
Superloop Scheduling: Loop Optimization via
Direct Statement Instance Reordering

Cedric Bastoul
University of Strasbourg

France

Alain Ketterlin
University of Strasbourg and Inria

France

Vincent Loechner
University of Strasbourg and Inria

France

Iteration 
space 

bounding

Statement 
instance 

reordering

Full loop 
unrolling

Nested loop 
recognition

Affine 
scheduling 

reconstruction

Code 
generationInput code Optimized codeLegality 

check

Legal

Input code
Illegal

Figure 1. Superloop Scheduling Processing Flow

Abstract
Loop optimization in the polyhedral model is supported by
the expressiveness of affine scheduling functions to model
statement iteration ordering. Discovering the best sched-
uling remains a grand challenge reinforced by the need to
build affine functions. Automatic techniques based on solv-
ing systems of affine constraints and/or composing affine
scheduling primitives are limited either by the affine model-
ing or by their primitive set.
In this paper we propose a radically different approach

to affine scheduling construction called superloop sched-
uling. We leverage basic-block-level instruction reordering
techniques and the capacity to agglomerate statement in-
stances into "super" loops offered by modern trace analy-
sis tools. This approach enables deepest possible reasoning
about instruction ordering and a global approach to loop
optimization, e.g., where tiling and intra-tile optimization is
considered along with other transformations.

1 Introduction
Superloop scheduling enables a number of breakthroughs:

• we demonstrate that loop-level transformations, even
applied to parametric loops, can be derived by reason-
ing on a subset of their instruction instances;

• we show how affine scheduling can be driven and built
by non-affine optimization techniques and abstrac-
tions, where regularity comes from target architecture
properties and degrees of freedom rather than as a
limitation of the scheduling algorithm;

• we reconcile loop-level and instruction-level optimiza-
tion, enabling advanced approaches such as superword
level parallelism [7] to impact whole loops;

• we present an approach where tiling is enabled within
the global optimization space rather than being ad-
dressed separately, e.g., after tilable loops have been
extracted as in Pluto-like techniques [3].

IMPACT 2023, January 16, 2023 , Toulouse, France
.

2 Superloop Scheduling
Superloop scheduling is a 7-step loop optimization process
outlined in Fig. 1 and illustrated using matrix multiplication
in Fig. 2. It takes as input a static-control code and provides
as output an optimized version if a semantically correct
scheduling is found. The successive steps are:

(a) Iteration space bounding limits the number of itera-
tions and replaces the parameters with known values. Values
should be chosen to expose optimization opportunities, keep
next steps tractable and enable later parameter recovery.

(b) Full loop unrolling transforms the code to a sequence
of statement instances as shown for matrix multiplication
(with all parameters set to 2) in Fig. 2b.

(c) Statement instance reordering transforms the un-
rolled code via direct reasoning and manipulation of the
statement instances. Trivial parallel block extraction and
internal reordering to enable vectorization is possible and
would result in the new ordering in Fig. 2c for our example.
Elaborate basic block level techniques such as superword
level parallelisation [7] may be leveraged as well to enable
possibly unprecedented loop vectorization opportunities. Re-
ordering policies should include constraints or mechanisms
to favor some regularity when possible.
(d) Nested loop recognition (NLR) recovers loops in

a fast and incremental way [6]. It takes as input a trace
comprised of tagged vectors of numbers, as shown in the
comments in Fig. 2b and Fig. 2c. On detecting a linear pro-
gression over blocks of input vectors, it builds a loop with a
single instance of the block, where raw numbers have been
replaced with affine functions of the loop counter. Blocks of
such loops are then themselves subjected to linear interpola-
tion when possible. NLR is thus able to recover arbitrarily
deep and/or complex affine loop nests from their traces, an
example of which is shown in Fig. 2d for the trace in Fig. 2c.
(e) Affine scheduling reconstruction builds an affine

scheduling expression from the loop structure and the map-
ping information present in NLR’s output. It may also at-
tempt to recover parameters, e.g. through pattern-matching.

1



IMPACT 2023, January 16, 2023 , Toulouse, France Cedric Bastoul, Alain Ketterlin, and Vincent Loechner

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) {
C[i][j] = 0.; // S0
for (k = 0; k < P; k++)
C[i][j] += A[i][k] * B[k][j]; // S1

}

(a) Input Code
C[0][0] = 0; // S0 0 0
C[0][0] += A[0][0] * B[0][0]; // S1 0 0 0
C[0][0] += A[0][1] * B[1][0]; // S1 0 0 1
C[0][1] = 0; // S0 0 1
C[0][1] += A[0][0] * B[0][1]; // S1 0 1 0
C[0][1] += A[0][1] * B[1][1]; // S1 0 1 1
C[1][0] = 0; // S0 1 0
C[1][0] += A[1][0] * B[0][0]; // S1 1 0 0
C[1][0] += A[1][1] * B[1][0]; // S1 1 0 1
C[1][1] = 0; // S0 1 1
C[1][1] += A[1][0] * B[0][1]; // S1 1 1 0
C[1][1] += A[1][1] * B[1][1]; // S1 1 1 1

