
Building a Static HLS Pass with FPL
Kunwar Shaanjeet Singh

Grover
IIIT Hyderabad

kunwar.shaanjeet@students.iiit.ac.in

Arjun Pitchanathan
University of Edinburgh

arjun.pitchanathan@ed.ac.uk

Julian Oppermann
TU Darmstadt

oppermann@esa.tu-darmstadt.de

Mike Urbach
SiFive

mike.urbach@sifive.com

Tobias Grosser
University of Edinburgh
tobias.grosser@ed.ac.uk

Abstract
Compiler infrastructure like LLVM/MLIR provides modular
and extensible building blocks for reuse in compiler devel-
opment. The previously existing polyhedral building blocks
depended on external solvers. Due to the perceived cost of
depending on such external tools, these building blocks were
used only in fully polyhedral pipelines. For hybrid or one-off
use cases, selective reimplementation has been preferred
over taking the dependency; several reimplementations of
sub-polyhedral solvers now exist in the ecosystem. With the
introduction of a fast Presburger library (FPL) in MLIR, many
core polyhedral building blocks are now available in-tree.
As a result, it is now possible to use polyhedral techniques
within the MLIR-based CIRCT project. Using the develop-
ment of a static high-level synthesis (HLS) pass in CIRCT
as a case study, we show the impact of FPL’s availability
upstream.

1 Introduction
Traditional full-scale polyhedral loop optimization depends
on solving large-scale integer linear programming (ILP) prob-
lems. While this has been a successful path, there is a ten-
dency for polyhedral compilation to be seen as an all or
nothing approach that necessarily involves polyhedral loop
scheduling. Recent work in polyhedral compilation has ex-
plored mixing AST-based techniques with polyhedral tech-
niques [4, 6, 11]. Rather than deferring to the polyhedral
model for the entire optimization pipeline, the Presburger
solver is used to compute specific properties of the code in a
way that scales better to larger programs; two examples are
static analysis [7] and cache performance modelling [5].

Polyhedral compilation in the LLVM/MLIR ecosystem has
traditionally depended on external solvers, but there is a
high perceived cost of taking on this dependency. As a result,
only full-scale polyhedral loop optimizers have used these
external tools. For more minor one-off use cases, the commu-
nity has reimplemented parts of solvers in-tree and has done
so several times in different modules of LLVM. However,
implementing a full Presburger library involves a significant
amount of effort, so these applications have made do with
partial reimplementations that support only sub-polyhedral
queries.

Hardware Constraints

Dependence Analysis

Simplex Solver

Affine

Pipeline

static HLS

+FPL

Figure 1. FPL faciliates the design of a static HLS pass for
MLIR by facilitating the computation of memory depen-
dences and solving optimization problems as they arise when
mapping loops to a hardware pipeline.

The upstreaming of FPL introduced, for the first time, a
full Presburger solver in LLVM/MLIR. We show the impact
of FPL with a case study from the MLIR-based CIRCT project
by describing how a critical part of high-level synthesis flows
leverages FPL in multiple ways.

2 The MLIR compiler framework
MLIR [6] is a compiler framework in the LLVM ecosystem
that provides building blocks to create, analyze, and trans-
form domain-specific intermediate representations (IRs), thus
facilitating the development of domain-specific compilers.
The Affine dialect, representing affine loops, is one of

the core dialects in MLIR and represents static control parts.
Listing 1 shows an example of a program in the Affine dialect.
MLIR also provides an in-tree Presburger library, FPL [9],
and several utilities for interaction between FPL and the
Affine dialect for mathematical analysis.

The CIRCT project is a collection of domain-specific IRs
and compiler passes focused on hardware design. It is built
on the MLIR framework and supports several hardware com-
piler flows, including multiple forms of high-level synthesis
(HLS). HLS transforms an untimed, higher-level hardware
description into a cycle-level description. Notably, CIRCT
provides the Pipeline dialect, which captures timed hardware
pipeline descriptions.
Our case study follows the development of a static HLS

flow that transforms a program in theAffine dialect to CIRCT’s
Pipeline dialect, which is then further lowered into CIRCT’s

IMPACT’23, Toulouse, France, Kunwar Shaanjeet Singh Grover, Arjun Pitchanathan, Julian Oppermann, Mike Urbach, and Tobias Grosser

affine.for %i = 2 to 64 iter_args(%arg3 = 0) {
S0: %1 = affine.load %mem[%i]
S1: %3 = arith.muli %1, %arg3
S2: %2 = affine.load %mem[%i - 2]
S3: %4 = arith.addi %3, %2
S4: affine.store %4, %mem[%i]
S5: affine.yield %4

}

Listing 1. An example program in the Affine dialect.

low-level dialects. This flow applies polyhedral analysis in a
modular and domain-specific way, to perform dependence
analysis and scheduling. Since CIRCT is MLIR-based, it can
leverage FPL for this analysis.

