same symbol used in the syntax
definition for the sake of clarty.

3

IMPACT, 2025, Barcelona, Spain Alec Sadler and Christophe Alias

SJArrayK(x) = SJExprK(x) if Array := i 7→ Expr and x ∈ Zdim i (1)
SJConstantK(x) = EJConstantK (2)

SJArray[ϕ(i)]K(x) = SJArrayK(ϕ(x)) (3)
SJif Cond then Expr1 else Expr2K(x) = SJExpr1K(x) if BJCondK(x) is true, SJExpr2K(x) otherwise (4)

SJExpr1 + Expr2K(x) = SJExpr1K(x) + SJExpr2K(x) (5)
SJExpr1 ∗ Expr2K(x) = SJExpr1K(x)SJExpr2K(x) (6)

SJ⊥K(x) = ⊥ (7)

SJ
∑

i=Π(j), j ∈D

ExprK(x) =
∑

x=Π(j), j ∈D

SJExprK(j) (8)

Figure 4. SARE semantics

3.3 Affine Relations
We now present affine relations, the main mathematical
tool used in our approach. A Presburger relation is a bi-
nary relation → ⊆ Zn × Zp such that there exists a Pres-
burger formula Φ (arithmetic over (Z,+)) with n + p free
variables with (x1, . . . xn) → (y1, . . .yp) iff x ,y satisfy Φ:
(x1, . . . ,xn ,y1, . . . ,yp) ⊢ Φ. Usually, those relations are re-
ferred to as affine relations, as they manipulate affine forms.
Example (cont’d). The following affine relation:

{(i,k,N) → (i, j,k,N) | 1 ≤ i, j,k ≤ N }

relates A[i,k] to the iterations reading it. Usually, parame-
ters (N) are omitted to simplify the formulation: {(i,k) →
(i, j,k) | 1 ≤ i, j,k ≤ N }.

In this paper, we will use extensively affine relations and
particularly their transitive closure (to emulate loops) →∗=⋃

k ∈N →k . In general transitive closures of affine relations
are not computable, as multiplication could be emulated, and
this way the (indecidable) Peano arithmetic. However, pat-
tern matching-based heuristics appears to be very efficient
and effective in practice [9, 44]. In the following, we will
use the following notation for relation composition: R1.R2
means R2 ◦ R1. For homogeneity purpose, we will also view
a Presburger set P as a the affine relation: {() → x | x ∈ P}.
For instance, the set of iterations reading A[0][0] could sim-
ply be obtained with {() → (0, 0)}.{(i,k) → (i, j,k) | 1 ≤

i, j,k ≤ N }.

4 Related Work
In this section, we first outline the work around the gener-
ation and the optimization of sparse code; then we outline
the work on code specialization. As explained in the paper,
many work were done for efficient support of specialization
and code generation of sparse code, which are both essen-
tial for performance, as code generated by sparse compilers
can greatly vary depending on the operation and the data
structure of the input tensors.

Sparse code generators. Specification over irregular struc-
tures has been tackled by numerous compilers. The MT1
compiler [7, 8] first introduced compilation techniques to
transform dense layout into sparse iteration, such as guard
encapsulation to iterate over only nonzero elements in a
dimension. The Bernouilli project [32] studied a relational
approach on sparse computation, linking iteration spaces of
diferent tensors as query expressions. These transformations
were later refined by the influential TACO compiler [25], a
library and code generator. TACO thinks of tensors as tree,
with each level corresponding to a dimension (defined as
dense or compressed/sparse). When generating code, TACO
looks at the overall computation and generates loop nests
where each level become a for or a while loops depending on
the structure of the many sparse tensors at that level. While
efficient, this representation can have trouble expressing it-
eration over exotic that can iterate over multiple dimensions
or blocked layouts [14], which can prove to be more efficient
on modern GPUs [5, 13, 36].

