
Kernel Merging for Throughput-Oriented Accelerator
Generation

Nicolas Derumigny
Colorado State University
Fort Collins, Colorado, USA

Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG

38000 Grenoble, France

Louis-Noël Pouchet
Colorado State University
Fort Collins, Colorado, USA

Fabrice Rastello
Univ. Grenoble Alpes, Inria, CNRS,

Grenoble INP, LIG
38000 Grenoble, France

Abstract
Progresses in High-Level Synthesis have enabled program-
mers to quickly explore design spaces for high-performance
accelerators (e.g. to explore trade-offs between coarse-grain
and fine-grain hardware parallelism). However, resource
sharing opportunities are often under-exploited byHLS tools,
especially in coarse-grain pipelined designs.
In this work, we target the issue of generating multi-

purpose yet efficient pipelined accelerators, demonstrating
our approach on sequences of dense linear algebra computa-
tions. We develop polyhedral program analysis to generate
the accelerator structure, as well as their profitability crite-
ria. In particular, we leverage cross-loop compute unit reuse
to create coarse-grain pipelined designs suited for batched
execution of sequences of operations.

1 Introduction
The accessibility of accelerator design has significantly in-
creased, following the constant improvement in quality and
ease of use of the hardware/software design stack (e.g., with
compilers for High-Level Synthesis such as the Xilinx Merlin
compiler [6, 28], with the HLS tools themselves [14, 31], etc.).
Designers can now quickly generate customized designs for
a particular application, or possibly (a set of) kernels within
it which are candidate for profitable acceleration [7, 33].
However, updating the functionalities being accelerated can
be difficult: at best, it requires uploading a new bitstream
on an FPGA, and at worst it is not possible afterwards for
ASIC-based designs.

Flexible accelerators, e.g., using overlays [19] or VTA [22],
is a response to the reprogrammability issue of specialized
accelerators, attempting to bring the best of both worlds:
(most of) the performance benefits of hardware specializa-
tion, whilemaintaining some generality of computations that
can be accelerated. In this work, we make a simple yet prag-
matic observation: it is possible to easily build a semi-generic
accelerator by restricting the functionalities addressed to those
amenable to polyhedral modeling, that is, each functionality
supported (e.g., GEMM, AXPY, etc.) by the accelerator can
be exactly modeled as a polyhedral program, where the loop

IMPACT’23, January 16, 2023, Toulouse, France
.

bounds and array access functions are affine expressions
made of the surrounding loop iterators.
Specifically, we demonstrate how kernel merging can be

efficiently implemented to create a multi-functionality ac-
celerator with high throughput and low area, when these
kernels are polyhedral programs, leveraging polyhedral code
generation algorithms such as CLooG [2]. We show that per-
formance/area profitability criteria for kernels to be candi-
date formerging in a common accelerator can be expressed as
properties of the kernels’ polyhedral representation, specifi-
cally focusing on a rich mix of dense linear algebra kernels.
In particular, we demonstrate how to create a generic ac-
celerator accepting arbitrary linear algebra expressions as
input (on scalars, vectors, matrices), by merging elementary
polyhedral kernels for each functionality, and enabling batch-
processing of expressions automatically. When computing
a correlation matrix for example, this generic accelerator
can achieve nearly the same throughput as a specialized
fixed-function accelerator, and provides gains in terms of
performance per operator usage on batched workloads by
enabling more advanced resource sharing via coarse-grain
pipelining compared to specialized accelerators. We make
the following contributions:
• We present a system to build a throughput-oriented, multi-
functionality accelerator from a set of input polyhedral
kernels, each describing some elementary functionality to
be supported.

• Wedevelop polyhedral-based analysis and transformations
to merge polyhedral kernels, and easily expose hardware
modules that are candidate for replication and sharing.