3 Lowering Affine to Pipeline
We perform HLS for Affine programs by lowering a high-
level program to the Affine dialect via an MLIR frontend and
then using CIRCT’s AffineToPipeline pass [12] to further
lower this into the Pipeline dialect, which is then converted
to lower level CIRCT dialects. The AffineToPipeline pass con-
stitutes a critical part of an HLS flow that takes high-level
machine learning programs in TensorFlow [1] or PyTorch [8]
down to low-level hardware descriptions in System Verilog.
We use the development of this pass as a case study to ex-
amine how FPL enables the use of polyhedral techniques in
a production-focused compiler like CIRCT.
The AfffineToPipeline pass converts a sequentially de-

scribed program in the Affine dialect to a statically scheduled
pipelined program. This requires scheduling the operations
to a pipeline in such a way that the program semantics are
preserved. To ensure this, it computes dependences between
operations in the program, which constrain the relative or-
derings of these operations. For example, in Listing 1, 𝑆2
depends on 𝑆4, as shown in Figure 2. We use polyhedral
memory dependence analysis to detect such dependences.
Finally, the pass finds an optimal schedule of the opera-

tions and outputs a statically scheduled pipeline. Only valid
schedules are considered; valid schedules are those that re-
spect the dependences as well as hardware constraints. Fig-
ure 3 shows the pipeline generated by the running example.

3.1 Dependence Analysis
The lowering must preserve both structural and memory

dependences. Structural dependences are those due to ex-
plicit data flow via register dependences in the program. For
example, in Listing 1, 𝑆3 has a structural dependency on 𝑆1
and 𝑆2, since it uses the results of those statements. Memory
dependences, on the other hand, occur when an operation
reads some memory written by another operation. For ex-
ample, in Listing 1 the value written by 𝑆4 is read by 𝑆2 in a
future iteration of the loop.

load
%i-2

load
%i

muli

1

addi

store
%i

yield

S0

S1

S2

S3

S4

S5

%iS4 = %iS2-2

Figure 2. The cyclic scheduling problem corresponding to
Listing 1, assuming a latency of 1 for load/store operations,
3 for the multiplication, and 0 for the addition. The arrows
represent the dependences between operations. The dashed
arrows represent memory dependences. The backedge 𝑆3 to
𝑆1 has a distance of 1, meaning the multiplication depends on
the result of the previous’s iteration’s addition. Analogously,
the memory dependence 𝑆4 to 𝑆2 has a distance of 2.

While structural dependences are immediately clear from
the IR, memory dependence analysis is more involved. To
obtain precise results, polyhedral dependence analysis is
required. We use the implementation provided by MLIR,
which is based on FPL. The Affine dialect assumes sequential
execution of statements, whereas we also need to consider
statements possibly being reodered. Therefore, we extend
the dependences to take this into account.

3.2 Scheduling
CIRCT’s static scheduling infrastructure [2] provides an ex-
tensible scheduling model and a growing library of schedul-
ing algorithms for typical operator scheduling applications.
CIRCT provides multiple scheduling models for different
use-cases. In this paper we will focus on the CyclicProblem
model, which considers constraints related to the pipelined
execution of loops in the absence of resource constraints.
The underlying assumption is that every iteration begins a
fixed number of time steps after the previous iteration was
started. This interval is called the initiation interval (II). In
order to maximize performance, we find the smallest valid
II.
The model assigns a fixed execution time for each state-

ment in the loop body as an offset relative to the start of the
iteration. An II is valid iff we can assign these start times such
that for every dependency 𝑆 → 𝑇 between two statements,
𝑇 starts executing after 𝑆 completes. This can be written as

Building a Static HLS Pass with FPL IMPACT’23, Toulouse, France,

 %1 = memref.load %mem[%i]
 %2 = memref.load %mem[%i - 2]

 %3 = arith.muli %1, %arg2

 %4 = arith.addi %3, %2
 memref.store %4, %mem[%i]

t = 0

t = 1

t = 4

%4→%arg2

II = 2

%4→result

Figure 3. A scheduled pipeline output by the Affine-
ToPipeline pass.

a linear constraint

startTime𝑆 + latency𝑆 ≤ startTime𝑇 + depDist(𝑆 → 𝑇) · 𝐼 𝐼
where latency𝑆 is the latency of the instruction executed at
𝑆 , and depDist(𝑆 → 𝑇) is the dependence distance between
𝑆 and 𝑇 . For example, in Figure 2, the accessed memory
locations cause 𝑆4 to depend on the completion of the 𝑆2
instance two iterations earlier. Note that the start times and
II have to be integers, and the constraints and objective
are linear, so we can find the optimal II by integer linear
programming. Figure 3 shows a pipeline generated for the
running example using this framework.

The current reference scheduler for this model implements
the approach proposed by de Dinechin [3]. This scheduler
uses a tailored but unoptimized implementation of the para-
metric dual simplex algorithm. We added a new implemen-
tation for scheduling using the simplex solver available in
FPL. This implementation is currently being upstreamed to
CIRCT1.