Sparse code optimizers. Sparse code optimizers are able
to perform code transformation, such as tiling and loop coa-
lescing on sparse code. The polyhedral model[19] originally
targets loop nests with regular loop bounds in order to au-
tomatically find parallelism, but de facto cannot perform
transformations on sparse irregular accesses. Works were
done extending the model on sparse computation, as Augus-
tine et al [3] used trace reconstruction in order to exploit
patterns for the sparse matrix vector multiplication kernel.
This approach was tested with polyhedral code generation
tools, but would only generate code of great size with many
loops of small trip count that would crash for the biggest
matrices from the SparseSuite collection. Zhao et al. [46]
compute static upper bound and model control dependences
of non-affine loop bounds. The Sparse Polyhedral Framework
[38] combine the polyhedral model with inspector-executor
methods to target non-affine loops and introduced the con-
cept of uninterpreted function in the polyhedral model to

4

Automatic Specialization of Polyhedral Programs on Sparse Structures IMPACT, 2025, Barcelona, Spain

allow sparse code generation. How those functions are de-
duced is part of what this paper aims to solve, and can very
well be coupled to generate efficient sparse code for programs
supported by polyhedral parsers. Venkat et al.[42] in the SPF
describe loop transformations to compose sparse layout to
polyhedral scanning. Zhao et al. [47] implement co-iteration
in the SPF by iterating over one sparse tensor and looking
up the indices of the other layouts throught find algorithms
deducted by an SMT solver. Sparso [35] and COMET [41] de-
scribe data reordering techniques to improve locality during
computation. Looplet [1], based on same iteration model as
TACO, offers a solution to support a variety of underlying
structures in sparse tensors, allowing better iteration strate-
gies over dimensions. Overall many of these techniques can
benefit from our method for final code generation.

Code specialization. Specialization on sparse data struc-
ture is closely intertwined with partial evaluation [15], in
which program inputs are split into static (for example sparse
layouts) and dynamic (loop bounds) parts. This allow com-
pilers to generate efficient code which can be adapted to
(ie static) components, which is crucial knowing that many
sparse layouts [27] still prove to be efficient in essential
computations, which then need multiple implementations.
Augustine et al.[3] was later refined by many techniques[11,
21, 45] to provide efficient vectorization of SpMV kernels
with specialization on the input sparse structure. We aim to
generalize these techniques to other kernels.

5 Our Approach
Figure 5 depicts the main steps of our approach. First, we
compute a set of sparsity equations whose solution is exactly
the regions of interest for each tensor used by the program
(Section 5.1). There is no direct resolution method, hence
we propose to rephrase these equations as rational language
equations for which resolution methods exists (Section 5.2).
This rephrasing will abstract away the difficult parts. Fi-
nally, we translate back the solution as a simplified system
of sparsity equations (Section 5.3). If it is directly solvable,
we compute the solution (1). If not, the system might need
to be evaluated, or interpreted, to get the final solution (2).
This is discussed in Section 5.4.

5.1 Compiling the Sparsity Equations
First, we generate a set of sparsity equations, whose solution
gives the regions of interest for each tensor manipulated
by the program. The equations are generated by the syntax-
directed translation rules depicted on Figure 6. Given a SARE
array S , JSK denotes the set of non-zero indices of S . The rules
start from the non-zero indices of input arrays JIk K and then
propagate the non-zero elements across the SARE arrays
using the rule 0x = x0 = 0 (rule 15), and assuming that
x + y , 0 whenever x , 0 or y , 0 (rule 13), which is, of
course, an overapproximation as x + (−x) = 0 for x , 0. The

Program
Sparsity

Equations
Language
Equations

Sparse
Regions

Regular
Expressions

Partial
Evaluation

Affine
Relations

Rational
Languages

Abstraction

Resolution

Concretisation

1

2
Evaluation

Figure 5. Overview

subtraction rule also make an over-approximation (rule 14).
Rules 10, 11, 12 reflect the SARE semantic, which view each
SARE expression as an array. In particular, J0K is viewed as
an array filled with zeros with the same dimension as the
assigned array, hence its region of interest is empty. Finally,
for reductions A[i] =

∑
i=Π(j), j ∈D Expr(j), we keep only the

indices i of A such that at least one Expr (j) , 0. This is
exactly the set of indices:

{i | ∃j ∈ D : i = Π(j), Expr(j) , 0} = Π(JExprK ∩ D)

Equivalently expressed as JExprK.{j → Π(j) | j ∈ D}. Note
that the set of reduction iterations would exactly be JExprK.
Example (cont’d). On example 1, we obtain the equation,
whose evaluation gives directly the result:

JCK = (JAK.{(i,k) → (i, j,k) | ∆2}∩

JBK.{(k, j) → (i, j,k) | ∆2})

.{(i, j,k) → (i, j) | ∆2}

Where ∆2 is a shortcut for 1 ≤ i, j,k ≤ N . On the remainder
of this paper, we will focus on example 2 whose recurrence
requires additional steps. After simplification, the compila-
tion rules lead to the following sparsity equations:

