
 1/34

Kernel Merging for Throughput-Oriented
Accelerator Generation

Nicolas Derumigny,
Colorado State University

Inria

Louis-Noël Pouchet,
Colorado State University

Fabrice Rastello,
Inria

IMPACT'23, Workshop on Polyhedral Compilation Techniques
January 16, 2023,
Toulouse, France

 2/34

Introduction

● Context
● Motivation
● Overview

3/34

Context

• Architecture Layout is specified in C++
• High-Level Synthesis
• Generates Hardware Description Langage:

• VHDL / Verilog

• Target dedicated chips
• FPGA (reprogrammable)
• ASIC (fixed)

• Automatized Generation of Hardware Design
• Specialised Accelerators (IP)
• Target HPC applications
• Evaluation on linear algebra and correlation

• On par with state of the art accelerators (GEMM, FP32)
• ScaleHLS[1]: 0.393 Op/Cycle/DSP
• Us: 0.277 Op/Cycle/DSP

C Code is used to design hardware accelerators

[1] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendorffer, and Deming Chen. ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation.
In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

4/34

Motivation #1
What is the area of a BLAS2 accelerator ?

• Operations to support:
• Matrix-vector product (GEMV)

y := alpha*A*x + beta*y
• Triangular matrix-vector (TRMV)

y := alpha*A*x + beta*y with A triangular
• Rank 1 operation (GER)

A := alpha*x*y' + A

• Using a juxtaposition of Fixed Functions (FF):
• FF with Maximum Throughput: 24 DSP
• FF with Max Sharing: 12 DSP

• Resulting design is:

• Area ~= AreaGEMV + AreaTRMV + AreaGER

• No interconnect between FFs
• No resource reuse between FFs => No sharing

• Reuse components beween FFs?
• Maximise resource sharing between FFs
• Create Functional Units: FU
• BLAS 2 + BLAS 3: 6 DSP

• Proposed design:

GEMV TRMV GER

Benchmark scheduler

Functional Unit
#1

Functional Unit
#2

5/34

Motivation #2
Reuse common compute patterns accross a set of applications

Programmability

Area-efficiency

Performances

Fixed-Functions – Max sharing
Simple interconnect
Low performances
Application-specific

Fixed-Functions – Max Throughput
No area overhead
High-performance
Application-specific

CPU
Complex interconnect

Low performances
Fully generic

Us
Moderate interconnect

Configurable performances
Configurable compute capabilities

6/34

Overview

• Creation of merged Fixed-Functions
• Functional Units
• Polyhedral decomposition of application into kernels
• Detection of identical operators

• Shareable components

• Implementation of hardware FUs
• Data routing through FUs

• Operator are shared...
• ...but control-flow remains kernel-specific

• Code generation
• Single merged/flattened loop
• Hardware constraints

• C specification of the compute pipeline
• Requires HLS-specific annotations

• Integration into a real-life design
• Compromises

• Number of FU (~= performances) vs area
• Supported kernels per FU vs area

• Interconnect
• Configuration of the accelerator
• Data communications
• On-accelerator data organisation
• Scheduling kernels on FUs
• => Need of dedicated control units

From common compute patterns to hardware generation

7/34

Flow of the work

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Set of input applications

for i in 0..512:
 A[i] += B[i]

Fixed
Interconnect /

Structure

Architecture
Description /
Constraints Output Design

Set of polyhedral kernels

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Merged kernels
(Functional Units)

HLSfor i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]for i in 0..512:
 A[i] += B[i]

Customized
Generic Accelerator

 8/34

Technical Details
● User Perspective

● Automatization
● Kernel Merging

● Structure of the accelerator
● Profitability criteria

9/34

Customized
Generic Accelerator

User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

10/34

Customized
Generic Accelerator

User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta
for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV

11/34

Customized
Generic Accelerator

User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta
for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
 y[i] *= beta for j in 0..N:

 x[j] *= alpha

for j in 0..N:
 for i in 0..N:
 t[i] += A[i][j]*x[j]

for i in 0..N:
 y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addv

12/34

Customized
Generic Accelerator

User perspective

for i in 0..512:
 A[i] += B[i]
for i in 0..512:
 out += A[i]

Input application

for i in 0..512:
 A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
 A[i] += B[i]for i in 0..512:

 A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

for i in 0..N:
 y[i] *= beta
for j in 0..N:
 tmp = alpha * x[j]

 for i in 0..N:
 y[i] += A[i][j] * tmp

GEMVGEMV
for i in 0..N:
 y[i] *= beta for j in 0..N:

 x[j] *= alpha

for j in 0..N:
 for i in 0..N:
 t[i] += A[i][j]*x[j]

for i in 0..N:
 y[i] = t[i] + x[i]

mulsv

mulmv

mulsv

addvCustomized
Generic Accelerator

mulvs(x, alpha, x)
mulvs(y, beta, y)
mulmv(t,A,x)
addv(x,y)

Configuration for GEMV

13/34

Automatization
• Polyhedral detection of kernels (Work-in-Progress)

• Decomposition of loop bodies in SSA 3-address code
• Loop fission

• Kernel merging
• Iteration domain extension
• Loop fusion

• Generation of the accelerator
• Fixed structure

• One main scheduling loop
• Flattenned version of the merged kernels loop nest

• Variable loop bound
• ~ execution time of the kernel

• Configurable number of FUs

• Compilation of the applications to the accelerator FUs
• ASAP scheduling on the FU
• Greedy placement

• Longest kernels are scheduled in first

14/34

Kernel Merging
for i in 0..N:
 y[i] *= beta

for i in 0..N:
 for j in 0..N:
 y[i] += A[i][k]*x[k]

mulsv

mulmv

for j in 0..N:
 for i in 0..N:
 if (j==0):
 y[i] *= beta

Extension of the
iteration domain

15/34

Kernel Merging
for i in 0..N:
 y[i] *= beta

for i in 0..N:
 for j in 0..N:
 y[i] += A[i][k]*x[k]

mulsv

mulmv

for j in 0..N:
 for i in 0..N:
 if (j==0):
 y[i] *= beta

mulsv Ufused mulmv

for j in 0..N:
 for i in 0..N:
 if (kernel == mulmv):

y[i] += A[i][j]*x[j]
 if (kernel == mulsv and j==0):
 y[i] *= beta

Extension of the
iteration domain

Loop fusion

16/34

Kernel Merging

• Minimal dependence distance
• Hardware constraint: a value computed by the pipeline must exit the pipeline before being used (no bypass)
• The minimal Read-after-Write distance must be greater that the pipeline latency
• In practice:

• Ensure that the inner-most loop is synchronisation-free

for i in 0..N:
 y[i] *= beta

for i in 0..N:
 for j in 0..N:
 y[i] += A[i][k]*x[k]

mulsv

mulmv

for j in 0..N:
 for i in 0..N:
 if (j==0):
 y[i] *= beta

mulsv Ufused mulmv

for j in 0..N:
 for i in 0..N:
 if (kernel == mulmv):

y[i] += A[i][j]*x[j]
 if (kernel == mulsv and j==0):
 y[i] *= beta

Extension of the
iteration domain

Loop fusion

17/34

Structure of the accelerator

• Fonctional Units (FU)
• Execute elementary operations of the

applications
• Result of kernel merging

• Loop Control Logic
• Schedule the kernels on the FUs
• Loop Bound Generator (LBG)

• Generates the trip count of the
execution loop

• Iteration Vector Generator (IVG)
• Generates the values of the iteration

vector

• Matrix / Vector Buffer
• Scratchpad containing accessible data
• Transfered to main memory before and after

execution

• Degrees of freedom
• Compute capabilities of each FU

• Add, Mul, div, sqrt, abs, ...
• Number of FUs

18/34

Profitability Criteria

• Maximise performance under area constraint

What is the best FU topology (functionnalities/replications) ?

• With:
• the set of supported kernels
• the iteration domain of kernel
• the iteration latency of kernel

• Instantiate FUs to match the proportion of their execution time in the input workload
• Do not replicate FUs that account for a low part of the workload execution time

19/34

Profitability Criteria

• Maximise performance under area constraint

What is the best FU topology (functionnalities/replications) ?

• With:
• the set of supported kernels
• the iteration domain of kernel
• the iteration latency of kernel

• Instantiate FUs to match the proportion of their execution time in the input workload
• Do not replicate FUs that account for a low part of the workload execution time

• Requires knowledge of FU resource consumption
• Do not take glue logic into account

• Constant overhead
• Does not use DSP

• Specialised for either one application, or a family of applications

 20/34

Evaluation
● Supported Primitives

● Benchmark: Linear Algebra-Generic Accelerator
● Batching Linear Algebra Computation?