• We conduct extensive experimental evaluation, on numer-
ous dense linear algebra workloads, of two generic acceler-
ators that are fully implemented and measured in-situ on
a Xilinx ZCU104 board, demonstrating their competitive-
ness in throughput per area compared to fixed-function
accelerators optimized for throughput or resource sharing,
as well as accelerators generated by ScaleHLS [33].
The paper is organized as follows. Sec. 2 motivates the

problem and outline our proposed solution for semi-generic
accelerator design. Sec. 3 develop polyhedral analyses for the
accelerator design, itself summarized in Sec. 4. Experimental

1

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

results are presented in Sec. 5, before discussing related work,
limitations, and concluding.

2 Background and Motivation
We illustrate the gains of a semi-generic accelerator on a
simple example: a workload composed of 3 successive cor-
relation matrix (CORR) computations, a widely used data
science calculus. First, we show how coarse grain pipelining
may help speed up batched computation of CENTER, a sub-
problem of CORR, them we show the design choices at stake
when crafting a semi-generic accelerator capable of efficient
execution of both problems.

2.1 Example: Data Centering

1 L1: for (j = 0; j < N ; j++)
2 mean[j] = 0.0;
3 L2: for (i = 0; i < N ; i++)
4 for (j = 0; j < N ; j++)
5 mean[j] += data[i][j];
6 L3: for (j = 0; j < N ; j++)
7 mean[j] /= N;
8 L4: for (i = 0; i < N ; i++)
9 for (j = 0; j < N; j++)
10 data[i][j] -= mean[j];

Figure 1. CENTER naive implementation

Let us consider the program realising the following matrix
transformation, corresponding to data centering:

𝑋𝐶𝑖 𝑗 = 𝑋𝑖 𝑗 − (
∑︁
𝑖′
𝑋𝑖′ 𝑗)/𝑛

One naive implementation of this computation is given in
Fig. 1 uses four loop nests with different operators:
L1: Initialisation of the mean vector (no operator)
L2: Column-wise accumulation of the matrix coefficients

(+)
L3: Division of the previous accumulation by 𝑁 (/)
L4: Column-wise subtraction of the mean to the input

matrix (−)
These loops forms what we call functionalities or kernel,

which are defined as affine subparts of the input program
represented using single loop nest. Under the resource shar-
ing point of view, some of this functionalities can rely on the
same physical compute unit, that may or may not be shared
across kernels. For example, operator sharing can happen
between the addition and subtraction part, as it boils down to
a preprocessing of a single bitflip on FPGA per FP16-encoded
data. In the rest of the paper, we note this operator ±.

The dispatch of kernels over functional units that executes
them is fundamental for the generation of efficient accelera-
tors. For example, the usual coarse-grain replication [13, 17]
of a single high-performance design will fail to provide the
best throughput-per-area on a sequence of CENTER. How-
ever, an accelerator using 2 ± units can benefit from the low

usage of / to share the compute unit inside independent
problems of a batch; an example of its implementation is
given in Fig. 1.
This sharing is achieve through retiming [27] of the ker-

nels: by spreading problems across time, we avoid simul-
taneous usage of the / operator, enabling further resource
sharing. The transformed code is reported on Fig. 2. In the
HLS framework [30], this retiming must be followed by a
loop merging to ensure operator reuse; a sequence of trans-
formations that is equivalent to the creation of a coarse-grain
pipeline [35], each stage of the pipeline executing one kernel.

1 for(id=0; id<BATCH_SIZE +4; id++)
2 for (i = 0; i < N ; i++)
3 for (j = 0; j < N ; j++) {
4 if (id < BATCH_SIZE and i==0)
5 mean[id][j] = 0.0;
6 if (id < BATCH_SIZE +1 and id >=1)
7 mean[id -1][j] += data[id -1][i][j];
8 if (id < BATCH_SIZE +2 and id >=2 and i==0)
9 mean[id -2][j] /= N;
10 if (id >= 3 and i==0)
11 data[id -3][i][j] -= mean[id -3][j];
12 }

Figure 2. CENTER Coarse-grain pipelined implementation

However, this merging is not trivial when it comes to
iteration spaces: L1 and L3 iterate over a space of size 𝑁 ,
while L2 and L3 iterates over a space of size 𝑁 2, hence the
need of conditions on the loop iterator (here 𝑖) to ensure the
correct number of execution of the loops bodies of smaller
iteration space. As a downside, this means that the divider
unit is idle at least (𝑁 − 1)/𝑁 fraction of the time during the
whole computation.

