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A Path to Polyhedral Compilation...

¢+ Bornin 1980 in France

+ 2001-03: 2 years preparatory classes at EPITA
+ 2003: Start 3-years engineering school (CS focused)
+ 2004: Start undergrad research in automata theory

+ 2005: Decided | wanted to do a (French) PhD, designing medical devices to assist disabled
people, so... med school or...

+ 2005: Enroll concurrently in a MS at University Paris XI, on artificial learning and
neurobiology

+ 2006: MS/EPITA final internship time (6 months), went to INRIA to work on compilers!
+ 2006-2009: PhD at INRIA

+ 2010-2012: Postdoc at Ohio State University with P. Sadayappan, on HPC techniques
+ 2012-2014: Visiting Assistant Prof. at UCLA, focus on FPGAs and high-level synthesis
+ 2014-2016: Research Assistant Prof. at OSU

+ Since 2016: at CSU



Disclaimer about the Content of this Talk

» It will be (very) partial, biased and oriented much around work we did with
colleagues

» This is NOT a complete survey of the successes and limitations of polyhedral
compilation! It would be too long ©

» | will NOT talk about so many impactful work in our community
» Foundational algorithms and results

» Tools and their implementation

» The work presented here would not have been possible without the foundations
and tools (un)referenced above! ©



Outline of this Talk

PROGRAM

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[i][3] += A[i] [k]1*B[k][]];
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» Objective for today: pave a way of some uses of Polyhedral Compilation!
» Outline: first some background, then...

> A word on representing programs, using domain-specific languages
And data, using union of polyhedral,

>
> Some optimization tools
> Representing hardware designs as polyhedral programs, and proving their equivalence




But What is a Polyhedron?

Example
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Grid of 2D Integer points



But What is a Polyhedron?

Example

2D Integer points

List of points

]

2

L= - N~ . 2 75 I SC B N B (N

2

F N SC I \° I SR SC R S R~ N S

Compact description



But What is a Polyhedron?

Example

List of points

]

\

o0

2D Integer points

i

>

L= - N~ . 2 75 I SC B N B (N

2

F N SC I \° I SR SC R S R~ N S

Compact description



But What is a Polyhedron?

Example List of points Compact description
4 ]
J
1 e 00000 2 2 D:{[ij]:2<i<4and
+ © o 6 o o o 2 3 2SJS4}
1 o 0o 0 0 00 -
T ®© 6 600 3 2 Polyhedron: described as the intersection
T ©© 06 0 00 of half-planes (e.g., i < 2), all points in
Pttt 3 3 the intersection are in the polyhedron
3 4
4 2 Dimensionality: 2
2D Integer points 4 3
gerp 44 In this work: model only polyhedra of

integer points



But What is a Polyhedron?

Example List of points Compact description
4 ]
J
1 e 00000 2 2 D:{[ij]:2<i<4and
+ © o 6 o o o 2 3 2SJS4}
1 o 0o 0 0 00 -
T ®© 6 600 3 2 Polyhedron: described as the intersection
T ©© 06 0 00 of half-planes (e.g., i < 2), all points in
Pttt 3 3 the intersection are in the polyhedron
3 4
4 2 Dimensionality: 2
2D Integer points 4 3
gerp 44 In this work: model only polyhedra of

integer points

More complex shapes?



But What is a Polyhedron?

Example List of points Compact description
A ]
J
"::"" 2 3 D:{[ij]:2<i<4and
W 3 3 3<j<4and
1 o oo . L
1 e 00000 3 4 j=iandj<i+1}
1 o000 00 4 4
Pttt Polyhedron: possibly many half planes
to describe it => affine inequalities
2D Integer points Inequalities may involve several

variables / dimensions

10



But What is a Polyhedron?

Example List of points Compact description
A i
J
__...... 22 D: ". <'_ and
1T © o & o 0 o
2 4 SIS
1+ © & & o & o
+ © o & & o o 4 2
1l o000 0 @ 4 4 Still describes 9 points!!
————

2D Integer points

But what about holes in the shape?



But What is a Polyhedron?

Example List of points Compact description
it .
T ®e®¢eee 2 2 D:{[ijl:1<i<2and
1T © o & o 0 o 9 4 1SJS2}
1+ © & & 0 0 o
1+ oo @ 00 @ 42 . +. .
|l e0 06000 4 4  |Intersected with an integer lattice:
—t L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

A polyhedron intersected with a lattice is a Z-Polyhedron

12



But What is a Polyhedron?

Example List of points Compact description
it .
T ®e®¢eee 2 2 D:{[ijl:1<i<2and
1T © o & o 0 o 9 4 1SJS2}
1+ © & & 0 0 o
1+ oo @ 00 @ 42 . +. .
|l e0 06000 4 4  |Intersected with an integer lattice:
—t L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

Z-Polyhedra can have “holes”, needed for “sparse” structures

13



Z-Polyhedra are Code, Too

Example List of points Compact description
it ]
T ®®®¢ee 2 2 D:{[ij]:1<i<2and
+-o-jo—o—-0l-0-@ 2 4 1Sj§2}
1+ © & & 0 0 o
1 0-10-0-0-0—@ 42 . +. .
|l e0 06000 4 4  |Intersected with an integer lattice:
—— L:{[ij] —>[xy]:x=2iandy=2j}
2D Integer points for (i=1;i<=2;i++)

for (j =1; ] <=2; j#t)
S(2i,2j); Il x = 2i, y = 2j
This code traverses all and only points in the
Z-polyhedron

14



Z-Polyhedra are Code, Too

Example List of points Compact description

it ]

T ®e®¢eee 2 2 D:{[ijl:1<i<2and

1 © @& & & o © 9 4 1S_| 2}

1+ © & & o & o

1+ oo ® 00 0 42 . +. .

| o000 00 4 4  Intersected with ap’integer lattice:
—— L:{[i]] /> [xyf:x=2iandy =2} }

2D Integer points for(i=1;i<=2;i+t)
for (j = 1; ] <= 2; j#)
S(2i,2j); Il x = 2i, y = 2]
This code traverses all and only points in the
Z-polyhedron

15



The 3 Stages of Polyhedral Optimization

1. Analysis: from code to model
=  Existing tools
PET, PolyOpt
URUK, Omega, ChiLL, PoCC
= GCC GRAPHITE, LLVM Polly (now in mainstream)
= Reservoir Labs R-Stream, IBM XL/Poly

2. Transformation in the model
=  Build and select a program transformation

3. Code generation: from model to code
= "Apply" the transformation in the model
=  Regenerate syntactic (AST-based) code

16



The Polyhedral Model in a Nutshell

Affine program regions:
+ Loops have affine control only (over-approximation otherwise)
+ lteration domain: represented as integer polyhedra

Jy . .
i>=1 i<=n
n+2 i ;
\\:\
for (i=1l; i<=n; ++i) 1 0o o0 -1 . = § o
for (j=1; j<=n; ++3) -0 10 AT n |- B - ==~ I
. 3=+ ’ ] Dep=| 0 T o A L 6 o0 |
-1 0 1 0 : B
. s[i] = ... : 21 6009
1 “““.“."‘6-\-\:--}>=n
i : S i<=n—j+2

o _ { 9 m ol i
D :=[n] -> { [i,]J] : 1 <= i <= n and lteration domain of Sy

l1 <= j<=nand i <= n-j+2 }
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The Polyhedral Model in a Nutshell