(b) Full Unrolling (M = N = P = 2)
C[0][0] = 0; // S0 0 0
C[0][1] = 0; // S0 0 1
C[0][0] += A[0][0] * B[0][0]; // S1 0 0 0
C[0][1] += A[0][0] * B[0][1]; // S1 0 1 0
C[0][0] += A[0][1] * B[1][0]; // S1 0 0 1
C[0][1] += A[0][1] * B[1][1]; // S1 0 1 1
C[1][0] = 0; // S0 1 0
C[1][1] = 0; // S0 1 1
C[1][0] += A[1][0] * B[0][0]; // S1 1 0 0
C[1][1] += A[1][0] * B[0][1]; // S1 1 1 0
C[1][0] += A[1][1] * B[1][0]; // S1 1 0 1
C[1][1] += A[1][1] * B[1][1]; // S1 1 1 1

(c) Optimized Statement Instance Order
for i0 = 0 to 1
for i1 = 0 to 1

val S0 , 1*i0 , 1*i1
for i1 = 0 to 1
for i2 = 0 to 1
val S1 , 1*i0 , 1*i2 , 1*i1

(d) Loops Recovered from Trace by NLR
S0(i, j) = (i, 0, j)
S1(i, j, k) = (i, 1, k, j)

(e) Extracted Scheduling

#pragma omp parallel for private(j, k)
for (i = 0; i < M; i++) {
#pragma vector always
for (j = 0; j < N; j++)
C[i][j] = 0.; // S0

for (k = 0; k < P; k++)
#pragma vector always
for (j = 0; j < N; j++)

C[i][j] += A[i][k] * B[k][j]; // S1
}

(g) Generated Code

Figure 2. Superloop Scheduling of Matrix Multiplication

In our example, the scheduling extracted from NLR’s output
is shown in Fig. 2e. In this case the loop structure contributes
the second scheduling dimension (separated i1 loops) while
the mapping expressions contribute the others.

(f) Legality check verifies the scheduling correctness on
the original input code using, e.g., the Candl tool1, and may
assess its properties such as parallel and vector dimensions.
1https://github.com/periscop/candl

(g) Code generation produces the optimized code that
implements the scheduling using, e.g., CLooG [2]. The result
for our example is shown in Fig. 2g, demonstrating that op-
timization of parametric loops can be done via reordering
of a subset of their statement instances. Notably, the opti-
mization is different than both Feautrier [4] (which favors k,
i, j version with internal parallelism) and Pluto without
tiling [3] (which splits S0 and S1 in two loop nests to enable
i, k, j order for S1, or uses less CPU-efficient i, j, k).

3 Related Work
We may identify two families of techniques for affine sched-
uling construction. The first family computes the scheduling
by solving systems of affine constraints. This approach has
been proposed by Feautrier in his seminal work [4] and has
set the ground for many later techniques, notably the Pluto
algorithm designed by Bondhugula et al. to extract outermost
parallelism, data locality and tilable loops [3], and a number
of variants that differ in the way the affine constraint sys-
tem is built. The second family builds the affine scheduling
by composition of basic primitives, as suggested by Kelly
and Pugh [5] and improved by many authors, e.g., Bagh-
dadi et al. who propose a rich scheduling language for the
Tiramisu framework [1]. Differently, we present the seed for
a new family that builds affine scheduling from finest-grain
statement instance reordering and loop reconstruction.

4 Conclusion
In this paper we present a radically new scheduling canvas.
We do not expose all details but rather present and demon-
strate a new route to loop optimization for the community
to explore. We strongly believe it has a significant potential,
in particular to exploit custom vector instructions.

References
[1] R. Baghdadi, J. Ray, M. Ben Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,

P. Suriana, S. Kamil, and S. Amarasinghe. 2019. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In IEEE/ACM Intl.
Symp. on Code Generation and Optimization, CGO, Washington, USA.

[2] C. Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier
Than You Think. In PACT’13 IEEE International Conference on Parallel
Architecture and Compilation Techniques. Juan-les-Pins, France, 7–16.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 2008.
A practical automatic polyhedral parallelizer and locality optimizer.
In Proc. of the 2008 ACM Conf. on Programming language design and
implementation (PLDI’08). Tucson, AZ, USA.

[4] P. Feautrier. 1992. Some efficient solutions to the affine scheduling
problem, part II: multidimensional time. International Journal of Parallel
Programming 21, 6 (Dec. 1992), 389–420.

[5] W. Kelly and W. Pugh. 1993. A framework for unifying reordering trans-
formations. Technical Report UMIACS-TR-92-126.1. University of Mary-
land Institute for Advanced Computer Studies.

[6] A. Ketterlin and P. Clauss. 2008. Prediction and trace compression of
data access addresses through nested loop recognition. In Sixth Intl.
Symp. on Code Generation and Optimization, CGO, Boston, USA.

[7] C. Mendis and S. Amarasinghe. 2018. goSLP: globally optimized su-
perword level parallelism framework. Proc. ACM Program. Lang. 2,
OOPSLA (2018), 110:1–110:28.

2

https://github.com/periscop/candl

	Abstract
	1 Introduction
	2 Superloop Scheduling
	3 Related Work
	4 Conclusion
	References