More generally, we can quantify the quality of the design
by the mean occupancy of its units, that is, the mean occu-
pancy over all units, weighted by their replication factor in
the final design. For a fixed input graph of computation, the
more the units are used, the lesser the average execution time
will be. Occupancy as well as area units (expressed as DSP
usage) is reported in Tbl. 1 for a coarse-grained pipelined de-
sign realising 10-batched execution of CENTER, compared to
a dedicated design either replicated 10 times (CENTERx10)
or 10 successive calls to the same IP (10xCENTER); CGP-
CENTER-inf denoting the maximum achievable throughput,
corresponding to an infinite number of successive indepen-
dent CENTER instances.
While, as expected, the occupation of the divisor unit

progressed by 44.6% (from 0,76% to 1.1 %), occupancy of the
± unit dropped, which leads to a lower total occupancy. This
effect is due to the initial filling and emptying of the pipeline:
due to the merging, each unit is idle for 3 ·𝑁 2 cycles waiting
for the other stage to complete, as demonstrated by the if
guards over id in the final code.

2

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Benchmark Cycles/Pb Operators DSP Occupancy Avg. Occ.
CENTER 8343 1±, 1/ 2 ±: 98.2% /: 0.76% 49.5%

CENTERx10 834 10±, 10/ 20 ±: 98.2% /: 0.76% 49.5%
10xCENTER 8343 1±, 1/ 2 ±: 98.2% /: 0.76% 49.5%

CGP-CENTERx10 5744 2±, 1/ 4 ±: 71.3% /: 1,1 % 47.9%
CGP-CENTER-inf 4096 2±, 1/ 4 ±: 100% /: 1.56 % 50.8%

Table 1. Performance and area metric for coarse-grained
pipeline (CGP) vs coarse grained replication (CGR) of CEN-
TER accelerator (matrices of size 64×64, FP16 data type)

This example shows that even though theoretical gains
may be achieved by coarse-grain pipelining, the real-life
speedup is far from being always beneficial, as a large batch
ing factor is needed to compensate the initial and final sub-
optimal execution stage.

2.2 A More Complex Example: Correlation
Even though CENTER transformation is a part of the Cor-
relation computation, optimising a Correlation accelerator
to the sole computation of batched sequences of CENTER is
flawed as it does not take into account all required operators.
Indeed, Correlation can be decomposed into several com-
putations, corresponding to the loop nests a programmer
would write when designing an HLS accelerator:

• CENTER: 𝑋𝐶𝑖 𝑗 = 𝑋𝑖 𝑗 − (∑𝑖′ 𝑋𝑖′ 𝑗)/𝑛

• STDDEV: 𝜎𝑋𝑗 =

√︃∑
𝑖 (𝑋𝐶𝑖)2/𝑛

• CENTER-REDUCE: 𝑋𝐶𝑅𝑖 𝑗 =
(
𝑋𝑖 𝑗 −

∑
𝑖′ 𝑋𝑖′ 𝑗

)
/(𝜎𝑋𝑗 ·

√
𝑛)

• T-MATMULT: (𝑋𝐶𝑅)𝑡 · 𝑋𝐶𝑅

AssumingN is the size of the inputmatrix, only T-MATMULT
is computed in𝑂 (𝑁 3) operations, the others being computed
in 𝑂 (𝑁 2). Furthermore, T-MATMULT uses only additions
and multiplications, which means that the majority of the
time will be spent using these units on a dedicated accelera-
tor: sharing them will only lead to marginal gains. However,
CENTER, STDDEV and CENTER-REDUCE also require the
use of a division and a square root operator, which can be
shared between independent batched executions of Correla-
tion. This lead to significant area gains over the traditional
coarse-grain replication strategy by avoiding unnecessary
replicas of low-usage units, i.e. division and square root op-
erators, with minimal impact on overall latency.
This time, the kernel merging approach allows us to mix

both sharing and replication: we replicate the MATMULT
accelerator (composed of + and ∗) to keep minimal impact of
the sharing on the overall execution time, but we share the
/ and √· one. This lead to an increase of 17 % of the global
occupancy compared to a basic accelerator generated with
no intra-batch sharing, and an increase in execution time of
10.1 % while consuming two / and √· compute units less.