Affine program regions:

¢

¢

¢

Fs :
Fa :

Loops have affine control only (over-approximation otherwise)
Iteration domain: represented as integer polyhedra

Array index functions: represented as functions of the loop iterators
and parameters

Xs2
fix2)=[ 1 0 0 0 ].( ? )

for (i=0; i<n; ++i) {

. s[i] = 0; i
. for (3=0; j<n; ++3) A =] 0 0 00 ] ]
. s[i] = s[il+al[i] [§]1*x[3]; 1
}
X5
x(X2)=10 1 0 0 |. n
= [n] -> { [i,3] -> s[i] } fi052) = } {
= [n] -> { [i,3] -> a[il[3] }

18



The Polyhedral Model in a Nutshell

Affine program regions:
+ Loops have affine control only (over-approximation otherwise)
+ lteration domain: represented as integer polyhedra

+ Array index functions: represented as functions of the loop iterators
and parameters

+ Data dependence between S1 and S2: a subset of the Cartesian
product of DS1 and DS2 (exact analysis possible)

S1 iterations

,1 l
3 .Sl
is2| =2 , ,
3 Jjso >0 S2 iteration
1

for (i=1; i<=3; ++i) {
. s[i] = O;

. for (j=1; j<=3; ++3j)
. s[i] = s[i] + 1;

Ds1552

=R e
= A
] i —}
|
[y
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Affine Transformations

Interchange Transformation

10 ~1
—1 0 (i 2| o=
, >0
0 1 <]>+ =
0 —1 3

(a) original polyhedron

The transformation matrix is the identity with a permutation of two rows.

(=19 00

(b) transformation function

(c) target polyhedron
AT~ Hy+a>0

AX+a>0 y=Tx
doi=1, 2 do i" =1, 3
do j =1, 3 do 3’ =1, 2
S(i,3) S(i=3’,3=1")




Affine Transformations

Reversal Transformation

The transformation matrix is the identity with one diagonal element replaced by —1.

T T T T T T >.
1 2 3 4 5 6 1
==
0 -1 <1/> —1 0]/(i
-1 0| (i 2| <3 ') [ 0 1}
. > J J

0 1 (]) * -1~ 0
0 -1 3

(a) original polyhedron (b) transformation function

AX+a>0 y=T%

eV

I
W

I
(\®)

I
pud.
—
H‘
N;

Y
~e =~
~_
+
|
— N
vV
ol

(c) target polyhedron
Ar—Hy+a>0o

do 1

Q.

o .
[ G|
U
= <

-
~

do i’ = -1, -2, -1
do §’ =1, 3
S(i=3-1",3=3")
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Affine Transformations

Coumpound Transformation

The transformation matrix is the composition of an interchange and reversal

. *9
Ja AJ
3 () 3
27 e 72
1 @ ® WL r1
T T T T T T >. T T T \ T >',
1 2 3 4 5 6 1 -3-2-10 1 2 1
=
0 -1 -1
10 -1 i 0 —17/(i 0o 1| /({ 2| Uz
. = . >
SRIIOH ()=l 7l 0) Lol ()| )
0 1 J -1 —1 0 3
0 -1 3
(a) original polyhedron (b) transformation function (c) target polyhedron
Ai+a>0 y=T% AT 1)3+a>0
doi=1, 2 do 3’ = -1, -3, -1
do j =1, 3 do i’ =1, 2
S(i,3) S(i=4-3",3=1")
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Affine Transformations

Coumpound Transformation

The transformation matrix is the composition of an interchange and reversal

\ \ \ \ \ \ >. T T T T T >.,
1 2 3 4 5 6 1 -3-2-10 1 2 1
-
0 —1 —1
0 -1 i 0 —17/(i o 1|( 2| w=
. = . >0
-1 0 <{>+ 2|55 <j/> [1 o} J ool \/)T 1] 7
0 1 J —1 —1 0 3
0 —1 3
(a) original polyhedron (b) transformation function (c) target polyhedron
Ai+a>0 y=T% AT 1)3+a>0
doi=1, 2 do 3" = -1, -3, -1
do j =1, 3 do 1" =1, 2
S(i,3) S(i=4-3',3=1")
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The Polyhedral Model in a Nutshell

Affine program regions:

¢

Loops have affine control only (may over-approximate otherwise)

Benabderrahmane, Mohamed-Walid, Louis-Noél Pouchet, Albert Cohen, and Cédric Bastoul.
"The polyhedral model is more widely applicable than you think." In International Conference on Compiler Construction, 2010.

¢

Iteration domain: represented as union of integer polyhedral and lattices (always possible,
but may be inefficient)

Rodriguez, Gabriel, and Louis-Noél Pouchet. "Polyhedral modeling of immutable sparse matrices."
In 8th International Workshop on Polyhedral Compilation Techniques. Manchester, UK. 2018.

¢

¢

Array index functions: represented as functions of the loop iterators and parameters

Data dependence between S1 and S2: a subset of the Cartesian product of DS1 and DS2
(exact analysis possible)

Precise dataflow analysis [Feautrier,88]

Efficient algorithms for data locality [Bondhugula,08]
Effective code generation [Bastoul,04]
Computationally expensive algorithms (ILP/PIP)

24



Outline: Modeling PROGRAMs

PROGRAM

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++3) ‘..'ll

for (k = 0; k < N; ++k)

C[i][3j] += A[i] [k]*B[k] [

KA .l".\
e e Y
E '&?‘Qi:.".‘i;ﬁl :
T TR
N MR ERG
N L 3. 3

Hardware

Target
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Motifs In Applications (Berkeley Motifs)

g

2 1
E o
w o

DB
Games
ML
HPC

Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body
10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

—

Source: J. Demmel

+ Berkeley motifs identify key algorithmic paradigms, but not directly useful for
code optimization

+ Stencil abstraction is useful for compiler transformation: can we identify a
small number of such abstractions with broad coverage?

26



Domain-Specific vs. Pattern-Specific Compilation

+ One pattern can occur in many domains!
= Simple example: stencils on dense/regular grids
= Seen in image processing, physics simulation / PDE solving, etc.

+ All such stencils benefit from the same optimizations BUT
not to the same extent!

= problem size, stencil shape, number of time steps, kind of
convergence check, etc all depend on the domain, not the pattern

= Ex: time-tiling, reduction optimization, etc.

Open question: is there a common optimization framework
across domains?

27



Pattern: Static Control Flow Programs

+ In anutshell: the set of programs whose control flow can be entirely
predicted at compile-time

+ Polyhedral framework: a subset of SCF where expressions are affine
=  Otherwise use affine over-approximations
= Or Union of small SCFs

+ Encapsulates with full accuracy numerous computation patterns:
= Stencils on dense grids
= Dense linear algebra
= Graph algorithms on adjacency matrix
= Dense convolutions
= efc.



But What is Optimizing Compilation?

Main idea: ask a computer to find an equivalent program which
executes faster than your own program
= Must preserve the program semantics, exploit parallel/distributed architectures, etc.