JSK = JInK.{(i) → (i) | 1 ≤ i ≤ N − 1}
JT K = JT K.{(t − 1, i − 1) → (t , i) | t , i ≥ 2 ∧ ∆1}∪

JT K.{(t − 1, i) → (t , i) | ¬(t = 1) ∧ ∆1}∪

JSK.{(i − 1) → (t , i) | (t = 1 or i = 1) ∧ ∆1}∪

JSK.{(i) → (t , i) | t = 1 ∧ ∆1}

Where ∆1 is a shortcut for (t , i) ∈ DT : 1 ≤ t ≤ M, 1 ≤ i ≤
N − 1. Intuitively, the two terms with JSK.{. . .} initialize
the non-zero iterations for t = 1, then the two terms with
JT K.{. . .} propagate the non-zero iterations across dataflow
dependences ⟨T , t − 1, i − 1⟩ → ⟨T , t , i⟩ and ⟨T , t − 1, i⟩ →
⟨T , t , i⟩ encoded as affine relations.

Resolution. In general, we obtain a fixpoint equation,
since the solution X = (JSK, JT K) is defined as some function
of itself: X = F (X). When F is monotonic and the input do-
mains (here JInK) are finite (non-parametrized), the smallest

5

IMPACT, 2025, Barcelona, Spain Alec Sadler and Christophe Alias

JArrayK = JExprK if Array := i 7→ Expr (9)

JConstantK =
{
{i | true} if Constant , 0
{i | false} if Constant = 0 (10)

JArray[ϕ(i)]K = JArrayK.{ϕ(i) → i | true} (11)
Jif Cond then Expr1 else Expr2K = JExpr1K.{i → i | Cond} ∪ JExpr2K.{i → i | ¬Cond} (12)

JExpr1 + Expr2K = JExpr1K ∪ JExpr2K (13)
JExpr1 − Expr2K = JExpr1K ∪ JExpr2K (14)
JExpr1 ∗ Expr2K = JExpr1K ∩ JExpr2K (15)

J⊥K = J0K (16)

J
∑

i=Π(j), j ∈D

ExprK = JExprK.{j → Π(j) | j ∈ D} (17)

Figure 6. Compilation rules to derive sparsity equations

solution might be computed thanks to Kleene iterations [29]:

X =
⊔
n∈N

Fn(⊥) (18)

where ⊥ = (∅, ∅) and the operator ⊔ is the componentwise
union: (JSK, JT K) ⊔ (JS ′K, JT ′K) = (JSK ∪ JS ′K, JT K ∪ JT ′K).
However, this would amount to execute the program which
is not interesting as the non-zero inputs are usually very
large. Instead, we propose to resolve the sparsity equations
by finding a computable closed form for JSK and JT K. To do
so, we rephrase them as language equations.

5.2 Abstraction to Language Equations
We consider each relation as a letter and each indice set JSK
as a language LS :

LS = LIn .a
LT = LT .(b ∪ c) ∪ LS .(d ∪ e)

where a := {(i) → (i) | 1 ≤ i ≤ N − 1}, b := {(t − 1, i − 1) →
(t , i) | t , i ≥ 2 ∧ ∆1}, c := {(t − 1, i) → (t , i) | ¬(t =
1) ∧ ∆1}, d := {(i − 1) → (t , i) | (t = 1 or i = 1) ∧ ∆1}

and e := {(i) → (t , i) | t = 1 ∧ ∆1}. This way, each word
u = ℓ1 . . . ℓn represents the relation R1.Rn where ℓi is
the letter abstracting the relation Ri .

Provided the intersections are hidden in a letter, we obtain
language equations, which might be solved directly, using
the classical resolution method with Arden’s lemma from
formal language theory [23]:

LS = LIn .a
LT = LS .(d ∪ e).(b ∪ c)∗

Formally, our abstraction is defined as a mapping α from
affine relations to regular expressions with the following

inductive rules:

α(R1 ∪ R2) = α(R1) ∪ α(R2) (19)
α(R1 ∩ R2) = ℓR1∩R2 (20)

α(R.u) = α(R).ℓu (21)
α(JSK) = LS (22)

Rule 19 abstracts the union of affine relation as a language
union. Rule 20 abstracts away an intersection as a letter
ℓR1∩R2 . Since abstraction is applied recursively on a relation
expression, the application α(R1 ∩ (R2 ∪ (R3 ∩ R4))) would
abstract away the whole expression R1 ∩ (R2 ∪ (R3 ∩ R4)) as
a letter. Rule 21 abstracts away the relation u as a letter ℓu
and the composition as a concatenation. This way, a word
ℓu1 . . . ℓun abstracts the relation composition u1.un as
explained above. Rule 22 translate the affine relation name
JSK to the language name LS . Finally, each equation JSK = R
is abstracted as LS = α(R).