Furthermore, we enrich the accelerator with additional
data routing capability to become generic: depending on a
user command, any sub-computations of Correlation can
be computed. Area and execution time of the GA-CORR3

(generic accelerator capable of executing a 3-batched Cor-
relation) compared to a simple non batched, non-generic
accelerator is reported in Tbl. 2. As expected, the generic
batched accelerator is able to provide a reduction of 66.7 % of
the number of dividers and square root, no change in terms
of adders / multipliers, to the cost of a 10.1 % increase in exe-
cution time. This is best translated by the global occupation
metric, which jumped up by 16.96 %.

Benchmark Cycles Nb of + and ∗ Nb of
√· and / Global Occupancy

3xCORR 291221 3 3 46.78%
GA-CORR3 320603 3 1 63.74%

Table 2. Performance and area metric for coarse-grain
pipelined correlation and dedicated accelerator

3 Kernel Merging For Multi-Functionalities
Wenowpresent our approach to building amulti-functionality
accelerator. Intuitively, we start from a set of polyhedral
kernels, each computing a particular functionality. We aim
to capture what kind of workloads can be executed with
these functionalities available, and produce a throughput-
optimized accelerator implementation for those. In this work
we focus on compositions of dense linear algebra kernels,
although the techniques presented are not limited to this
particular class of computations.

3.1 Polyhedral kernel representation
In this work a kernel is a polyhedral program, that is a pro-
gram with a static control-flow (every branch taken in the
code can be exactly predicted at compile-time, independently
of the value of the data computed on). In addition, polyhe-
dral programs must be described exactly using only affine
functions of the surrounding loop iterator and parametric
constants. Three structures are used to describe such pro-
grams: for each statement 𝑆 , we define their iteration domain
D𝑆 , which describe the set of all dynamic execution of the
statement, each identified by the vector of values that the
surrounding loop iterators take when it executes (that is the
iteration vector ®𝑥𝑆); their access functions which maps every
iteration vector to the specific memory location(s) accessed
by that instance; and a scheduling function Θ𝑆 which maps
every iteration vector with a multidimensional timestamp,
such that in the transformed code, the iteration vectors are
executed in the lexicographic order of their timestamps [2, 9].
We illustrate with the two kernels below, where for the

sake of illustration we decomposed a classical GEMM kernel
into two kernels.
The iteration domain of Kernel1 is D𝐾1 : {[𝑖, 𝑗] : 0 ≤ 𝑖 <

𝑁 𝑎𝑛𝑑 0 ≤ 𝑗 < 𝑁 }, and Kernel2 is D𝐾2 : {[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 <

𝑁 𝑎𝑛𝑑 0 ≤ 𝑗 < 𝑁 𝑎𝑛𝑑 0 ≤ 𝑘 < 𝑁 }. The access functions
of K1 include 𝑅𝑒𝑎𝑑𝐾1 : {[𝑖, 𝑗] → 𝐶 [𝑥,𝑦] : 𝑥 = 𝑖 𝑎𝑛𝑑 𝑦 = 𝑗}
and K2 includes 𝑅𝑒𝑎𝑑𝐾2 : {[𝑖, 𝑗, 𝑘] → 𝐴[𝑥,𝑦] : 𝑥 = 𝑖 𝑎𝑛𝑑 𝑦 =

𝑘}. The original schedule of K1 is Θ𝐾1 (®𝑥𝑆1) = {[𝑖, 𝑗] →
3

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

1 // Kernel 1
2 for (i = 0; i < N; ++i)
3 for (j = 0; j < N; ++j)
4 C[i][j] = beta * C[i][j]; // S1
5 // Kernel 2
6 for (i = 0; i < N; ++i)
7 for (j = 0; j < N; ++j)
8 for (k = 0; k < N; ++k)
9 C[i][j] += alpha * A[i][k] * B[k][j];

Figure 3. Example

[𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5] : 𝑡1 = 0 𝑎𝑛𝑑 𝑡2 = 𝑖 𝑎𝑛𝑑 𝑡3 = 0 𝑎𝑛𝑑 𝑡4 =

𝑗 𝑎𝑛𝑑 𝑡5 = 0, that is a 2𝑑 + 1 encoding of the schedule, for a
loop depth 𝑑 [10, 11].

