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Context of this work

* HPC Applications: Large volumes of data, low number of operations
- I/0 intensive, low operational intensity

* Significant intrinsic parallelism
* «Splitting » the workload between nodes or accelerators
* Communications are extremely expensive (time + energy)
* GPU/FPGA to host (PCIe) : thousands of cycles per transaction
* MPI (network) : millions of cycles per transaction
* Eachtransaction = penalty

* Under-utilization of transfer resource = bottleneck

L Need to optimize host-accelerator communications }
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Programs we target

* Computational kernels that admit a polyhedral model
* Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])
for(int 1 = 0; 1 < N; ++1) 3
for(int §j = 0; 7 < M; ++7) %
C[i1[j] = max(C[il[j-1], C[i-11[3j], C[i-11[3j-11 + W);

§
§

analysis

> |
Smith-Waterman kernel iteration space and dependences

[1] Feautrier, P. Dataflow analysis of array and scalar references. International Journal of Parallel Programming, Springer Science and Business Media
LLC, 1991, 20, 23-53
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Benefits of Loop Tiling
* Tiling

* Already applied, e.g. for temporal locality & parallelism
* Uniform dependences (vectors)

* Inter-tile communications = same across all tiles

j

Tiling of Smith-Waterman kernel iteration space

[ We seek to improve spatial locality as well }
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Inter-tile communications : flow-in/out

* Intermediate values used by other tiles - communications
* Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

* TIterations consumed in another tile = Flow-out
i A

> |
Flow-out set of a tile of iterations with a Smith-Waterman kernel

[ Each Consumer Tile Needs Parts of Flow-out }

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ACM, 2013
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What is a

Maximal Atomic irRedundant Sets

* Single-Producer (SP) : all iterations in a MARS come from one tile
* All-Consumed (AC) : MARS are entirely consumed by every consumer tile

I A
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State of the Art

* Decomposition of Inter-Tile Communications:

 Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning
— MARS = one specific case, static determination at compile time

* Zhao et al, 2021 [4]: partitioning + layout
— MARS = « generalization » to uniform dependences

* Memory Layout for Host-Accelerator Communications:

* Ozturk et al., 2009 [5]: data tiling + compression
— MARS = finer-grain data breakdown amenable to compression

* Allocation from a Polyhedral Model:

* Yuki and Rajopadhye, 2013 [6]: lower memory footprint with Uniform Dependences
— MARS = trade footprint for bandwidth utilization

[3] Dathathri, R.; Reddy, C.; Ramashekar, T. & Bondhugula, U. Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory.
Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, IEEE, 2013

[4] Zhao, T.; Hall, M.; Johansen, H. & Williams, S. Improving communication by optimizing on-node data movement with data layout Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[5] Ozturk, O.; Kandemir, M. & Irwin, M. Using Data Compression for Increasing Memory System Utilization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), 2009, 28, 901-914

[6] Yuki, T. & Rajopadhye, S. Memory allocations for tiled uniform dependence programs IMPACT 2013, 2013, 13
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Outline

* Construction of MARS

* Core Notion : « dependence crossing hyperplane »

* Illustrated Construction
* Implementation results: Examples and Analysis
* Discussion: Possible uses
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Constructing the flow-out

* Inter-tile dependence : some dependence crosses some tiling hyperplane
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Constructing the flow-out

* Flow=-out : iteration points such that translating by some dependence
vector crosses some tiling hyperplane

j A

> i

& IRISA




Consumer Tiles

* Defined per iteration point
* Some dependence crosses exactly select hyperplanes to consumer tile

j A
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Constructing MARS

* MARS : iterations consumed exclusively by specific consumer tiles
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Constructing MARS

* MARS : iterations consumed exclusively by specific consumer tiles

j A
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[ Union of MARS = Flow-Out ]
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Computation Performance

* MARS calculator available online (https://github.com/cferr/mars.git)

* Jupyter notebook using ISLPy
* Runtime:

* 1-5seconds if < 3 tiling hyperplanes

* 2 hours for 4 tiling hyperplanes

* Cause : exhaustive exploration of power set of power set (22(2”n) elements)
* Recursive implementation : ~10 seconds for 4 tiling hyperplanes

* Not yet publicly released

[ We have alleviated MARS calculation complexity }
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https://github.com/cferr/mars.git

MARS supports 1D, 2D, 3D spaces...
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MARS supports non-LI hyperplanes

* Tiling hyperplanes aren’t Linearly Independent (4 hyperplanes for a 3D space)
* Example : Jacobi 2D — Diamond, 3 tile shapes

MARS Flow-Out (jacobi2d d) : k4 = k1 - k2 + k3 MARS Flow-Out (jacobi2d d) : k4 =1 + k1 - k2 + k3
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Counterintuitive Observation...

canonical3d seidel-2d

1 d-2d- 1d

MARS dimensionality does not necessarily decrease as we get closer to
Intersections of edges
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Counterintuitive Observation...

canonical3d seidel-2d

1d-2d-1d

MARS dimensionality does not necessarily decrease as we get closer to
Intersections of edges
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Applications of MARS

* Memory allocation for FPGA accelerators

* Work In Progress : automatically derive a data layout minimizing read
transactions

* Compression

* Along with data layout — increase the effective bandwidth (amount of useful
data transmitted over the bus) thanks to MARS’ irredundancy

°* Fault tolerance

* Compute a checksum on each MARS. If error - the producer tile (known) is to
be re-executed.

(O) IRISA COLORADO STATE UNIVERSITY




MARS for FPGA-Host communications

* Find MARS layout in memory minimizing read time

o [ ] o o () [ ] [ ] o () [ ] () [ )
Consumer

> |
\ / coalesced read
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MARS for Error Detection

* Checksum MARS to determine if data from producer tile has errors

j A
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Recompute
[ We can use MARS for overclocking, undervolting }
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MARS for Irredundant Compression

* Compression without readback redundancy

® ° ® ° ° ® ® ° ° ° ® e ° ® °
\ Consumer
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Conclusion - Take-Home

Irredundancy

jA

WIP On

\.\ Applications




Thank you

Questions?
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