Counting-based Loop Optimization

Philippe Clauss University of Strasbourg + Inria France

Integer points counting

Exact number of integer points inside a parametrized polytope:

• *polytope*: finite polyhedron

iteration domain of a loop nest, front of parallel iterations, ...

- parameterized polytope
 - = polytope linearly dependent on integer parameters n, m, \ldots

= defined by constraints of the form $ai+bj+\ldots+lpha n+eta m+\ldots\geq 0$

Integer points counting

Exact number of integer points inside a parametrized polytope :

- A set of Ehrhart polynomials (also called quasi-polynomials)
- defined on adjacent convex domains (or chambers) of the parameters values

Ehrhart polynomial: a (kind of) multivariate polynomial

- whose variables are the parameters
- whose degree is the dimension of the polytope
- whose coefficients are *periodic numbers*
 - period = *lcm* of the vertices coordinates denominators

- Ph. Clauss. Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applications to Analyze and Transform Scientific Programs. 10th International Conference on Supercomputing, ICS'96, 1996.
- Ph. Clauss and V. Loechner. Parametric Analysis of Polyhedral Iteration Spaces. Journal of VLSI Signal Processing, 1998.

Barvinok

- Another approach for parametric counting
- Based on mathematician Barvinok's results
- More robust than the previous interpolation-based method
- Periodic numbers \Rightarrow floors & ceilings
- Implemented in the barvinok library (iscc)

```
card [n]->{[i,j]: 0<=2*i<n and 3*i<=3*j<n};
$0 := [n] -> { (1/2 * floor((2 + n)/3) + 1/2 * floor((2 + n)/3)^2) : n > 0 }
```

- Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, Maurice Bruynooghe: Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions. Algorithmica 48(1): 37-66 (2007)

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Polynomial maximization

- Bernstein polynomials:
 - Form a basis for the space of polynomials

- Any polynomial can be expressed in this basis through *Bernstein* coefficients
- The value of the polynomial is bounded by the values of the *minimum and maximum Bernstein coefficients*
- The direct formula allows symbolic computation of the Bernstein coefficients
- Extension of Bernstein expansion for parameterized multivariate polynomial expressions defined over *parametric convex polytopes*
- Ph. Clauss and I. Tchoupaeva. A Symbolic Approach to Bernstein Expansion for Program Analysis and Optimization. In 13th International Conference on Compiler Construction, CC 2004.
- Ph. Clauss, F. J. Fernández, D. Garbervetsky, and S. Verdoolaege. Symbolic polynomial maximization over convex sets and its application to memory requirement estimation. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2009.

Bernstein expansion on parametric polytopes

• Implemented in the barvinok library (iscc)

```
ub [N]->{[x,y] -> 1/2*x^2+1/2*x+3/2*y^2-y : 0<=x<=N and x<=y<=N};
$0 := ([N] -> { max((-1/2 * N + 2 * N^2)) : N >= 0 }, True)
lb [N]->{[x,y] -> 1/2*x^2+1/2*x+3/2*y^2-y : 0<=x<=N and x<=y<=N};
$1 := ([N] -> { min(-1/2 * N) : N >= 0 }, False)
```

$$egin{aligned} &orall \left(x,y
ight)s.\,t.\,\,0\leq x\leq N\,and\,x\leq y\leq N,\ &-rac{1}{2}N\leq rac{1}{2}x^2+rac{1}{2}x+rac{3}{2}y^2-y\leq 2N^2-rac{1}{2}N \end{aligned}$$

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Memory requirement analysis

- For a given temporary array
 - Liveness analysis
 - Number of live elements at any iteration I
 - Live(I) = #reads after I #associated last writes after I

= Ehrhart polynomial

- ub Live(I)
 - = maximum number of live elements
 - = size of the contracted temporary array
- Ph. Clauss, D. Garbervetsky, V. Loechner, and S. Verdoolaege. *Polyhedral Techniques for Parametric Memory Requirement Estimation*. In F. Balasa and D. Pradhan, editors, Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach, Chapman & Hall/Crc Computer and Information Science. Taylor and Francis, 2011.