Our implementation uses FPL’s rational lexmin solver. We
encode the problem variables as a vector: (II, objectives, start-
Times) and find the lexicographically minimum vector that
satisfies the problem constraints. Due to how the variables
are ordered, the II is minimized first, and then the objectives.
If the II is non-integral in the result, we add a constraint on
the II to be the ceiling of the solved value and solve again.
The start times of the operations are guaranteed to be integer
from how the scheduling model creates the constraints.
There are several benefits to the newer implementation.

Since FPL is available in MLIR, there is no extra cost of
external dependences. Also, there are plans to vectorize FPL
upstream, which would improve our performance [10].
FPL has support for more complex solvers, including in-

teger linear programming and parameteric integer linear
programming, which are currently only available via an ex-
ternal library dependency to the scheduler implementations
1https://github.com/llvm/circt/pull/4517

in CIRCT. Thus, the porting to FPL opens up several possi-
bilities for the scheduling framework, ranging from more
complex objectives to better analysis without having an ex-
ternal dependency. For example, the problem constraints can
be relaxed to allow for rational solutions and solved using
the ILP solver. The problems can also be posed parameteri-
cally to obtain a solution parameteric in the start time of a
subset of operations using the Parameteric ILP solver. For
example, solving the problem in Figure 2 with the start time
of 𝑆1 as a parameter allows us to explore the solution space,
parameterized by the start time of 𝑆1.

4 Conclusion
FPL enables the use of polyhedral techniques in the production-
quality LLVM/MLIR compiler framework. This makes poly-
hedral compilationmore accessible to the broader LLVM/MLIR
community, as we saw in the case study of a static HLS pass
for CIRCT. The availability of FPL upstream makes it eas-
ier to experiment with smaller and more targeted uses of
polyhedral techniques.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015). https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] CIRCT. [n. d.]. Static scheduling infrastructure. ([n. d.]). https:
//circt.llvm.org/docs/Scheduling/.

[3] Benoît Dupont de Dinechin. 1994. Simplex Scheduling: More than
Lifetime-Sensitive Instruction Scheduling. PRISM 1994.22 (1994).

[4] Roman Gareev, Tobias Grosser, and Michael Kruse. 2018. High-
Performance Generalized Tensor Operations: A Compiler-Oriented
Approach. ACM Trans. Archit. Code Optim. 15, 3, Article 34 (sep 2018),
27 pages. https://doi.org/10.1145/3235029

[5] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler.
2020. A Fast Analytical Model of Fully Associative Caches. arXiv
e-prints, Article arXiv:2001.01653 (Jan. 2020), arXiv:2001.01653 pages.
arXiv:cs.PF/2001.01653

[6] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler
Infrastructure for Domain Specific Computation. In IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, CGO
2021, Seoul, South Korea, February 27 - March 3, 2021, Jae W. Lee,
Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, 2–14. https://doi.org/
10.1109/CGO51591.2021.9370308

[7] Kedar S. Namjoshi and Nimit Singhania. 2016. Loopy: Programmable
and Formally Verified Loop Transformations. In Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8-10,
2016, Proceedings (Lecture Notes in Computer Science), Xavier Rival
(Ed.), Vol. 9837. Springer, 383–402. https://doi.org/10.1007/978-3-662-
53413-7_19

https://www.tensorflow.org/
https://circt.llvm.org/docs/Scheduling/
https://circt.llvm.org/docs/Scheduling/
https://doi.org/10.1145/3235029
https://arxiv.org/abs/cs.PF/2001.01653
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1007/978-3-662-53413-7_19
https://doi.org/10.1007/978-3-662-53413-7_19

IMPACT’23, Toulouse, France, Kunwar Shaanjeet Singh Grover, Arjun Pitchanathan, Julian Oppermann, Mike Urbach, and Tobias Grosser

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[9] Arjun Pitchanathan, Kunwar Shaanjeet Singh Grover, Michel Weber,
and Tobias Grosser. 2022. Bringing Presburger Arithmetic to MLIR
with FPL. In Proceedings of the 12th International Workshop on Polyhe-
dral Compilation Techniques. Budapest, Hungary.

[10] Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoefler,
and Tobias Grosser. 2021. FPL: Fast Presburger Arithmetic through
Transprecision. Proc. ACM Program. Lang. 5, OOPSLA, Article 162 (oct
2021), 26 pages. https://doi.org/10.1145/3485539

[11] Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. 2014. Oil and
Water Can Mix: An Integration of Polyhedral and AST-Based Trans-
formations. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14).
IEEE Press, 287–298. https://doi.org/10.1109/SC.2014.29

[12] Mike Urbach and Morten Borup Petersen. 2022. HLS from PyTorch to
System Verilog with MLIR and CIRCT. latte’22 (2022).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3485539
https://doi.org/10.1109/SC.2014.29

	Abstract
	1 Introduction
	2 The MLIR compiler framework
	3 Lowering Affine to Pipeline
	3.1 Dependence Analysis
	3.2 Scheduling

	4 Conclusion
	References