3.2 Kernel Set and Workloads
Given a set of polyhedral kernels that are candidate to be
merged, we aim to execute workloads that are arbitrary com-
positions (in sequence or in parallel) of calls to these kernels.
These computations can be captured by a simple language
for straight-line programs, which is then trivially amenable
to compilation, to extract a a forest of directed acyclic graphs,
where each node represents one kernel call. We assume each
kernel represents a pure function, and summarizes its func-
tionality as follows.

Definition 1 (Kernel representation). Given a kernel 𝐾 , we
define its functionality as the signature of the kernel augmented
with the loop bounds, for each loop:

𝐾 : 𝑖𝑛𝑝𝑢𝑡1, ..., 𝑖𝑛𝑝𝑢𝑡𝑛, 𝑁1, ..., 𝑁𝑚 → 𝑜𝑢𝑡𝑝𝑢𝑡1, ..., 𝑜𝑢𝑡𝑝𝑢𝑡𝑝

We also define 𝑂𝑝𝑠𝐾 the set of arithmetic operations executed
by 𝐾 .

For example, the complete signature of 𝐾2 is
𝐾2 : 𝐶 [𝑁] [𝑁], 𝐴[𝑁] [𝑁], 𝐵 [𝑁] [𝑁], 𝑎𝑙𝑝ℎ𝑎, 𝑁 , 𝑁, 𝑁 → 𝐶 [𝑁] [𝑁]

where 𝑂𝑝𝑠𝐾2 = {+, ∗, ∗}. A workload in the present work
can be modeled as a straight-line program, such that (a) tem-
porary variables are allowed; (b) there is a single kernel call
per instruction; (c) type and size analysis for every input/out-
put passed as argument to the program kernels succeeds,
given the signatures of every kernel. Focusing on (dense)
linear algebra, high-level expressions can be written in this
simple form, which is then compiled to obtain a sequence of
kernel calls implementing this program. Parallelism between
kernel calls is automatically detected from the DAGs, creat-
ing "batches" of calls when possible from the input workload,
simply recognizing parallelizable operations by computing
the earliest schedule of each node in the DAGs.

We illustrate with the simple following program with 4 in-
structions, that is a valid input to our system. For clarity K1 is
renamed to MatScale, and K2 is renamed to MatMulScaleA.
In our prototype implementation, supported variable types
are scalars, 1D arrays (vectors) and 2D arrays (matrices),
which should all be of the same data type.

1 TMP1 [N] [N] : = MatScale (C1 [N] [N] , 4 2 , N , N)
2 TMP2 [N] [N] : =
3 MatMulScaleA (TMP1 [N] [N] , A [N] [N] , B [N] [N] , 5 1 , N , N , N)
4 TMP3 [N] [N] : = MatScale (C2 [N] [N] , 4 3 , N , N)
5 TMP4 [N] [N] : =
6 MatMulScaleA (TMP3 [N] [N] , A [N] [N] , B [N] [N] , 5 2 , N , N , N)

This program may be input by the user, and is then com-
piled to a sequence of "instructions" to be executed by the
accelerator. As described in Sec. 4, the accelerator executes
a stream of instructions given as input, where each instruc-
tion contains the name of the kernel to invoke, to which
hardware unit it is placed, and the operands/loop bound in-
formation as in the example above. The order of execution
follows the order of instructions sent to the accelerator. A
simple compilation step creates this sequence of instructions
from the input program above.
A simple dataflow analysis produces these two DAGs:

𝑀𝑎𝑡𝑀𝑢𝑙𝑆𝑐𝑎𝑙𝑒𝐴(𝑀𝑎𝑡𝑆𝑐𝑎𝑙𝑒 (𝐶1, 42), 𝐴, 𝐵, 51) and the similar
𝑀𝑎𝑡𝑀𝑢𝑙𝑆𝑐𝑎𝑙𝑒𝐴(𝑀𝑎𝑡𝑆𝑐𝑎𝑙𝑒 (𝐶2, 43), 𝐴, 𝐵, 52) from this input
program. This analysis delivers the set of calls to be executed
as their earliest start time (assuming each call takes 1 time
quantum), e.g. MatScale:0,0 and MatMulScaleA:1,1 giv-
ing explicitly the number of calls (i.e., the number of entries
per kernel name) and the parallelism opportunities (i.e., all
calls at the same time step can be executed in parallel). In
our current implementation, we weight timesteps by their
iteration latency, and a simple greedy placement of the calls
on the available hardware units is implemented.
Therefore the problems to be addressed when designing

the accelerator include (a) how many parallel instances of
each kernel should be possible? And (b) Which operations
(+,*, etc) may be shared between kernels?

3.3 Kernel Merging
We now outline our high-level method for generating a se-
mantically correct perfectly nested loop structure, that cap-
ture the set of all functionalities to be implemented by the
accelerator. We leverage polyhedral program analysis and
transformations [2] to create such code structure.

Iteration domain extension The first operation is to
normalize all kernels so that every statement is represented
by an iteration domain of identical, maximal dimensional-
ity across all kernels, while preserving the semantics. This
amounts to computing a maximal common loop embed-
ding, and statement perfectization [33] is an instance of
such transformation. Specifically, we first compute 𝑚𝑎𝑥𝑑
the maximal dimensionality of all iterations domains to be
merged: 𝑚𝑎𝑥𝑑 = 𝑚𝑎𝑥𝐾∈𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑑𝑖𝑚(D𝐾). Then, for every
kernel whose dimensionality is less than𝑚𝑎𝑥𝑑 , we create
D𝑒𝑥𝑡
𝐾

= 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚𝑎𝑥𝑑) ∩ D𝐾 ∩ 𝑜𝑛𝑒𝑖𝑡𝑒𝑟𝑑𝑖𝑚𝑠 (𝐾), where
𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 (𝑥) builds the infinite/unbounded polyhedron of
dimensionality 𝑥 , and 𝑜𝑛𝑒𝑖𝑡𝑒𝑟𝑑𝑖𝑚𝑠 (𝐾) is the lexicographic

4

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

minimum of every dimension in𝑚𝑎𝑥𝑑 that is not a dimen-
sion in D𝐾 . For example, we would get: D𝑒𝑥𝑡

𝐾1 : {[𝑖, 𝑗, 𝑘] :
0 ≤ 𝑖 < 𝑁 𝑎𝑛𝑑 0 ≤ 𝑗 < 𝑁 𝑎𝑛𝑑 𝑘 = 0}.
We then further extend the iteration domains systemati-

cally with one additional dimension: 𝑘𝑖𝑑 , which represents
the unique ID of a kernel that is merged. For our example,
assuming Kernel1 (K1) identifier is 1, and K2’s is 2, we get:
D𝑒𝑥𝑡
𝐾1 : [𝐾1] → {[𝑘𝑖𝑑, 𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑁 𝑎𝑛𝑑 0 ≤ 𝑗 <

𝑁 𝑎𝑛𝑑 𝑘 = 0 𝑎𝑛𝑑 𝑘𝑖𝑑 = 𝐾1}.