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Ranking polynomials

- Rank (or position) of an integer point
 - inside a polytope
 - whose points are listed in lexicographical order

$$egin{aligned} &(i',j')\leq_{lex}(i,j)\implies egin{cases} &i'< i\ or\ i'=i\,and\,j'\leq j \end{aligned} \ Rank\,(i,j)=\#\,ig\{ig(i',j')\,s.\,t.\,\,ig(i',j')\leq_{lex}(i,j)ig\}\ &=igg\{\#\,ig\{(i',j')\,s.\,t.\,\,i'< i\}\ +\ \#\,ig\{(i',j')\,s.\,t.\,\,i'=i,\,j'\leq j\}ig\} \end{aligned}$$

Ranking polynomials

• Example:

 $\mathbb{P} = \{(i,j,k) \in \mathbb{Z}^3 \mid 0 \leq i < N, 0 \leq j \leq i, 0 \leq k < M\}$

$$egin{aligned} \mathsf{R}(i,j,k) &= \#\{(i',j',k') \in \mathbb{P} \left| egin{aligned} (i,j,k) \in \mathbb{P} \ (i',j',k') \leq_{\mathit{lex}} (i,j,k) \} \end{aligned} \end{aligned}$$

$$= \#\{(i',j',k') \in \mathbb{P} \mid (i,j,k) \in \mathbb{P}, i' < i\} \\ + \#\{(i',j',k') \in \mathbb{P} \mid (i,j,k) \in \mathbb{P}, i' = i,j' < j\} \\ + \#\{(i',j',k') \in \mathbb{P} \mid (i,j,k) \in \mathbb{P}, i' = i,j' = j,k' \le k\}$$

$$= \left| (2 k + 2 M j + M i^{2} + M i + 2)/2 \right|$$

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Data layout transformation

- Goal: Spatial data locality
 - Organize array elements in the order in which they are accessed
 - Assign to array elements the rank of the iterations referencing them
 - Each array element A[X] is referenced at iterations I s.t.
 X=f(I), where f is the affine array reference function
 - If A[X] is referenced more than once, select I_{min} = lexmin(I)
 - $\#\{I'_{\min} \leq_{lex} I_{\min}\}$ is the new index of A[X]

- Ph. Clauss and B. Meister. Automatic memory layout transformation to optimize spatial locality in parameterized loop nests. ACM SIGARCH, Computer Architecture News, 28(1), march 2000.
- Vincent Loechner, Benoit Meister, and Philippe Clauss. *Precise data locality optimization of nested loops*. Journal of Supercomputing, 21(1):3776, January 2002.

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

Т R A H R H E Т Я А Н Я Н Э

Trahrhe expressions

- Opposite problem to ranking: unranking
- Given a point's rank of an integer point in *D*, what are its integer coordinates?
 - \Rightarrow ranking polynomial inversion:
 - Let p be a rank and R(I) be a ranking polynomial: Find I s.t. R(I) = p
 - Find the reverse function $R^{-1}(p) = T(p)$
 - *T*(*p*) is a sequence of algebraic expressions

 $t_{1}(p), t_{2}(p), t_{3}(p), \dots, t_{d}(p)$

Т**RAHRHE** ТЯАНЯНЭ

Trahrhe expressions

- Example:
 - ▶ $\mathbb{P} = \{(i, j, k) \in \mathbb{Z}^3 \mid 0 \le i < N, 0 \le j \le i, 0 \le k < M\}$ $R(i, j, k) = (2 k + 2 M j + M i^2 + M i + 2)/2$
 - 1. Roots of $R(i, 0, 0) p = (M i^2 + M i + 2)/2 p$
 - ▶ 2 roots : $r_1(p) = -\frac{\sqrt{8Mp+M^2-8M}+M}{2M}$, $r_2(p) = \frac{\sqrt{8Mp+M^2-8M}-M}{2M}$
 - Minimum value of i = 0