= Multiple disciplines are leveraged: algorithmic, programming, architecture,
mathematics, machine learning, experimental computer science, etc.

+ A compelling example: programming distributed systems (PIPES)

Parameter N, P;
// Define data collections

[float* A:1..N,1..N]; SGEMM

// Task prescriptions - 700

env :: (MM:1..N,1..N,1..N); = 600

// Input/Output: O 500

env -> [A:1..N,1..N]; [}

. g 400 & Cannon-PIPES
[C:1..N,1..N,N] -> env; g 300 1 1 1 ]

// Task dataflow ;6 200 4 ! ] | | | & Johnson-PIPES
[A:i, k], [B:k, 3], [C:i, 5, k] —> (MM:i,j,k) —> [C:i,J, k+1]; £ 100 1 - - e @ Scalapack
Topology Proc = Topo2D (P,P); Q - -. “

// Place the N tasks (i, j,*) to Proc((i/8)%P, (j/8)%P) 0

(MM:i,j,1..N)Q@Proc((i/8)%P, (j/8)%P); 1x8 2x8 4x8 8x8

// Circular communication pattern for Cannon algorithm
[A:i, k]@(MM:i,j, k) => (MM:i, (j—1)%P,k+1);
[B:k,j1@(MM:i,j, k) => (MM: (i-1)%P, 3, k+1);

Number of nodes x number of cores per node

= |nput; 20 lines, nearly identical to textbook, compiler generates 2000+ lines of code!

M. Kong, L.-N. Pouchet, P. Sadayappan, V. Sarkar. "PIPES: A Language and Compiler for Task-based Programming on Distributed-Memory
Clusters", to appear in IEEE/ACM Supercomputing (SC'16), Nov. 2016.

29



StencilDSL: Embedded Domain-Specific Language

Benefits of high-level specification of
computations using domain-specific languages:

= Ease of use (for mathematicians/scientists creating the

code) Multicore CPU (icc/gcc)
= Ease of optimization (facilitate loop and data Matlab/eSDSL SR [ICS’13][PLDI’13&>14]
. > ulti-targe
transformations) | o Optimization and | py (nycc)
= Embedded DSL pl‘OVIdeS ﬂeX|b|||ty: Code Generation o1
= Generality of standard programming language C/eSDSL, (source-to-source) | ! ]
« Automated transformation of embedded DSL region FPGA (Vivado)
int Nr; int Nc; [FPGA’13]
grid g [Nr][Nc];
double griddata a on g at 0,1;
P e e parmn e ongy ) Matlab/eSDSL: Rician denoise
[1]1p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] 70
} + [0]P[O][0] + [O]P[O]1[1] + [0IpP[1][0]); 60 |
iterate 1000 { 50 7 Matiab
St‘ii,‘“l J?Tgl:;;f?]{z [1]a[0][0] = [0]a[0][0]; gw —  bigtep oder
[Nr-1 ][0:Ne-1] : [1]a[0][0] = [0]a[0][0]; g% SDSL ——eSPSEL— ™ GCC Sequental
[0:Nr-1][0 1 : [11a[0][0] = [0]1a[0][O]; - 20 e GCC Parallel
[0:Nr-1][Ne-1 ] : [1]a[0][0] = [0]a[0][0]; = GPU
[1:Nr-2][1:Nc-2] : five_point_avg(a); 10 -
' 0
reduction max_diff max !
[0:Nr-1][0:Nc-1] : fal{Js([l]a[O][O] - [01a[0][0]1); Laptop Desktop

}
} check (max_diff < .00001) every 4 iterations

30



Stencil DSL Example

int Nr; int Nc;
grid g [Nr][Nc];

double griddata a on g at@

pointfunction five point_ avg(p) {
double ONE_FIFTH = 0.2;
[11p[0][0] = ONE_FIFTH*([0]p[-1]1[0] + [O]p[O][-1]

\ < + [0]p[0][O0] + [O]p[O][1] + [O]P[1][O]);
iterate 100 : Reference data over two time
stencil jgﬁf):M steps: current(0) and next (1)
[0 ][0:Nc-1] : [1]a[0][0] = [OTa :
[Nr-1 ][O:Nc-1] : [1]a[0][0] = [0]a[0][O];
[0:Nr-1][0 ] ¢+ [1]a[0][0] = [0]a[O0][O]; Boundary |

[O:Nr-1][Nc-1 ] : [1l]a[0]]0] [0]1a[0][0];
[1:Nr-2][1:Nc-2] : five point_avg(a);
} . _ <€ Ilnterior |
reduction max diff max {
[0:Nr-1][0:Nc-1] : fabs([1]a[0][0] - [0]a[0]1[0]);
}
} check (max_diff < .00001) every 4 iterations

31



Optimizations for High-Order Stencils

L4

K. Stock, M. Kong, L.N. Pouchet, T. Grosser, F. Rastello, J.

Significance and Impact:
= High-order stencils arise in high-accuracy methods for PDEs in various domains
= Prior view: the higher the discretization order, the lower the throughput

= With proposed optimization system: maintains throughput when using higher
accuracy methods!

DSL Technologies for Exascale Computing i Teﬁ,;;ig%s“
omain specific Languages S
= DoE XStack, w/ Dan Quinlan (LLNL)
) High-Order S il Perf ith
= Chombo: high-order methods 'goo.;af.:.s:ng'ic 3;3.::?3:;‘:“

800

= PolyOpt: key technology in DTEC

700

600

= Reusable PSL optimizer across a

500
400
300
200

range of DSLs

100 A

Stencil performance (MegaStencil/s)

i Reference (ICC) & DSL Optimized (ICC)

! « . 2D box 2D box 2D box 2D box 2D box 3D box 3D box
Ramanujam, and P. Sadayappan, “A Framework for Enhancing 9pts 25pts  49pts  8lpts  12lpts  27pts  125pts

Data Reuse via Associative Reordering” (PLDI 2014)
Available in ROSE/D-TEC branch.

3D diam.
19 pts
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Outline: Modeling DATA

PROGRAM

for (i = 0; i < N; ++i)
for (3 = 0; j < N; ++3)
for (k = 0; k < N; ++k)
C[i]l[j] += A[i] [k]1*B[k][]]’

Hardware

33



Application: Implement On-Chip Data Reuse

+ Key ideas:
= Compute the set of data used at a given loop iteration
= Reuse data between consecutive loop iterations
= Process works for any loop in the program

= Natural complement of tiling: the tile size will determine how much
data is read by a non-inner-loop iteration

The polyhedral framework can be used to easily compute all
this information, including what to communicate
= Address generation / data preloading functions / prefetching
= Accelerator communication code (copy-in/copy-out)

Pouchet, Louis-Noel, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. "Polyhedral-based data reuse optimization
for configurable computing." In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2013.
34



Computing the Per-iteration Data Reuse

)2 g e 2

E : : : : : | 42 // Two-dimensional Jacobi-like stencil
R N oo S N i for (£t = 0; t < T; ++t)

| | | i " for (i = 0; i < N; ++i)

T ' o ) for (j = 0; j < N; ++3)

o r B[i][j] = 0.2%( A[i][j-1]
e [ 1 + A[i] []]

i | : | . + A[i][3+1]
L L + A[i-1][3]
I 7T LT ! + A[i+1][3]);
o e
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Computing the Per-iteration Data Reuse

E I+2

i1

i1

| -2

____________________________________

Compute the data space of A, at it-
eration X = (t,1,j)

DSA(%) = | JFSy(®)

F (%) is the image of X by the function
F.

