GeMS: Towards Generating Millions of SCoPs

S. VenkataKeerthy, **Nilesh Shah**, Anilava Kundu, Shikhar Jain, Ramakrishna Upadrasta

Scalable Compilers for Heterogeneous Architectures Lab Department of Computer Science and Engineering, IIT Hyderabad

IMPACT 2023

Outline

- Motivation
 - Polyhedral compilation using ML techniques
 - Necessity for Labelled SCoPs
- Study of available "large" polyhedral codes
 - PolyBench
 - Synthetic loops
- Proposal: Loop generator
 - Realistic codes with compute and memory bounded profiles
 - Initial summary of the SCoPs generated
- Future Directions
 - Improvements: Schedule trees, ...
 - Towards parallel loop generation: SIMD/GPU/OpenMP

Polyhedral Compilation meets ML

Can ML based techniques help ?

Some earlier works: Park et al. CGO'11, Stock et al. TACO'12, Merouani et al. IMPACT'22

And, ML needs data...

- ★ Curse of Dimensionality!
 - Neural networks in general are "data hungry"

Complex models need massive amount of data.

Availability of Polyhedral Programs (data)

Programs are everywhere, polyhedral codes are portions of it..

Programs have loops, not all loops are polyhedral Because of this we cannot rely on the codes that are available prevalently...

Standard polyhedral programs ..

Like **PolyBench** - Linear algebra, Stencils, Data mining, Medley, Dynamic programming

Evolution of PolyBench

2010	2011	20	012	2015	2022
PolyBench (30 Benchr	n/C 1.0 narks)	PolyBench Fortran 1.0 (30)	Poly GPU	'Bench 1.0 (15)	PolyBench Python1.0 (30)
PolyBench (30 Benchr	n/C 2.0 narks)			PolyE	ench/C 4.X (30)
PolyBench (30 Benchr	n/C 3.X narks)			PolyBe	ench DNN 1.0 (5)

PolyBench benchmark suite: <u>http://polybench.sf.net</u>

Creating an **automatic** loop generator

- → Dump of data without proper characterization is barely useful.
- \rightarrow Hard to pick and choose for downstream applications.

Generating *real-world* like SCoPs with proper labels

→ <u>Current work</u>: Categories of Memory/Compute bound

Syntactically **valid** codes

→ Generating legal, executable binaries

Automatically Generating Compute/Memory Bound Loops

Some Observations

CacheMiss: Modeling cache hits/misses ReuseDist: Modeling locality using reuse distances Boundedness: Modeling (compute/memory) boundedness of a kernel MemoryTraffic: Modeling memory traffic/bandwidth

 $\begin{array}{l} {\sf ReuseDist} \to {\sf CacheMiss} \\ {\sf CacheMiss} \to {\sf MemoryTraffic} \\ {\sf CacheMiss} \to {\sf Boundedness} \end{array}$

 $\begin{array}{l} {\sf ReuseDist} \rightarrow {\sf MemoryTraffic} \\ {\sf ReuseDist} \rightarrow {\sf Boundedness} \end{array} \end{array}$

Modeling ReuseDist can help in modeling boundedness of a kernel

Iteration domains and Parameters

- We designed a set of input data sizes
 - Similar to PolyBench
- Parameters for data sizes are fixed
 - Iteration domains are **non-parametric**
- Parameterized on cache size and line size
 - Data reuse modeled analytically with these parameters

Finding the affine access functions

Each access to an array is accessed in a different cache line

For each pair of sequential access, find f_1 and f_2 based on maximum memory accesses.

Multi-dimensional array accesses

- → For extending 1-D loop to n-D loop generation
 - Use loop transformation like tiling, or
 - **Delinearize** using array input size

$$A[\alpha_1 * t_1 + \alpha_2 * t_2 + \dots + \alpha_d * t_d + c$$

$$A[f_1][f_2][f_3] \dots [f_d]$$

\backslash									
	$A[f_1]$								
			$A[f_2]$						

Generating Compute Bound Loops

Flipping the constraints for generating memory bound loops \Rightarrow compute bound loops

Each access to an array is accessed in a same cache line

For a pair of accesses of an array, minimize the reuse distance

ReuseDistance <= Cachesize

Best case: Maximum Temporal locality (No Capacity Miss)

$$A[f_2] - A[f_1] \le$$

Elements in cache line

Best case: Maximum Spatial locality (No Compulsory/Conflict Miss)

For each pair of sequential access, find f_1 and f_2 based on minimum cache misses.