•
$$r_2(1) = 0 \Rightarrow$$
 select and propagate :

$$t_1(p) = \left\lfloor \frac{\sqrt{8\,M\,p + M^2 - 8\,M} - M}{2\,M} \right\rfloor$$

Т**КАНКНЕ** ТЯАНЯНЭ

Trahrhe expressions

- Example (continued):
 - 2. Root of

$$R(t_1(p), j, 0) - p = (2 M j + M t_1(p)^2 + M t_1(p) + 2)/2 - p$$

• Propagate
$$t_2(p) = \left\lfloor -\frac{M t_1(p)^2 + M t_1(p) - 2 p + 2}{2 M} \right\rfloor$$

3.
$$t_3(p) = p - R(t_1(p), t_2(p), 0)$$

= $\left[-\frac{2M t_2(p) + M t_1(p)^2 + M t_1(p) - 2p + 2}{2} \right]$

Т**КАНКНЕ** ТЯАНЯНЭ

Trahrhe expressions

Example (continued):

$$R(0,0,0) = 1, R(0,0,1) = 2, R(0,0,2) = 3, ..., R(0,0,M-1) = M, ..., R(1,0,0) = M + 1, ..., R(N-1, N-1, M-1) = M N (N+1)/2$$

$$T(p) = (t_1(p), t_2(p), t_3(p)) = \left(\left\lfloor \frac{\sqrt{8Mp + M^2 - 8M} - M}{2M} \right\rfloor, \left\lfloor -\frac{Mt_1(p)^2 + Mt_1(p) - 2p + 2}{2M} \right\rfloor, -\frac{2Mt_2(p) + Mt_1(p)^2 + Mt_1(p) - 2p + 2}{2} \right)$$

$$T(1) = (0, 0, 0)$$
 $T(2) = \left(\left\lfloor \frac{\sqrt{M(M+8)} - M}{2M} \right\rfloor, \left\lfloor \frac{1}{M} \right\rfloor, \frac{2}{2} \right) = (0, 0, 1)$
 $T(M) = \left(\left\lfloor \frac{\sqrt{M(9M-8)} - M}{2M} \right\rfloor, \left\lfloor \frac{M-1}{M} \right\rfloor, \frac{2M-2}{2} \right) = (0, 0, M-1)$

...

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

• loop collapsing:

$$for \ (i = 0; \ i < N; \ i + +) \ for \ (j = 0; \ j < M; \ j + +) \ \{\dots\}$$

- Implemented in OpenMP (clause collapse(n)):
 - OpenMP 3.0: only constant loop bounds
 - OpenMP 5.0: bounds depending only on one unique loop index (otherwise : rectangular hull of the loop nest)

• Non-rectangular loops: load imbalance issue

Example: correlation kernel using 5 threads

 $egin{aligned} &\# ext{pragma omp parallel for private(j,k)}\ for \ (i=0; \ i < N-1; \ i++)\ for \ (j=i+1; \ j < N; \ j++) \ \{\ for \ (k=0; \ k < N; \ k++)\ a \ [i] \ [j]+=b \ [k] \ [i] * c \ [k] \ [j];\ a \ [j] \ [i]=a \ [i] \ [j]; \ \} \end{aligned}$

- omp schedule(dynamic):
 - time overhead + scalability issues

- Using Trahrhe expressions to retrieve the iterator values of the original loops
- + lowering the time overhead of Trahrhe expressions' computations

```
first\_iteration = 1;
\#pragma omp parallel for private(i,j,k) firstprivate(first_iteration)
for (pc = 1; pc < N \star (N-1)/2; pc + +)
if (first_iteration) {
 i = \text{floor}(-(\text{sqrt}(4 * N * N - 4 * N - 8 * pc + 9) - 2 * N + 1)/2);
 j = \text{floor}(-(2 * i * N - 2 * pc - i * i - 3 * i)/2);
 first_iteration = 0; \}
for (k = 0; k < N; k + +)
   a[i][j] + = b[k][i] * c[k][j];
  a[j][i] = a[i][j];
  i++;
  if (j > N) \{i + +; j = i + 1; \}
```

• 12 threads/cores AMD Opteron 6172, gcc -O3 -fopenmp

- Ph. Clauss, E. Altintas, and M. Kuhn. *Automatic Collapsing of Non-Rectangular Loops*. Parallel and Distributed Processing Symposium (IPDPS), 2017.