36



Computing the Per-iteration Data Reuse

Compute the data space of A, at it-
erationy = (¢,i,j— 1)

DSA(¥) = |JFSi(7)

37



Computing the Per-iteration Data Reuse

Reused data: red set

ReuseSet = DS4(X) NDS4(y)

38



Computing the Per-iteration Data Reuse

i i+2
Per-iteration communication: blue

-1 PerCommSet = DSp(X) — ReuseSet
[ i-2

___________________________________

39



Computing the Per-iteration Data Reuse

2 1§ jr1 j+2 These sets are parametric polyhedral

_____

L2 sets

» Use CLooG to scan them
» Work for any value of t,i,]

— an initialization copy is executed
before the first iteration of the loop,
i.o and communications are done at
__________________________________ ! each iteration

Pouchet, Louis-Noel, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. "Polyhedral-based data reuse optimization

for configurable computing." In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2013.
40



Parametric Slicing: Easy Manipulation of Sub-Spaces

DEFINITION 2 (PARAMETRIC DOMAIN SLICE). Given a loop
nest with a loop | of depth n surrounded by k — 1 loops, and an
integer constant o, the parametric domain slice (PDS) of loop l is a
subset of 7" defined as follows:

Pro={(x1,...,x0) €Z"|x1 = p1,...,Xk—1 = Pk—1,Xk = Pk + O}

where p1,..., p, are parametric constants unrestricted on 7.

PDS_TIJ := [T,I,J,TN,N] -> { [t,i,j] : t=Tand i =1Iand j=J};

PDS TIJml := [T,I,J,TN,N] -> { [t,i,j] : t =T and i = I and j = J-1 };

DS := [T,I,J,TN,N] -> { [t,i,j] : 0 <=t < TN and 1 <= i,j < N - 1 };

FA := [T,I,J,TN,N] -> { [t,i,3j] -> A[i-1]1[3]; [t,i,3] -> A[i]1[3]; [t,i,3] ->
A[i+1][3]1; [t,i,3] -> A[L][3-11; [t,i,3] -> A[i][3+1] };

g

curiter := FA(DS * PDS TIJ);
previter := FA(DS * PDS TIJml);
reuseset := curiter * previter;
card reuseset;

codegen reuseset;

» Easily represent data space touched by e.g. one iteration of loop i
» Polyhedral/Preshurger set: can be code-generated by ISL, can be counted, etc.
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Experimental Results

Denoise: Pareto-optimal

' -
1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08
Total execution time (in cycles)

T 90 & Z 600 -
% 3
800 - *
a3 2 500 -
700 -
[an] [20]
X . X .
& 600 E 400
" 500 - -
£ * £ 3500 -
400 - -
[2] [2]
<§( 300 - <§: 200 -
L]
L 200 - o *
o D o0 -
— ‘ —
T 100 - [ .
S Meire . RN *

Segmentation: Pareto-optimal

' ' *
1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09 4.5e+09
Total execution time (in cycles)

Total BRAMSs (in 16kB blocks)

140

120 -

100 -

80 -

60 -

40 - *

+

20 - +*
L]

DGEMM: Pareto-optimal

L ]
A

ot | | F
1.8e+07 1.9e+07 2e+07 2.1e+‘0722e+0l72.3e+(_)72.4e+0_725e+072.6e+07 2.7e+07 2.8e+07
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Benchmark | Description || basic off-chip | PolyOpt | hand-tuned[17]
denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s
DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A
GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

» Convey HC-1 (4 Xilinx Virtex-6 FPGASs), total bandwidth up to 80GB/s

» AutoESL version 2011.1, use memory/control interfaces provided by Convey

» Core design frequency: 150MHz, off-chip memory frequency: 300HMz
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Data-Specific Compilation
Main idea: synthesize code that is specialized to a specific

sparse data structure, using polyhedra

» Irregular and sparse data structures are central in scientific computing and in
machine learning

» Graph processing, neural net inference after weight pruning, etc.

» Typical approach: encode the sparse structure in some format, and provide a
generic executor code to traverse the data

» Proposed approach: encode the sparse structure with polyhedra, and generate a
specialized executor code for that structure

» Tunable: target SIMD / performance, target compression / code size, etc.
» General: works for n-dimensional sparse data structures (e.g., sparse tensors)

T. Augustine, J. Sharma, L.-N. Pouchet, G. Rodriguez, “Generating Piecewise-regular code
from Irregular Structures” (PLDI 2019)
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Computing on Sparse Structures

Compressed Sparse Row (CSR) code for sparse matrix vector multiply

for (1 = 0; 1 < nrows; i++)
for (J = pos[1]; J <= pos[i+tl]; J++)
y[1i] += csr data[]j] * x[cols[]]];
> Code is generic for any sparse matrix
> For every nonzero of the matrix, performs 4 memory reads
> SIMD vectorization requires gather/scatter, code is not regular/polyhedral

Code specialized for one specific sparsity structure:

I S for (j = 2; j <= 5; j++)
;-i....... y[1l] += csr data[]J-2] * x[]];
;g:::::: y[3] += csr data[5] * x[4];

13 eoeses y[4] += csr_data[6] * x[2];
ey

T. Augustine, J. Sharma, L.-N. Pouchet, G. Rodriguez, “Generating Piecewise-regular code
from Irregular Structures” (PLDI 2019)
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And What is a Sparse Structure?

Here, a sparse structure is simply a series of integer tuples

Example: a sparse matrix is represented by the tuple (i,j,data)

J, i cols[j] &(A_dataljl)

1: 0 0 0x00

2: 0 3 0x04

3 1 1 0x08

; 4: 1 4 0x0C
v 5 1 5 0x10
6: 2 2 0x14

7: 2 4 0x18

8: 2 5 0x1C

9: 3 0 0x20

10: 3 3 0x24

HB/nos1 matrix from SuiteSparse 11: 3 6 0x28

We handle sparse structures of arbitrary dimensionality,
this includes sparse tensors



Encoding Sparsity with Polyhedra

cols[j] &(A_datal[jl)

0 0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24
0x28

HB/Nos1 matrix from SuiteSparse

i
0
0
1
1
1
2
2
2
3
3
3

o D A s EAN A el S o
olw(olu | B — W

0:
1
D1:{[ijk]:i=2and4<=j<=5andk=4j+8)
D2: {[ijk]:2<=i<=3andi=jand k = 16i— 12}

When modeling problems like SpMV, we consider the trace reorderable
That is, non-consecutive points in the original trace may be grouped together




Representing Integer Tuples as Z-Polyhedra

» A Z-Polyhedron models sets of integer tuples, with “holes”
» A sparse structure is a list of integer tuples, or points