5.3 Concretization to Sparsity Equations
Once the language equations are resolved, we get back to
the affine world by substituting back letters ℓR to affine
relations R, language names LS to relation names JSK and
by rephrasing the operators ∪, . and ∗. This is achieved by a
concretization operator γ which maps regular expressions to
affine relations by using the following rules:

γ (ℓR) = R (23)
γ (L1.L2) = γ (L1).γ (L2) (24)

γ (L1 ∪ L2) = γ (L1) ∪ γ (L2) (25)
γ (L∗) = γ (L)∗ (26)
γ (LS) = JSK (27)

We substitute each letter ℓR by the affine relation R (Rule 23),
each language name LS by its counterpart JSK (Rule 27). Then
we translate back the language union as a relation union
(Rule 25) and the concatenation as a relation composition

6

Automatic Specialization of Polyhedral Programs on Sparse Structures IMPACT, 2025, Barcelona, Spain

(Rule 24). The interpretation of the Kleene star L∗ is then:

γ (L∗) = γ (
⋃
n∈N

Ln) (* definition)

=
⋃
n∈N

γ (Ln) (Rule 25)

=
⋃
n∈N

γ (L)n (Rule 24)

= γ (L)∗

Hence, the Kleene star L∗ translates back to the transitive clo-
sure of the affine relation γ (L) (Rule 26). Although transitive
closures of affine relations are not computable in general, the
dependence patterns are usually simple enough to conclude
(e.g. (i, j,k − 1) → (i, j,k)). Polyhedral calculators such as
omega or isl provide efficient heuristics, which will be used
for calculating these relations. This is the key part of our
approach.
Example (cont’d). Applying the rules, we get the following
concretization:

JSK = JInK.{(i) → (i) | 1 ≤ i ≤ N − 1}

JT K = JSK.
(
{(i − 1) → (t , i) | (t = 1 or i = 1) ∧ ∆1} ∪

{(i) → (t , i) | t = 1 ∧ ∆1}
)
.(

{(t − 1, i − 1) → (t , i) | t , i ≥ 2 ∧ ∆1} ∪

{(t − 1, i) → (t , i) | ¬(t = 1) ∧ ∆1}
)∗

5.4 Evaluating Sparsity Equations
After concretization, we obtained simplified sparsity equa-
tions: closed forms have been computed – as much as pos-
sible – for domains JSK. When there is no dependence cycle
between equations, we can compute an evaluation order and
compute incrementally each domain JSK using a polyhedral
calculator [24, 43].
Example (cont’d). There is a dependence JSK → JT K, since
JT K uses JSK. Hence, we evaluate JSK first. Following the
example depicted on Figure 2.(b), we take N = 5, M = 4
and we assume In to have a single non-zero indice 3: JInK =
{() → (i) | i = 3}. The computation of the relation gives
JSK = {() → (i) | i = 3}. Then, we can compute JT K = {() →

(t , i) | t ≥ 1, 3 ≤ i ≤ 4}. In particular, the transitive closure
of γ (b ∪ c) can be computed exactly and gives γ (b ∪ c)∗ =
{(t , i) → (t ′, i ′) | t > t ′, i ′ − t ′ ≤ i − t , (t , i), (t ′, i ′) ∈ DT },
which means that (t ′, i ′) belongs to the cone generated by
dependence vectors (1, 0) (read A[t-1,i]) and (1, 1) (read
A[t-1,i-1]) starting from origin point (t , i).

Scalability. We used a polyhedral calculator to validate
the soundness of our approach. However, polyhedral cal-
culators are not meant to process integer sets with mil-
lions of elements. If the simplified sparsity equations are

(JS1K, . . . , JSnK) = Φ(JI1K, . . . , JImK), the polyhedral calcula-
tor should only be used to simplify Φ as much as possible.
Then, the efficient evaluation of the simplified Φ on inputs
JI1K, . . . , JImK could take profit of the massive data paral-
lelism. For instance, the composition (∪iRi).u might distrib-
ute: ∪iRi .u. Then, each Ri .u might be evaluated in parallel.
This part is out of the scope of this paper and is left for future
work.