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

• Standard rectangular loop tiling: example syr2k (polybench)

 $egin{aligned} &for \; (i=0; \, i < N; \, i++) \ for \; (j=0; \, j \leq i; \, j++) \ for \; (k=0; \, k < M; k++) \ C \; [i] \; [j]+=A \; [j] \; [k] * alpha * B \; [i] \; [k] \ +B \; [j] \; [k] * alpha * A \; [i] \; [k]; \end{aligned}$

Standard rectangular loop tiling: example syr2k (polybench)
 partial tiles issue

- Standard rectangular loop tiling: example syr2k (polybench)
 - load imbalance issue

 $\begin{array}{l} \label{eq:magna_product} \mbox{\#pragma omp parallel for private(jt,kt,i,j,k)} \\ for \ (it = 0; \ it \leq (N-1)/32; \ it + +) \\ for \ (jt = 0; \ jt \leq it; \ jt + +) \\ for \ (kt = 0; \ k \leq (M-1)/32; \ k + +) \\ for \ (i = 32 * it; \ i \leq \min \ (N-1, 32 * it + 31); \ i + +) \\ for \ (j = 32 * jt; \ i \leq \min \ (i, 32 * jt + 31); \ i + +) \\ for \ (k = 32 * kt; \ i \leq \min \ (M-1, 32 * kt + 31); \ i + +) \\ for \ (k = 32 * kt; \ i \leq \min \ (M-1, 32 * kt + 31); \ i + +) \\ C \ [i] \ [j] + = A \ [j] \ [k] * alpha * B \ [i] \ [k] \\ + B \ [j] \ [k] * alpha * A \ [i] \ [k]; \end{array}$

- Standard rectangular loop tiling: example syr2k (polybench)
 - load imbalance issue: even with rectangular domains!

• Slices of quasi-equal volumes (#iterations)

$$V_0\simeq V_1\simeq V_2\simeq V_3\simeq V_4$$

• Slices of quasi-equal volumes (#iterations)

 $V_{00} \simeq V_{01} \simeq V_{02} \simeq V_{03}$ $\simeq V_{10} \simeq V_{11} \simeq V_{12} \simeq V_{13}$ $\simeq V_{20} \simeq V_{21} \simeq V_{22} \simeq V_{23}$ $\simeq V_{30} \simeq V_{31} \simeq V_{32} \simeq V_{33}$ $\simeq V_{40} \simeq V_{41} \simeq V_{42} \simeq V_{43}$

- Strategy:
 - slice the parallel loops in #threads slices of quasi-equal volumes
 - or a multiple of #threads
 - slice the other loops in any number of slices yielding the best performance
 - or use standard tiling
 - to fix vectorization or overhead issues
- Loop bounds computed on-the-fly
 - target volumes = rank of iterations
 - slice/tile bounds = computed trahrhe expressions
- Clément Rossetti and Philippe Clauss. Algebraic Tiling. IMPACT 2023.

```
i_pcmax = i_Ehrhart(N, M);
TARGET_VOL_L1 = i_pcmax/DIV1; // DIV1 = #threads
```

```
for (it = 0; it < DIV1; it++) {
    lbi = trahrhe_i(max(it*(TARGET_VOL_L1+1),1),N, M);
    ubi = trahrhe_i(min((it+1)*(TARGET_VOL_L1+1),i_pcmax),N, M) - 1;
    if (it == DIV1-1) ubi = N-1;</pre>
```

```
j_pcmax = j_Ehrhart(N, M, lbi, ubi);
TARGET_VOL_L2 = j_pcmax/DIV2;
```

```
for (jt = 0; jt < DIV2; jt++) {
    lbj = trahrhe_j(max(jt*(TARGET_VOL_L2+1),1),N, M, lbi, ubi);
    ubj = trahrhe_j(min((jt+1)*(TARGET_VOL_L2+1),j_pcmax),N, M, lbi, ubi) - 1;
    if (jt == DIV2-1) ubj = ubi;</pre>
```

```
for (i = max(0,lbi); i < min(N,ubi+1); i++) {
    for (j = max(0,lbj); j <= min(i,ubj); j++) {
        for (k = 0; k <= M-1; k++) {
            C[i][j] += A[j][k]*alpha*B[i][k] + B[j][k]*alpha*A[i][k];
        }
        }
        /* end for jt */
} /* end for jt */</pre>
```