» S0 we can represent a sparse structure as a union of Z-polyhedra!
» Target scenario: many points can be captured in a single polyhedron
» Performance objective: polyhedra should be easy to SIMD vectorize

» Challenges:

1. How to determine the shapes (polyhedron and lattice) that captures the largest
number of points, efficiently?

2. How to reach good performance for e.g. SpMV programs encoded as polyhedra?
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Complexity Trade-Off [1/2]

» A Z-Polyhedron may use more dimensions than the tuple size

» Think tiling a 2D iteration space: you obtain a new 4D iteration space, but that still
describes exactly the same original set of 2D points

maxgy 2 3 4 5 6 7 8
pieces || 312 159 81 4 3 2 1
cycles | [11373] 11583 |9938| 35730 34116 39306 | 50371

LoC || 772 1004 | 671 195 368 165 101

» Using more variables/dimensions in the polyhedron (maxd) reduces
the number of polyhedra needed (pieces) to capture the full matrix

> Leads to better compaction (LoC)
» But it does not necessarily lead to better performance
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Complexity Trade-Offs [2/2]

» Complex sparse structures need many polyhedra to capture them

> This sparse matrix, HB/can_1072 is \ o R """ A

reconstructed with 870 polyhedra, of up "\*?Q A o

to 8 dimensions | }»\\.\ AN

» Code size is directly related to the N e Y

number of polyhedra needed §\~;§3 N

T S\

- MR
N N S

» In this work, we design a series of algorithms that trade-off the
number of polyhedra needed versus their “complexity”

> Try simple shape first: “rectangles”, with regular strides (SIMD-friendly)
» Try more complex shapes afterwards (skewed ones, with many dimensions)
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MACVETH: Automatic SIMD Vectorization for Codelets

void kernel_spmv_fragment_0(float *__restrict A,

float *__restrict x, Glang LibTooling
float *__restrict y)
register int i0;
‘p = 0. iB <= 1 - pd W
for (i0 = 0; i0 <= 1; ++i0Q) C/C++ SIMD
y[1] += A[i0] » x[ie]; > ClangAST —>» MWACVETH | . Clang code
. . . Front-end Rewriter
for (i0 = 0; i@ <= 2; ++i0)
y[2] += A[i0 + 2] * x[i0]; Front-end and driver 0
for (iQ0 = 0; i0Q0 <= 1; ++i0Q) L}
yL3] += ALi0 + 5] * x[i0 + 11; Node >  DAG
for (i0 = 0; i0 <= 1; ++i0)
y[4] += A[i0 + 71 x x[ie + 11; _ T
y[51 += A[9] * x[17; Middle-end -
for (i0 = 0; i@ <= 1; ++i@) Cost Model
y[5] += A[i0 + 10] = x[2]; } Back-end calls 7
selects
VectoriR
Y
Random Vector
Packing <uses SIMDBackend —
__vop2 = _mm256_loadu_ps(&z[0]); Tomplates
__vopd = _mm256_hadd_ps(__vop@, __vop2);
__mv_10128 = _mm256_castps256_ps128(__vop?);
__mv_hi128 = _mm256_extractf128_ps(__vopd, 0x1); . . .
__mv_l10128 = _mm_add_ps(__mv_10128, __mv_hi128); > Extensively profile the machine to get best way to
—_mv_hi128 = _mm_shuffle_ps(__mv_lo128, __mv_lo128, pack randomly placed data into SIMD vectors
0b00110001); . . pn . .
mv_10128 = _mm_add_ps(__mv_ 10128, __mv_hi128): > Use synthesis for specific SIMD packing recipe (SMT
tmp@ = tmp@ + __mv_lo128[0]; solver for masks, etc.)

tmpl = tmpl + __mv_10128[2];

> At compile-time, use the recipes with MACVETH, and
pack multiple small reductions on same SIMD vector



Speedup

Performance Results on Intel Core i9 12900K

51 e MACVETH speedup
4 * MKLspeedup
= MACVETH GFLOPS
34 === MKL GFLOPS
= CSR GFLOPS

F5.5

r3

Single-core experiments

_ . Performance (GFLOPS)
o Cache | Version >1  >10K >IM >10M Peak
g e e g E\ CSR 1.43 2.15 2.27 2.39 5.26
'g % DSCG 1.42 2.03 2.00 2.07 4.55
£ o MKL 1.15 2.56 3.07 3.29 5.31
4 MACVETH | 2.16 341 3.30 3.37 7.91
lo.or O CSR 255 270 248 250 680
o 2 DSCG 3.81 3.45 2.29 2.12 11.48
= MKL 3.29 3.81 3.33 3.31 7.13
R MACVETH | 4.91 5.27 3.92 3.53 17.48
pras . X X N 10.001
/"’ . - .
-, x % x ”
7 o X
z x x XX <
0.14
100 10" 102 103 104 105 106 107
Number of nonzero elements in the matrix
Multi-core experiments (hot cache)
29 —— MACVETH
30
20 -----
o 10
>
©
[®)]
£
>
o
T TS T T - JPPLLEY PRSP IREL TR T IR
é ‘tga:_,_) nr. e “ae AT
0 Lol
o ,ﬁﬂg
-
Ea 1 »*%
™ “"1;"
(O] -
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104 10° 106 107

Number of nonzero elements in the matrix
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Experimental Results: Compression

2.0 1 g O w» 107 _- ; §/2
1.8 1 7] a S 82y 5 x/4
1.6 1 m 2 108 '3%9- oy 86
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= o > Yl
c =1 L L] = S s 3 ,,/3,!4 R atagll X
£ 1.0 Lo _© 0o cmocms @mp _I:A_E.E.D _____ _Uﬂag_f_m___ 5 10 8 ,-%:,é:: ,:::,:::,:: B-a
3 © Thgta 9 m o 4 O ks 9 i e :g/? ,,,,,,,,,,,
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G | B ] e R
8 & A pp %A AD AAD & g 102 ’::gz ,,,,,, 6 : ,,,,,, é:/,r’,,/j'/,,
A 4 g g i R A e A
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© A0 o4 c 10t T
° Al ) A 0
Q
o S 100
0.4 T T T T T T T T T T T T T T
100 10! 102 103 104 105 106 107 102 103 10 10° 106 107
Number of nonzero elements in the matrix Number of nonzero elements in the matrix
Best compression achieved Generated code size versus
(not necessarily best performance) number of nonzeros

» Compression ratio: CSR footprint / size of datat+code generated
> Best compression is achieved with different codelets, different objectives/trade-offs
than for performance

> For better results © see talk by Gabriel Rodriguez at 5pm today @ IMPACT’23!

53



Outline: Scheduling and Code Optimizations

PROGRAM

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)

CI[i][3] += A[i] [k]*B[k] []]

DATA S
_—— Target

NN .
N Hardware
NN

\\X é,., ‘\\, M.