Cycles handling. When dependence cycles remains, this
means that a closed form could not be computed for some
domains JSK. We obtained only a partial evaluation of do-
mains. To complete the evaluation, simplified equations will
have to be executed. A direct method would be to execute
the Kleene iterations (Eq. 18) on the simplified equations. A
more sophisticated method would be to generate an efficient
evaluator using polyhedral code generation. This part will
also be addressed in a future work.

6 Experimental Evaluation
This section presents the experimental evaluation of our
propagation algorithm Section. 6.1 presents the experimen-
tal setup. Then, Section 6.2 presents an assessment of the
scalability and the accuracy of our method.

6.1 Setup
We have applied our method on the following kernels. The
kernels jacobi-1d, jacobi-2d, syrk and syr2k are from the Poly-
bench/C suite [31]:

• SparseMatrixMatrixmultiplication (SpMM) com-
putes C = A × B from a sparse matrix A and a dense
matrix B.

• SpGEMM computes C := β × C + αA × B from two
sparse matrices A, B and two scalars α and β , as the
original BLAS kernel.

• Jacobi 1D and 2D are order 1 stencils resp. on 1-D
and 2-D array.

• Syrk and Syr2k are BLAS kernels performing a sym-
metric rank-k update.

We did not implement the reduction handling so far, hence all
these examples are expressedwith recurrences.We have eval-
uated our approach on sparse matrices filled with random
regions of interest. From a matrix A, we produce r square
regions R(xk ,yk , tk) = {(i, j) | xk ≤ i ≤ xk + tk ∧ yk ≤

j ≤ yk + tk } where xk , yk are the coordinates and tk the
block size. These constraints are then gathered to obtain the
final input matrix description JMK =

⋃r
k=1 R(xk ,yk , tk). The

characteristics of the matrices used in our experiments are
summarized on Table 1.

The final sets are computed with the iscc tool [44], using
a computer equipped with an Intel(R) Core(TM) i7-10750H
CPU and 16 GB RAM DDR4.

7

IMPACT, 2025, Barcelona, Spain Alec Sadler and Christophe Alias

n r
3000 100
15000 500
30000 1000
60000 2000
90000 3000
120000 4000
150000 5000
300000 10000
600000 20000

Table 1. Sparse matrices sizes (n) and number of regions (r).
Regions can contain several non-zero points

6.2 Results
This section assesses the scalability and the accuracy of our
approach over randomly generated sparse matrices.

Scalability. Figure 7 depicts the execution time on our
randomly generated matrices. The horizontal axis gives the
number of regions r while the vertical axis gives the timings
in second. All tests taking more than one hour have been
aborted. Our solution is very efficient for a small number
of regions. But not surprisingly from the complexity of the
ISL solver, the execution time increases with the number
of regions. The difference in execution time between the
examples might be explained by the number of union and
intersections described in the sparsity equations. Overall,
our method scales pretty well regarding the matrix size con-
sidered, but perform badly when the number of dependences
grow. Indeed for such cases, we can expect the overhead of
our analysis to be largely dominated by the computation
time. One surprising and very promising result we found
is for SpMM: scalabity was the same, but even the biggest
matrix only took 14 seconds to compute.
These results showed that the bottleneck of our method

might be brought by the polyhedral calculator, which spends
a lot of time resolving unions and intersections.

Accuracy. The computation of transitive closure of affine
relations might cause further inaccuracy, as the heuristic
used may possibly over-approximate the results [9, 44]. We
show that this is sufficient for our purpose. Specifically, the
accuracy is the ratio between the number of computed non-
null indices JMK and the number of actual non-null indices
AJMK: ∑

Array M

cardJMK/
∑

Array M

cardAJMK

We tested the accuracy by using the cardinal fonctionality of
ISCC. We however did not tested SpGEMM, Jacobi-2D, and
syr2k-2D: Indeed, the accuracy computation failed – iscc
did not succeed to compute the cardinals. Instead, we focused

102 103 104

10−2

10−1

100

101

102

103

104

Number of non-zero squares

E
x
ec
u
ti
on

ti
m
e
(s
)

SpGEMM
SpMM

Jacobi1D
Jacobi2D

Syrk
syr2k

Figure 7. Scalability analysis

on sparse matrix-multiply, jacobi-1d and lu. The results ob-
tained for sparse-matrix-multiply are exact. For jacobi-1d, the
accuracy is not exactly 1 but arround 1.0001. This is due to
the overapproximation of transitive closures made by iscc.
Although the computation the accuracy failed on gemm, the
accuracy is likely to 1, as the transitive closure required is
the same as for sparse-matrix-multiply.