- *trahrhe* software: generates the required C header
 - Trahrhe expressions: floating-point computations on complex numbers

or

- Dichotomous search of the roots:
 - often better time performance
 - no precision nor root finding issues
- pesto source-2-source algebraic tiler
 - in progress
 - \circ linked to pluto and trahrhe
- https://webpages.gitlabpages.inria.fr/trahrhe

32 threads/cores, best tile sizes/volumes, vectorization activated, dichotomous root finding

- Standard rectangular tiling
 - some loop kernels (i.e. stencils) require a tile skewing transformation to exhibit a parallel loop, which is impossible with algebraic rect. tiling

- C. Rossetti, A. Hamon, and Ph. Clauss. Algebraic Tiling facing Loop Skewing. IMPACT 2024.

Loop optimization

- Liveness and memory requirement analyses for array contraction
- Data layout transformation for spatial data locality
- Collapsing of non-rectangular loops
- Algebraic tiling
- Algebraic trapezoidal tiling

- Ehrhart polynomials
- Bernstein expansion for polynomial maximization
- Ranking polynomials
- Trahrhe expressions

- For stencil loops
 - as split tiling, diamond tiling, ...
 - but with quasi-equal volumes of the trapezoidal tiles
 - applies even when diamond tiling is not applicable (e.g. seidel-2d)
- Strategy:
 - generate a parallel version of the stencil loop nest through a skewing transformation
 - where the second inner loop is parallel
 - Analyze the dependencies between the parallel fronts
 - the extreme distance vectors define 2 borders of the tiles

 $egin{aligned} & for \; (x=&\ldots; \, x < \ldots; \, x++) \ \# ext{pragma omp parallel for } \ldots \ for \; (y=&\ldots; \, y < \ldots; \, y++) \ \{\ldots\} \end{aligned}$

post-skewing parallel fronts

- dependencies between successive fronts and cone of extreme distance vectors
- constraint: one extreme vector must be (1,0)

algebraic rectangular tiling inside x-slices of constant width with a fixed target volume per tile

constraint:

tiles height \geq slope of the diagonal extreme dependence vector \times slice width

split of the rectangular tiles along the direction of the diagonal extreme dependence vector

 \Rightarrow parallel trapezoidal tiles

y

parallel fronts of independent trapezoidal tiles of quasi equal volumes

Х

Algebraic trapezoidal tiling: seidel-2d

#define SliceWidthx 6
#define NTHREADS 64
#define TARGET_VOL 143560
#define SliceWidthz 2