’ 5\\§ o N e ]

.- NN




On To Optimizing Compilers

+ Focusing on loop-intensive programs
=  Example: sequence of linear algebra operations

= Usually, significant data reuse potential
= Usually, significant inherent parallelism available

+ Program transformations may be required to:
= Exploit the data reuse (i.e., fusion and/or tiling)
= Exploit coarse-grain parallelism (i.e., permutation)
= Exploit fine-grain parallelism (i.e., permutation and/or distribution)

+ Key problems in mapping this software on hardware:
= Challenge 1: conflicting objective (locality vs. SIMD)

= Challenge 2: different granularity (coarse-grain SMP vs. instruction selection)
= Challenge 3: optimality (global solution vs. multi passes)
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Combining High-Level and Low-Level Transformations (1)

+ High-level transformations are about program-wide
restructuring

= Usually applied on a "large" sub-program
= Abstract metrics should be used (e.g., "parallelization”)
+ Low-level transformations are about loop/statement
compilation
= Smaller granularity/scope of application
= Constraints closer to the actual hardware (e.qg., "aligned access")
Issue: how to ensure maximal effectiveness

of a “local” optimization?
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Combining High-Level and Low-Level Transformations (2)

Main idea: Define a contract between the two compilers

+ This contract determines properties on the shape of the output code
produced by the high-level transformation stage

+ By construction code segments fitting this contract can be
effectively compiled to the target hardware

+ Example: contract for CPU SIMD synthesis using SPIRALgen

Research problem: what is this contract?

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noél Pouchet, and Ponnuswamy Sadayappan.
"When polyhedral transformations meet SIMD code generation." In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation, 2013.
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The Contract With SPIRALgen

SPIRAL can effectively vectorize program regions of the form:

A single, inner-most loop (requirement)

No loop-carried dependence along this loop (requirement)

As many instructions as possible in this loop (performance objective)
No unaligned store (requirement)

As few unaligned load as possible (performance objective)

As much data reuse in the loop as possible (performance objective)
Only stride-0 and stride-1 references (requirement)

Problem: how to restructure the code
to expose maximal candidate codelets?
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Polyhedral Scheduling to The Rescue

+ Use the polyhedral model to encode all requirements as constraints
on the schedule of operations

+ Ditto for performance objectives, encoded as optimization variables
+ See paper for details (formulation is quite complex © )

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noél Pouchet, and Ponnuswamy Sadayappan.
"When polyhedral transformations meet SIMD code generation."” In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation, 2013.

+ Other approach: specialize the scheduling strategy to the properties
of the program

Kong, Martin, and Louis-Noél Pouchet. "Model-driven transformations for multi-and many-core CPUs." In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019

+ Key to success: a single, convex formulation for all and only legal
schedules in a certain class (implemented in PoCC/PONOS)

L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, P. Sadayappan, N. Vasilache “Loop Transformations: Convexity, Pruning
and Optimization“ (POPL 2011)
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Detour: Building Rich Transformation Spaces

¢

Loop Fusion/Distribution/Code motion plays an essential role on the
properties of the transformed code

= Trade-off data locality / communications vs. buffer size vs. parallelism

The number of alternatives is HUGE
= Example: LU decomposition code, 11 loops >>1,000,000,000,000 choices!

Essential properties for tractability: build search spaces with:
= Legality: only codes which respect all data dependences

= Uniqueness: each point in the space is a distinct transformation

= Expressiveness: all possible compositions of transformations considered
=> LU: this space contains only 20 points!

Challenge: modeling such search spaces
to enable efficient traversal and ILP/PIP optimization
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Convex Form of All, Distinct, Legal Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®% @ . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() YDrs, 8% €{0,1}

. 2 D

(if) V@&S, Z Bp S|
p=1

(iii) V@Ryg, Vp € {1,...,m}, V<}R,}S> € Q)Ryg,
Des P D
k=1

— Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

— Bounded coefficients required [Vasilache,07]

» Efficient ILP formulation, models strong dependence satisfaction a la Feautrier

L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, P. Sadayappan, N. Vasilache
“Loop Transformations: Convexity, Pruning and Optimization“ (POPL 2011)
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Convex Space of All Distinct Total Preorders

+ Fusion/distribution/code motion < total preorder

+ Modeling: 3 binary variables per distinct pairs
=  Example: {A}, {B}, {C}. {A,B},{C}is a TP, so is {C},{A,B}
= pag=1iff Ais before B, 0 otherwise
= ¢,g=1iff Aisin the same class as B, 0 otherwise

. . . ( 0<p;; <1]| Variables are
= s,p=1iff Ais after B, 0 otherwise 0<e;, < 1} binary
= Example: {A,B},{C} is modeled as piite ;<1\ helaxed mutual
b T = exclusion
eA,B_1’ pA,C_1’ pB,C_1 (all others = 0) Vk €)j,n] eij+eix <l+ej;)| Basic transitivity
0< . <1 eijter<l+ey| one
> Pij > . e
0= 0<e,; <1 constrained to:  O= 4 Vk €li, j| Pik+pe <1 +le} Basic transitivity
0 S S,'J' S 1 onp
Vk €]j,n] eij+pix <1+pjx) Complex
eij+pjx <1+pir s transitivity
Vk €]i,j| ekjtpixk <1+pij| onpande
L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, ) Complex
P. Sadayappan, N. Vasilache Vk €lj,n| eij+pii+pix < 1+pix+er p transitivit
“Loop Transformations: Convexity, Pruning and Optimization” h ] J TP T Prk Pik g on s and Y
(POPL 2011) \ ) P
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The Convex Space of Fusions/Distributions

+ Starting from Total Preorders, pruning algorithm based on careful
dependence analysis

Exploit new properties on fusibility to accelerate the algorithm
Key feature: removing a class automatically removes all its superclasses

+ Numerous practical applications

Find machine-specific fusion/distribution [SC’10]

Exploring fusion in RAJA

Explore function module decoupling (resource sharing) for SoCs
Explore operator/kernel fusion for deep learning

Tool fully automated and implemented in PoCC/PolyOpt

+ But always more to be done! ©

Build better integrated models to select fusion, more complex performance
objectives
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Outline: Modeling and Reasoning on the Hardware

PROGRAM

for (i = 0; i < N; ++i)
for (3 = 0; j < N; ++3)
for (k = 0; k < N; ++k)
C[i][3] += A[i] [k]1*B[k][]];

DATA
NN
ttv\\\\\ ~ > Aardware
V\T?‘* Yf\ _
\\"s{ .:—!\"f > \' \ 7
. . Q: N N N
- WO
) RIS




HeteroCL: Decoupling Algorithm from Hardware Customizations

HeteroCL code

¢ r=hcl.reduce_axis(0, 3)

Declarative code
c = hcl.reduce_axis(0, 3)  (basedon TVM)
Algorithm < out = hcl.compute(N, N),
Y, X:
hcl.sum(image[x+r, y+c]*kernel[r, c],
\ axis=[r, c]))
Custom s = hcl.create_schedule()
Compute s[out].unroll([r,c])
Custom foriinrange(2, 8):
Data Type s.quantize([out], Fixed(i, i-2))
Custom linebuf = s[image].reuse_at(out, out.y)
Memory | Winbuf = s[linebuf].reuse_at(out, out.x)

O github.com/cornell-zhang/heterocl

Y-H. Lai, et al., HeteroCL: A Multi-Paradigm Programming Infrastructure for

Software-Defined Reconfigurable Computing, FPGA’2019

Source: Pr. Zhiru Zhang, Cornell

Corresponding C code (original)