7 Conclusion and future work
In this paper, we have presented an algorithm for special-
izing automatically a dense polyhedral program on sparse
data. Our algorithm relies on setting and solving flow equa-
tions to propagate the sparsity across the computation in
order to identify useful computation. Experimental valida-
tion confirms the accuracy of our approach. We believe that
propagation of sparse data will be particularly useful in pro-
grams with consecutive kernels, that can be found in ma-
chine learning or iterative solvers. In the future, we plan
to improve the evaluation step by exploiting the large data
parallelism. Also, we will address the case where only a par-
tial evaluation was found (cycles). We plan to incorporate
our specialization algorithm into a general framework for
automatic parallelization of sparse code and generation. We
also intend to extend the method to tensor computation, and
also investigate solver kernels based on gaussian elimination.
Also, inspector/executor methods to split the specialization
between compile-time and runtime to further reduce the
runtime overhead could be very interesting. Finally, we aim
to ease the number of the polyhedron constraints brought
with the polyhedral representation by taking inspirations
such as sparse block formats [22, 30] to group consecutive
values.

8

Automatic Specialization of Polyhedral Programs on Sparse Structures IMPACT, 2025, Barcelona, Spain

Acknowledgments
This work was funded by the PEPR NumPEx through the
ExaSoft project.

References
[1] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Ama-

rasinghe. [n. d.]. Looplets: A Language for Structured Coiteration. In
Proceedings of the 21st ACM/IEEE International Symposium on Code
Generation and Optimization (Montréal QC Canada, 2023-02-17). ACM,
41–54. https://doi.org/10.1145/3579990.3580020

[2] Christophe Alias and Alexandru Plesco. 2021. Data-aware process
networks. In Proceedings of the 30th ACM SIGPLAN International Con-
ference on Compiler Construction. 1–11.

[3] Travis Augustine, Janarthanan Sarma, Louis-Noël Pouchet, and Gabriel
Rodríguez. [n. d.]. Generating Piecewise-Regular Code from Irregular
Structures. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Phoenix AZ USA,
2019-06-08). ACM, 625–639. https://doi.org/10.1145/3314221.3314615

[4] Cédric Bastoul. 2003. Efficient Code Generation for Automatic Paral-
lelization and Optimization. In 2nd International Symposium on Parallel
and Distributed Computing (ISPDC 2003), 13-14 October 2003, Ljubljana,
Slovenia. 23–30.

[5] Nathan Bell and Michael Garland. [n. d.]. Implementing Sparse Matrix-
Vector Multiplication on Throughput-Oriented Processors. In Pro-
ceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis (Portland Oregon, 2009-11-14). ACM, 1–11.
https://doi.org/10.1145/1654059.1654078

[6] Aart JC Bik and Harry AG Wijshoff. 1993. Compilation techniques
for sparse matrix computations. In Proceedings of the 7th international
conference on Supercomputing. 416–424.

[7] Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation Techniques
for Sparse Matrix Computations. In Proceedings of the 7th International
Conference on Supercomputing (Tokyo Japan). ACM, 416–424. https:
//doi.org/10.1145/165939.166023

[8] Aart J. C. Bik and Harry A. G. Wijshoff. 1993. On Automatic Data
Structure Selection and Code Generation for Sparse Computations.
In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg,
57–75.

[9] Bernard Boigelot. 1998. Symbolic methods for exploring infinite state
spaces. Ph. D. Dissertation. Université de Liège.

[10] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A practical automatic polyhedral parallelizer and locality
optimizer. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008. 101–113. https://doi.org/10.1145/1375581.1375595

[11] Kazem Cheshmi, Zachary Cetenic, and Maryam Mehri Dehnavi.
2022. Vectorizing Sparse Matrix Computations with Partially-Strided
Codelets. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (Dallas, Texas)
(SC’22). IEEE Press.

[12] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2017. Sympiler: Transforming Sparse
Matrix Codes by Decoupling Symbolic Analysis. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’17). ACM, New York, NY,
USA, Article 13, 13 pages. https://doi.org/10.1145/3126908.3126936

[13] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-Driven
Autotuning of Sparse Matrix-Vector Multiply on GPUs. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Bangalore, India) (PPoPP ’10). Association for
Computing Machinery, New York, NY, USA, 115–126. https://doi.org/
10.1145/1693453.1693471

[14] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. [n. d.]. For-
mat Abstraction for Sparse Tensor Algebra Compilers. In Proceedings
of the ACM on Programming Languages (2018-10-24), Vol. 2. 1–30. Issue
OOPSLA. https://doi.org/10.1145/3276493