● Benchmark: Correlation-Generic Accelerator

21/34

Supported Kernels
• Primitives extracted from

• Linear algebra (BLAS) level 2 and 3
• Polybench’s Correlation
• 31 different kernels supported

• Evaluation on 2 different accelerators
• FP16 data type

• Hardware primitives:
• Add, mul, div, sqrt
• Different routing/iteration spaces combination

creates 31 kernels

22/34

Benchmark: Linear Algebra-Generic Accelerator

• Accelerator: Linear
Algebra-GA

Loop Control

FMA:
* + +

• Raw Performance similar to Max Sharing designs
• Performance-per-area similar to Max Throughput designs

• 4/6 benchmarks
• Cases when MS operation schedule is identical to GA

• But semi-generic!

23/34

Batching Linear Algebra Computation?

• Batching with factor 5
• Better use of the LA-GA

• More (exploited) parallelism opportunities
• Better occupancy of the LA-GA FUs

• Execution time comparable to MS on every
benchmark

24/34

What about other works?

Batching Linear Algebra Computation?

• Batching with factor 5
• Better use of the LA-GA

• More (exploited) parallelism opportunities
• Better occupancy of the LA-GA FUs

• Execution time comparable to MS on every
benchmark

25/34

Batching Linear Algebra Computation?

• Batching with factor 5
• Better use of the LA-GA

• More (exploited) parallelism opportunities
• Better occupancy of the LA-GA FUs

• Execution time comparable to MS on every
benchmark

LA-GA is comparable with state-of-
the art design in terms of
performance-per-area (GEMM,
FP32)

[1] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendorffer, and Deming Chen. ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation. In
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).
[2] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin. A hardware–software blueprint for flexible deep learning specialization. IEEE Micro
(2019)

26/34

Benchmark: Correlation-Generic Accelerator

• Accelerator:
CORR-GA

Loop Control

FMA:
* +

FMA:
* +

FMA:
* +

sqrt
div

• Raw Performance lower than Max Sharing designs
on CORR subexpressions

• Dedicated accelerators
• Sub-optimality in the choice of kernels

• Performance similar Max Sharing for CORR
• Dominated by the matrix multiplication
• Better than MT on batched Correlation

• Still semi-generic!

 27/34

Final Words

● Limitations

● Future Work

● Conclusion

28/34

Limitations
• Interconnect size

• Op/LUT and Op/FF are 2 to 20x off dedicated accelerators
• Due to

• Organisation of the on-chip buffer
• Scheduling on the FUs

• Fixed matrix size
• Implementation limitation: the Iteration Vector Generator and the Loop Bound Generator use a constant size
• Matrix / vector size could be send as part of the accelerator configuration

• Data reuse
• Possible optimisation: Loop-invariants values are currenty fetched from the accelerator buffer each cycle

• Vectorisation of the FUs
• BRAM limitation: only 2 load/store operations per cycle are possible

• DSP repartition
• FMA are implemented as a mul-add sequence: only matrix-matrix or matrix-vector max their usage
• Work in progress!

29/34

Future Work

• Support BLAS 1 primitives
• Support reductions in the inner-most loop

• Temporary buffer for loop-carried accumulation
• Hardware-compliante schedule

• Stalls of the execution pipeline

• Reduce DSP/operation
• Use of “floating point” Vivado primitives

• Heavier interfaces (AXIStream)
• FP16 FMA using only one DSP
• Basic hardware unit for any FU using add/sub/mul

• Formalisation of the kernel detection
algorithm

• Transformation of the loop bodies to 3-address code
• Loop fission
• Legality of the operation

• Caracterisation of the supported
applications

• Any combination of the accelerated kernels can be
accelerated

30/34

Conclusion

• Generation of a programmable accelerator
• For a family of applications
• Focused on performance-per-area

• Relying on polyhedral kernel merging
• Iteration domain extension
• Loop fusion
• Custom Functional Units generation

• Performance in par with dedicated designs
• Evaluation on Linear Algebra (BLAS2-3) and Correlation
• Batching favors performance-per-area
• Op/Cycle/DSP comparable to state-of-the-art designs

• Improved version of the Generic Accelerator under submission

 31/34

Interested in an academic
full-time research job?

 32/34

Interested in an academic
full-time research job?

hires!

 33/34

Interested in an academic
full-time research job?

• ~40 opened (junior) tenured positions each year

hires!

 34/34

Interested in an academic
full-time research job?

• ~40 opened (junior) tenured positions each year
• Senior positions, hundreds of post-docs, ...

hires!

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 12
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 23 (4)