(inty=0;y<N; y++)

<

Unroll

inner loops

(intx=0; x < N; x++)
(intr=0; r<3; r+4)
(intc=0;c<3;ct++)
out[x, y] += image[x+r, y+c] * kernel[r, c]

32-bit Floating-point

[ Sign |

Exponent T W

8-bit Fixed-point Fixed(s, 6)

2-bit Integer Int(2)

1b

2b

2b

8b 23b

6b

Quantize/downsize

linebuffer

L

_i.

image

window buffer  kernel out
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https://github.com/cornell-zhang/heterocl

Accelerator Design with High-Level Synthesis (HLS)

Example: convolution

(inty=0;y<N;y++)
(int x=0; x < N; x++)
(intr=0; r<3; r++4)
(intc=0;c<3;ct++)
out[x, y] += image[x+r, y+c] * kernellr, c]

Algorithm#1 N

Compute Customization | Entangled hardware
customization and algorithm

Algorithm#2 *+ Less portable
* Less maintainable
Data Type Customization | -+ Less productive

Memory Customization
Algorithm#3

Source: Pr. Zhiru Zhang, Cornell

Corresponding C code (transformed)

#pragma HLS array_partition variable=filter dim=0
his::LineBuffer<3, N, ap_fixed<8,4> > buf;
hls::Window<3, 3, ap_fixed<8,4> > window;

(inty=0;y <N;y++){
(int xo = 0; xo < N/M; xo++) {
#pragma HLS pipeline lI=1
(int xi = 0; xi < M; xi++) {
int x = xo*M + xi;
ap_fixed<8,4> acc = 0; Custom data type
ap_fixed<8,4> in = image[y][x]; (Quantization)
buf.shift_up(x);
buf.insert_top(in, x); Custom memory
window.shift_left(); (Reuse buffers)
(intr=0;r<2;r++)
window.insert(buf.getval(r,x), i, 2);
window.insert(in, 2, 2);
(y>=2 &&x>=2){
(intr=0;r<3; r+4) {
(intc=0; c<3; c++) {
acc += window.getval(r,c) * kernel[r][c];
b
out[y-2][x-2] = acc;
1

66



How To Reduce Development Cost and Increase Correctness?

Main idea: prove the transformed program
is equivalent to the original program

» Definition: Program Equivalence (in this talk):

Two programs A and B are said to be equivalent if they both
compute the exact same expressions for every output memory cells
written out, that is for every variable that is not local to the program.

If we can unambiguously determine (decide) that program A is equivalent to
program B = transfo(A), then the transformation(s) have been correctly
implemented and no bug was introduced.

Alternate approach: translation validation

= Keep track of the series of elementary transformations implemented, ensure the
sequence preserve semantics

67



Why Transformed Programs May Be Incorrect

¢

¢

¢

You may transform the code with a correct/legal transformation, but the tool you
use to implement the transformation may be buggy

= Research compilers are often developed without rigorous testing practice
= Tools ok for a publication may not mean tools ready for production use

= Well, even production compilers are buggy!

The generated program after a transformation may not implement correctly that
transformation

= Bug in the compiler, or anywhere else in the process

= |deally, check correctness “as late as possible” in the process, once as much
transformations as feasible have been applied

A designer used a tool to get a first transformed program, then manually edited it
further (typical case in HW design)

= Bugis introduced by the user!
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Verification Tasks for HeteroCL Program Correctness

Task 1

import heterocl as hcl out = F(A, B)
r = hcl.reduce_axis (0, Q)
out = hcl.compute((P, R),
lambda x,y:hcl.sum(alpha *
Alx,r]*B[r,y] ,axis=r))
s = hcl.create_schedule([A,B],gemm)

import heterocl as hcl

out’ = G(A, B)

Task 2

for(x = 0; x < P; ++x){
for(y = 0; y < R; ++y) {
out[x] [y] = 0.000000e+00f;
for(r = 0; r < Q; ++r)

O, out[x] [yl +=(A[x][r]*1.5)*B[r][y]’

b}

#pragma ii 1

G = reorder—pipeline—unroll fOr(y = 0; y < R; ++y){

r = hcl.reduce_axis (0, Q)
out = hecl.compute((P, R),
lambda x,y:hcl.sum(alpha *
Alx,r]*B[r,y] ,axis=r))
s’ = hecl.create_schedule([A,B],gemm)
s’ [out] .reorder (out.axis[1l] ,out.axis[0])
s’ [out] .pipeline (out.axis[1])
s’ [out] .unroll (1)

Does G model F?

Source: Dr. Debyjit Pal, Cornell

#pragma unroll
for(x = 0; y < P; ++x) {
02 for (x1 0; x1 < 1; ++x1)
sum 0.000000e+00f£;
for(r = 0; r < Q; ++r)
sum =(A[x] [r]*1.5)*B[r] [y]+sum;
out[x] [y] = sum;}}

Is O, functionally equivalent to O, ?

69



Checking Compute Customizations in HCL

import heterocl as hcl import heterocl as hel

r = hcl.reduce_axis(0, Q)

1. out=hcl.compute((P, R), lambda x,y:hcl.sum(alpha *
lambda ):,y:hcl.su_m(alpha * A[x,r]*g[.r,y].,axisir)'))
-h IA[x’r]t B[r,)ﬂ,%xus:r)& B s’ = hcl.create_schedule([A,B],gemm)
s = hcl.create_schedule([A,B],gemm) s’[out].reorder(out.axis[1],out.axis[0])
s’[out].pipeline(out.axis[1])
s’[out].unroll(1)

Algo. spec +
customization

Algorithm
specification

1 r = hcl.reduce_axis(0, Q) out = hel.compute((P, R), \\ 1

75
00000 ##0
01000 ##x 45 Convert
H 00000 ##0 00000 ##0 imiti
Extract affine 00100y 01000 5y p_rlmltlves to
schedule (S) 00000 #0 00000 #0 affine schedule
00010 ##x1 00100 ##x (S,)
00000 ##0
1 \ 4
Construct Analyze array Solve ILP for P dzorer:::earfge
polyhedral model dataflow violations D aepe
violation as ILP
: i)

Yes: Customization primitives No: Customization primitives

violates semantics preserve semantics

+ Typically compute customizations are loop transformations => can be represented as
change of iterations schedule, and be verified “immediately” (a few milliseconds)

+ Ability to quickly display sets of valid customizations (10’s to 100’s to check only)
+ Better approach: build the convex set of legal (affine) schedules [POPL11-PLDI19] directly
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Program Equivalence with Hybrid Concrete-Abstract Interpretation
(unpublished yet)

Program Equivalence is Decidable for a large class
of interesting programs, under reasonable assumptions

» Program equivalence is a fundamental problem in modern computer science

> Need to ensure code transformations and optimizations are correct (environments are the same)

» Hardware design verification involves assessing the semantics of programs (equivalence)
» The cost of errors can be dramatic, and errors are often silent

» Program equivalence is more decidable than you think

» Combining partial evaluation, concrete interpretation of the control- and data-flow of the program, symbolic
CDAG computation and tree isomorphism we can build a powerful program equivalence system

> : information on loop bounds, etc. may be needed.
Typically, our proof is valid for a particular problem size, the process needs to be repeated for every
concrete problem sizes needed.