[15] Charles Consel and Olivier Danvy. 1993. Tutorial Notes on Partial Eval-
uation. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Charleston, South Carolina,
USA) (POPL ’93). Association for Computing Machinery, New York,
NY, USA, 493–501. https://doi.org/10.1145/158511.158707

[16] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming 20, 1 (1991), 23–53. https:
//doi.org/10.1007/BF01407931

[17] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Schedul-
ing Problem. Part I. One-dimensional Time. International Journal of
Parallel Programming 21, 5 (Oct. 1992), 313–348. https://doi.org/10.
1007/BF01407835

[18] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling
Problem. Part II. Multidimensional Time. International Journal of
Parallel Programming 21, 6 (Dec. 1992), 389–420. https://doi.org/10.
1007/BF01379404

[19] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In
Encyclopedia of Parallel Computing. 1581–1592.

[20] RawnHenry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun,
Saman Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of sparse
array programming models. Proceedings of the ACM on Programming
Languages 5, OOPSLA (2021), 1–29.

[21] Marcos Horro, Louis-Noël Pouchet, Gabriel Rodríguez, and Juan
Touriño. 2023. Custom High-Performance Vector Code Generation
for Data-Specific Sparse Computations. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(Chicago, Illinois) (PACT ’22). Association for Computing Machinery,
New York, NY, USA, 160–171. https://doi.org/10.1145/3559009.3569668

[22] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity:
Optimization Framework for Sparse Matrix Kernels. Int. J. High Per-
form. Comput. Appl. 18 (02 2004), 135–158. https://doi.org/10.1177/
1094342004041296

[23] Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani. [n. d.]. Introduc-
tion to automata theory, languages, and computation. Addison-Wesley.

[24] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Sh-
peisman, and DaveWonnacott. 1996. The Omega calculator and library,
version 1.1. 0. College Park, MD 20742 (1996), 18.

[25] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. [n. d.]. The Tensor Algebra Compiler. In Proceed-
ings of the ACM on Programming Languages (2017-10-12), Vol. 1. 1–29.
Issue OOPSLA. https://doi.org/10.1145/3133901

[26] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–29.

[27] Daniel Langr and Pavel Tvrdík. 2016. Evaluation Criteria for Sparse
Matrix Storage Formats. In IEEE Transactions on Parallel and Distributed
Systems, Vol. 27. 428–440.

[28] Juan Manuel Martinez Caamaño, Manuel Selva, Philippe Clauss,
Artyom Baloian, and Willy Wolff. 2017. Full runtime polyhedral opti-
mizing loop transformations with the generation, instantiation, and
scheduling of code-bones. Concurrency and Computation: Practice and
Experience 29, 15 (2017), e4192.

[29] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Princi-
ples of program analysis. springer.

[30] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and
Weifeng Liu. [n. d.]. TileSpGEMM: A Tiled Algorithm for Parallel
Sparse General Matrix-Matrix Multiplication on GPUs. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Seoul Republic of Korea, 2022-04-02). ACM,
90–106.

9

https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3314221.3314615
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1145/165939.166023
https://doi.org/10.1145/165939.166023
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/1693453.1693471
https://doi.org/10.1145/1693453.1693471
https://doi.org/10.1145/3276493
https://doi.org/10.1145/158511.158707
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01379404
https://doi.org/10.1007/BF01379404
https://doi.org/10.1145/3559009.3569668
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1145/3133901

IMPACT, 2025, Barcelona, Spain Alec Sadler and Christophe Alias

[31] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark
suite. URL: http://www. cs. ucla. edu/˜ pouchet/software/polybench/[cited
July,] (2012).

[32] William Pugh and Tatiana Shpeisman. [n. d.]. SIPR: A New Framework
for Generating Efficient Code for Sparse Matrix Computations. In
Languages and Compilers for Parallel Computing, Siddhartha Chatterjee,
Jan F. Prins, Larry Carter, Jeanne Ferrante, Zhiyuan Li, David Sehr, and
Pen-Chung Yew (Eds.). Vol. 1656. Springer Berlin Heidelberg, 213–229.

[33] Patrice Quinton and Vincent van Dongen. 1989. The mapping of
linear recurrence equations on regular arrays. Journal of VLSI signal
processing systems for signal, image and video technology 1, 2 (1989),
95–113.

[34] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto.
1986. On synthesizing systolic arrays from Recurrence Equations
with Linear Dependencies. In Foundations of Software Technology and
Theoretical Computer Science, Kesav V. Nori (Ed.). Lecture Notes in
Computer Science, Vol. 241. Springer Berlin Heidelberg, 488–503.