/* SliceCountx: #outermost slices */ int SliceCountx=ceild(((2* PB TSTEPS+ PB N-4-1)+1),SliceWidthx); for (xt = 0; xt < SliceCountx; xt++) {</pre> /* lbx, ubx: bounds of outermost slices */ lbx=1+xt*SliceWidthx; ubx=min(1+(xt+1)*SliceWidthx-1,2* PB TSTEPS+ PB N-4); /* y pcmax: volume of the current outermost slice */ y pcmax = y Ehrhart(lbx,ubx); /* DIV: #rectangular tiles in the current slice whose volume >= TARGET VOL and DIV<=NTHREADS */ DIV=min(max(floord(v pcmax,TARGET VOL),1),NTHREADS); /* TILE VOL: actual target volume for the rectangular tiles */ TILE VOL=v pcmax/DIV; /* FRONT: alternating parallel fronts of trapezoidal tiles */ for (FRONT=0; FRONT<=1; FRONT++) {</pre> #pragma omp parallel for private(lby,uby,x,LBOUND,UBOUND,y,z,OFFSET,t,i,j,zt,lbz,ubz) \ firstprivate(TILE VOL,DIV,FRONT,y pcmax) /* enumerate the rect. tiles of guasi-equal volumes */ for (vt=0: vt<DIV: vt++) {</pre> lbv=v trahrhe v(max(vt*TILE VOL,1), lbx, ubx); ubv=v trahrhe v(min((vt+1)*TILE VOL,v pcmax), lbx, ubx)-1; if (yt==DIV-1) uby=min(floord(ubx+ PB N-2,2),ubx); /* check if tile height >= tile width */ **if** ((uby-lby+1 < SliceWidthx) && (yt != DIV-1) && (DIV>1)) { fprintf(stderr. "Target volume too small!\n"); exit(1): /* compute where the rect. tile will be cut */ OFFSET= max(floord((uby-lby+1)-SliceWidthx,2),0); int SliceCountz=ceild((ubx+ PB N-2) - (lbx+1) +1,SliceWidthz);

Algebraic trapezoidal tiling: seidel-2d

```
for (zt=0; zt<SliceCountz; zt++) {</pre>
   lbz=lbx + 1 + zt*SliceWidthz;
   ubz=min(lbx + 1 + (zt+1)*SliceWidthz-1,ubx+ PB N-2);
   /* inner tile loops */
   for (x = max(1,lbx); x <= min(2* PB TSTEPS+ PB N-4,ubx); x++) {</pre>
     int lbp=max(ceild(x+1,2),x- PB TSTEPS+1);
     int ubp=min(floord(x+ PB N-2,2),x);
     /* Compute the bounds of the trapezoidal tiles to cut the rect. tiles */
     if (FRONT==0) {
      LBOUND=max(max(lby,lbp),max(ceild(max(1,lbx)+1,2),max(1,lbx)- PB TSTEPS+1))+(x-max(1,lbx))+0FFSET);
      UBOUND=min(ubp,uby);
     else {
       LBOUND=max(lbp,lby);
       UBOUND=min(min(ubp,ubv),max(max(lbv,lbp),max(ceild(max(1,lbx)+1,2),max(1,lbx)- PB TSTEPS+1))+(x-max(1,lbx))+0FFSET-1);
     }
     /* enumerate the current trapezoidal tile */
     for (y=LBOUND; y <= UBOUND; y++)</pre>
       for (z = max(x + 1,lbz); z <= min(x + 3998,ubz); z += 1) {</pre>
         A[(-x + 2 * y)][(-x + z)] = (A[(-x + 2 * y)-1][(-x + z)-1] + A[(-x + 2 * y)-1][(-x + z)] + A[(-x + 2 * y)-1][(-x + z)+1]
                + A[(-x + 2 * y)][(-x + z) - 1] + A[(-x + 2 * y)][(-x + z)] + A[(-x + 2 * y)][(-x + z) + 1]
                + A[(-x + 2 * y)+1][(-x + z)-1] + A[(-x + 2 * y)+1][(-x + z)] + A[(-x + 2 * y)+1][(-x + z)+1])
                /SCALAR VAL(9.0);
       }
}
```

Algebraic trapezoidal tiling vs Diamond tiling

32 threads/cores, best tile sizes/volumes, vectorization activated, dichotomous root finding

seidel-2d: diamond tiling not applicable (standard skewing)

Conclusion

- Counting-based optimizations
 - Interesting speedups despite some time overhead
 - runtime tile bounds, floating-point computations, dichotomous root finding, ...
 - may still be improved
 - Interesting perspectives: algebraic schedule

- **Runtime** counting-based optimizations
 - for "polyhedral-behaving" kernels
 - made possible thanks to Alain Ketterlin's work

Thank you!

Philippe Clauss University of Strasbourg + Inria France