» Our system can prove equivalence irrespective of how the control/data flow is implemented,
provided it is statically computable using concrete interpretation.

» Many “basic” equivalences, (e.g., based on valid rewrite rules), are not recognized
> Possible solution by using deep learning techniques for pathfinding (Kommrusch et al.)

> Implement symbolic normalization of CDAGs?
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Going Crazy... some example!

#pragma pocc-region-start liveout A,B,C,alpha,beta

P=32*32;
int n = P/4;
int g = n/72+43*35-n*P;
P =1+ g/100000000;
int N = 9+P; P--;
float myqueue[2]; int queue_ first = 1;
myqueue[0] = O;
) for (int 1 = 0; i < N; i++) {

int loop_lower_bound = 42/51 * (123/456);
int confusing bound = 1;

for (int j = loop_lower bound; confusing bound; j++) {
#pragma pocc-region-start liveout A,B,C,alpha,beta myqueue[0] = beta;
int N = 10; myqueue[l] = myqueue[0];
for (i = 0; i < N; i++4) myqueue[0] = 0;
for (j = 0; j < N; j++) { C[i + 2*P][]J] *= myqueue[queue_ first];
C[i]l[]j] *= beta; %nt k =0;
for (k = 0; k < N; k++) if (k >= 0)
C[i]1[3j] += A[i][k] * B[k][]j] * alpha; k+= 1;
} do {
#pragma pocc-region-end int tmp_jval = j + 1 + N;
tmp jval -= N;
tmp jval--;

float tmp mul = A[i] [k-1] * B[k-1][tmp_jval];
C[i][3j] += tmp mul * alpha;
k++;

}

‘) while (k-1 < N);

[ // correct:
confusing bound = (j+1 < N) && confusing bound;
// Off-by-1:

// confusing bound = (j < N);

} }
#pragma pocc-region-end 73



Going Crazy... some example!

#pragma pocc-region-start liveout A,B,C,alpha,beta
P=32*%32;
int n =
int q
P=1

P/4;

n/72+43*35-n*P;

q/100000000;

int N 9+P; P--;

float myqueue[2]; int queue_ first = 1;

myqueue[0] = O;

for (int i = 0; 1 < N; i++) {
int loop_lower_bound = 42/51 *
int confusing bound = 1;

n+

(123/456) ;

for (int j = loop_lower bound; confusing bound; j++) {
#pragma pocc-region-start liveout A,B,C,alpha,beta myqueue[0] = beta;
int N = 10; myqueue[1] = myqueue[0];
for (i = 0; i < N; i++) myqueue [0] = O0;

for (j = 0; j < N; j++) {
C[i][j] *= beta;
for (k = 0; k < N; k++)
C[i][j] += A[i]l[k] * B[k][]j] * alpha;
}

#pragma pocc-region-end

$> ./bin/pocc -t --tc-orig-file dgemme-original.c --tc-trans-file
dgemm-transformed.c --tc-liveout-vars "A,B,C,alpha,beta” --quiet

[PoCC] Verify equivalence of programs by abstract interpretation.

[PoCC] YES => Programs dgemm-original.c and dgemm-
transformed.c are equivalent.

}

}

C[i + 2*P][]J] *= myqueue[queue_ first];

int k = 0;

if (k >= 0)

k+= 1;

do {
int tmp jval =
tmp jval -= N;
tmp jval--;
float tmp mul =
C[i][3j] += tmp mul * alpha;
k++;

j+ 1+ N;

}
while (k-1 < N);
// correct:

A[i] [k-1] * B[k-1][tmp_jval];

confusing bound = (j+1 < N) && confusing bound;

// Off-by-1:
// confusing bound = (j < N);

#pragma pocc-region-end
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Another Example of Equivalence: Hardware Description

Example: convolution

N =512;
(inty=0;y<N;y++)
(int x=0; x < N; x++)
(intr=0;r<3;r++)
(intc=0;c<3;ct++)

out[x, y] += image[x+r, y+c] * kernellr, c]

Algorithm#1 N

Compute Customization

Algorithm#2

Data Type Customization

Memory Customization

Algorithm#3

Research Alliance, 2020-2023

Entangled hardware
customization and algorithm
Less portable
Less maintainable
Less productive

Corresponding C code (transformed)

#pragma HLS array_partition variable=filter dim=0
N=512; M=32;
his::LineBuffer<3, N, ap_fixed<8,4> > buf;
hls::Window<3, 3, ap_fixed<8,4> > window;
(inty=0;y<N;y++) {
(int xo = 0; xo < N/M; xo++) {
#pragma HLS pipeline lI=1
(int xi = 0; xi < M; xi++) {

int x = x0*M + xi; Custom data type
ap_fixed<8,4> acc = 0; (Quantization)
ap_fixed<8,4> in = imagel[y][x];

buf.shift_up(x); Custom memory
buf.insert_top(in, x); (Reuse buffers)

window.shift_left();
(intr=0;r<2;r++)
window.insert(buf.getval(r,x), i, 2);
window.insert(in, 2, 2);
(y>=2&&x>=2){
(intr=0;r<3;r+4) {
(intc=0; c<3; c++) {
acc += window.getval(r,c) * kernel[r][c];
1
out[y-2][x-2] = acc;
333

Two programs proved equivalent!
L.-N. Pouchet and Z. Zhang. Verifying Domain-Specific Optimization in HeteroCL using Polyhedral Analysis. Intel Strategic
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Building a System for Automatic Program Equivalence

+ When interpretation succeeds, our system can prove equivalence of programs
(original and transformed) where:

= Any iteration reordering transformation (eg, loop transformations, but way beyond this
class also) was applied

Loop permutation, loop tiling, fusion, distribution, etc.
= “Any” control-flow implementation of the program

while loops, for loops, recursive calls, obfuscated induction variables, etc.

= “Any” local storage implementation of the program
Scalarization, array expansion, local buffer insertion, etc.

+ When interpretation fails, it cannot prove anything

= Parametric loop bounds are not handled, we typically target a tile in a tiled code.
Handling parametric loop bounds may be done in some cases, e.g.:

Verdoolaege, Sven, Gerda Janssens, and Maurice Bruynooghe. "Equivalence checking of static affine programs using
widening to handle recurrences." ACM Transactions on Programming Languages and Systems (TOPLAS) 34, no. 3 (2012)
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Conclusion

» Polyhedral Compilation is more than Affine Scheduling

» |tis about representing programs to extract detailed semantics, but also representing data,
and machine, accurately

» Scheduling for performance remains a key problem, contributions needed!
» Any program/data made of integer tuples can be represented as a union of
polyhedra
> ... because a single point is a polyhedron. But efficiency/usefulness is unlikely
> Need for effective algorithms to compress these points into polyhedral

» Hardware designs are often the result of affine transformations

» Can represent some hardware optimization in the polyhedral model, enabling quick
verification and correctness checking

» When the algorithm implemented is also polyhedral in nature, complex program equivalence
can be proved, and properties transferred across implementations

» There is so much more | have not covered, go read the literature now ©
Thank you ©
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