[35] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and
Mikhail Smelyanskiy. [n. d.]. Sparso: Context-driven Optimizations of
Sparse Linear Algebra. In Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation (Haifa Israel, 2016-09-11).
ACM, 247–259. https://doi.org/10.1145/2967938.2967943

[36] Naser Sedaghati, TeMu, Louis-Noel Pouchet, Srinivasan Parthasarathy,
and P. Sadayappan. [n. d.]. Automatic Selection of Sparse Matrix Rep-
resentation on GPUs. In Proceedings of the 29th ACM on International
Conference on Supercomputing (Newport Beach California USA, 2015-
06-08). ACM, 99–108. https://doi.org/10.1145/2751205.2751244

[37] MichelleMills Strout, Larry Carter, and Jeanne Ferrante. 2003. Compile-
time composition of run-time data and iteration reorderings. ACM
SIGPLAN Notices 38, 5 (2003), 91–102.

[38] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. [n. d.].
The Sparse Polyhedral Framework: Composing Compiler-Generated
Inspector-Executor Code. Proc. IEEE 106, 11 ([n. d.]), 1921–1934. https:
//doi.org/10.1109/JPROC.2018.2857721

[39] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018.
The Sparse Polyhedral Framework: Composing Compiler-Generated
Inspector-Executor Code. Proc. IEEE 99 (2018), 1–15.

[40] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante,
Barbara Kreaseck, and Catherine Olschanowsky. 2016. An approach
for code generation in the sparse polyhedral framework. Parallel
Comput. 53 (2016), 32–57.

[41] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor.
[n. d.]. A High-Performance Sparse Tensor Algebra Compiler in Multi-
Level IR. arXiv:2102.05187 [cs] http://arxiv.org/abs/2102.05187

[42] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data
Transformations for Sparse Matrix Code. In Proceedings of the 36th
ACM SIGPLANConference on Programming Language Design and Imple-
mentation (Portland, OR, USA) (PLDI ’15). Association for Computing
Machinery, New York, NY, USA, 521–532. https://doi.org/10.1145/
2737924.2738003

[43] Sven Verdoolaege. 2010. ISL: An Integer Set Library for the Polyhedral
Model. In ICMS, Vol. 6327. Springer, 299–302.

[44] Sven Verdoolaege. 2011. Counting affine calculator and applications.
In First International Workshop on Polyhedral Compilation Techniques
(IMPACT’11), Charmonix, France.

[45] Lucas Wilkinson, Kazem Cheshmi, and Maryam Mehri Dehnavi. 2023.
Register Tiling for Unstructured Sparsity in Neural Network Inference.
Proc. ACM Program. Lang. 7, PLDI, Article 188 (jun 2023), 26 pages.
https://doi.org/10.1145/3591302

[46] Jie Zhao, Michael Kruse, and Albert Cohen. 2018. A Polyhedral Compi-
lation Framework for Loopswith Dynamic Data-Dependent Bounds. In
Proceedings of the 27th International Conference on Compiler Construc-
tion (Vienna, Austria) (CC 2018). Association for ComputingMachinery,
New York, NY, USA, 14–24. https://doi.org/10.1145/3178372.3179509

[47] Tuowen Zhao, Tobi Popoola, Mary Hall, Catherine Olschanowsky, and
Michelle Strout. 2022. Polyhedral Specification and Code Generation
of Sparse Tensor Contraction with Co-Iteration. ACM Trans. Archit.
Code Optim. 20, 1, Article 16 (dec 2022), 26 pages. https://doi.org/10.
1145/3566054

10

https://doi.org/10.1145/2967938.2967943
https://doi.org/10.1145/2751205.2751244
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1109/JPROC.2018.2857721
https://arxiv.org/abs/2102.05187
http://arxiv.org/abs/2102.05187
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/3591302
https://doi.org/10.1145/3178372.3179509
https://doi.org/10.1145/3566054
https://doi.org/10.1145/3566054

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Preliminaries
	3.1 Polyhedral model
	3.2 Systems of Affine Recurrence Equations
	3.3 Affine Relations

	4 Related Work
	5 Our Approach
	5.1 Compiling the Sparsity Equations
	5.2 Abstraction to Language Equations
	5.3 Concretization to Sparsity Equations
	5.4 Evaluating Sparsity Equations

	6 Experimental Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion and future work
	Acknowledgments
	References