Generated 1-Dimension array examples

LoopID - <LoopDim, ArrayDim, I/P Size, #Stmts, Loop ID> *for*(int **i** = 0; **i**<1000; **i**++) { **for**(int **i** = 0; **i**<1500;**i**++){ Memory Bound Memory Bound **S0:** C[16*i]=A[16*i]+B[16*i]-E[16*i]; **S0:** E[40*i]=A[24*i]+B[24*i]-C[24*i]; **for**(int **j** = 0; **j**<1200; **j**++) { **S1:** A[32*i]=B[32*i]+C[32*i]*D[32*i]; **S1**: D[16*i]=D[24*i]-E[32*i]+E[24*i]; **for**(int **j** = 0; **j**<1700;**j**++){ *for*(int **k** = 0; **k**<1100; **k**++) { **S2:** C[16*j]=A[16*j]*B[16*j]*E[16*j]; **S2:** E[40*k]=A[24*k]*B[24*k]*C[24*k]; **S3:** D[16*i]=D[24*i]+E[32*i]-E[24*i]; **S3:** A[32*k]=B[32*k]+C[32*k]*D[32*k]; LoopID - <3D, 1D, M, 4S, 313> LoopID - <2D, 1D, L, 4S, 45> **for**(int **i** = 0 ;**i**<1500; **i**++){ **for**(int i = 0;i<1500;i++){ Memory Bound **Compute Bound S0:** D[16*i]=D[24*i]-E[32*i]+E[24*i]; **S0:** D[94*i]=A[94*i]*B[94*i]*C[94*i]; **S1:** E[40*i][] =A[24*i]-B[24*i]*C[24*i]; **S1**: A[14*i]=B[6*i]+C[16*i]-D[15*i]; **for**(int j = 0; j < 1700; j++){ **for**(int **j** = 0; **j**<1700; **j**++){ for(int k = 0; k < 1600; k++)**S2:**D[6*j]=D[14*j]+E[15*j]-E[7*j]; **S2:** C[16*k] = A[16*k] * B[16*k] + E[16*j][k]; **for**(int **k** = 0; **k**<1600; **k**++){ **S3:** A[32*k] = B[32*k] * C[32*k] + D[32*k]; **S3:**C[6*k]=A[7*k]+B[3*k]-E[94*k]; **S4:** E[13*k]=A[10*k]*B[11*k]*C[8*k]; LoopID - <3D, 1D, L, 4S, 250> LoopID - <3D, 1D, L, 5S, 743>

19

Experimentation

Objectives: Evaluate the generated compute/memory bound kernels.

- → On **two** different test machines
 - Intel Rocket Lake (i5-11400 @2.6Ghz, 6 cores, 12 MB Cache)
 - Intel Skylake (Xeon W-2133 @ 3.60GHz, 6 cores, 8.25MB Cache)
- → Depict **diversity** of the generated kernels
 - By estimating the IPC profiles* (Execution Time \propto IPC)
- → No compile time or runtime failures/errors

* Using some artifacts provided by *Agner fog* (<u>https://www.agner.org/optimize/#testp</u>) - read counters from Intel's PMC hardware suite (reading 1. # of instructions retired & 2. # of cycles completed).

Implementation Details

- → Current implementation of GeMS
 - Uses ISLpy and CPLEX
 - Written in Python
- → Labeled SCoPs generated per machine
 - Memory bound: **12K**
 - Compute bound: **12K**
- → Tested on
 - 4 different input sizes: Small(S), Medium (M), Large (L), Extra-Large(XL)
 - 3 different loop depths
- → Loop identifier: <LoopDim, ArrayDim, I/P Size, #Stmts, Loop ID>

Generated loops: IPC Study on Rocket Lake

Generated loops: IPC Study on Skylake

Future extensions

2

Model Arithmetic Intensity(AI)

Generate loops by controlling AI/OI

Schedule selection and Schedule trees

Schedule selection algorithm and implement structured schedules

Multi-dimensional arrays

Delinearized multi-dimensional accesses

Using ML Techniques

Generate loop variants

Summary

- → Proposed a polyhedral loop generator for Generating Millions of SCoPs (GeMS)
- → Generated labeled memory/compute-bound loops
 - By imposing constraints on cache locality in terms of reuse distances
 - Multi-dimensional array accesses \rightarrow special case of 1D accesses using delinearization
- → Showed initial evaluation of GeMS on a set of 24K kernels
 - On two machines with differing cache parameters
 - Varying numbers of statements, loops/array dimensions
 - Kernels are diverse in terms of IPC and execution time
 - No compile-time/runtime failures
- → Generated kernels can be used as a labeled dataset for ML based cost models
 - For exhaustive evaluation of Polyhedral techniques

THANK YOU! QUESTIONS?