Scheduling for fusion and pipelining The next oper-
ation builds the union of all extended iteration domains
into a single polyhedral program, by building a schedule
for fusion. This schedule merges all loop levels, and only
separate kernels at the inner-most loop level. For example,
the short notation for Θ𝐾2 is {[𝑖, 𝑗, 𝑘] → [0, 𝑖, 0, 𝑗, 0, 𝑘, 0]}.
The schedules merging K1, then K2, are simply their original
identity schedule (possibly extended to 𝑚𝑎𝑥𝑑), where we
use the kernel id to compute the last schedule dimension,
for every statement in each kernel. We have Θ𝐾 : [𝐾] →
{[𝑘𝑖𝑑, 𝑖, ...,𝑚] → [0, 𝑖, 0, ..., 0,𝑚, 𝑘𝑖𝑑]} if the kernel contains
a single statement, otherwise 𝑘𝑖𝑑 needs to be extended to
model the unique id of every statement in the kernel instead,
in their order of execution, such that for every kernel and
every statement 𝑘𝑖𝑑 is globally unique.
For example, to fuse K1 with K2 we would get Θ𝑒𝑥𝑡

𝐾1 :
[𝐾1] → {[𝑘𝑖𝑑, 𝑖, 𝑗, 𝑘] → [0, 𝑖, 0, 𝑗, 0, 𝑘, 𝑘𝑖𝑑] : 𝑘𝑖𝑑 = 𝐾1}, and
Θ𝐾2 : [𝐾2] → {[𝑘𝑖𝑑, 𝑖, 𝑗, 𝑘] → [0, 𝑖, 0, 𝑗, 0, 𝑘, 𝑘𝑖𝑑] : 𝑘𝑖𝑑 =

𝐾2}. Note however further modification of the schedule may
be implemented: in particular, loop permutation may be em-
ployed to implement fine-grain parallelism when possible,
as discussed below in Sec. 3.4, for example Θ𝐾2 : [𝐾2] →
{[𝑖, 𝑗, 𝑘] → [0, 𝑖, 0, 𝑘, 0, 𝑗, 𝑘𝑖𝑑] : 𝑘𝑖𝑑 = 𝐾2} permutes the 𝑘
and 𝑗 loops, to expose a synchronization-free inner-parallel
loop if possible.

Controlling separation The final operation is to actually
generate the candidate loop nest, by using polyhedral code
generation [2]. Intuitively, CLooG [2] generates a code that
scans the iteration domains in the lexicographic order of
the timestamps computed by the Θ functions. A key aspect
of performance for the generated codes is to implement
separation along every loop dimension, that is the process of
grouping iterations of the loop as a function of the specific set
of statements to be executed. For example, along the 𝑘 loop,
at iteration 0 both K1 and K2 execute, but at iteration > 0
only 𝐾2 executes. In this work, we aim to push conditionals
that guard the execution of a statement to the inner-most
loop level, therefore we simply turn off separation in CLooG,
to obtain the code below:

3.4 Profitability Criteria
While any set of polyhedral programs can be merged with
the procedure above, not all such programs are candidate for
efficient acceleration, andmay not benefit from beingmerged

1 for (i = 0; i < N; ++i)
2 for (k = 0; k < N; ++k)
3 for (j = 0; j < N; ++j) {
4 if (KER == K1 && k == 0)
5 C[i][j] = beta * C[i][j]; // S1
6 if (KER == K2)
7 C[i][j] += alpha * A[i][k] * B[k][j];
8 }

Figure 4. Example code structure

with other kernels. However, the profitability criteria can be
expressed as the result of polyhedral analyses on the set of
kernels.

Pipelining A central objective is to enable coarse-grain
pipelining across kernels. Therefore we model a criterion for
making pipelining possible (otherwise no pipelining is im-
plemented), that eventually drives the loop order: the inner-
most loop should be such that either there is no loop-carried
dependence (LCD) along it for the kernel, or if there is a LCD,
the distance must be constant, and greater than the expected
iteration latency (for one iteration of the inner-most loop).
The final loop permutation for the program is computed such
that we minimize dependences satisfied by the inner-most
loop level in the merged program, using only loop permuta-
tions as the possible transformations. We simply compute
all possible loop permutations for the merged loop nest, and
for each case compute whether the inner loop is parallel. If
this system has no solution, we relax it to enable LCD for the
inner-most loop level iff the dependence distance is greater
than the iteration latency for the statement.

Exposing Functional Units A kernel can be viewed as
the actual computation statement(s) associated with it, along
with their iteration domain. As we generate a fused loop nest,
all statements share the same unique loop nest implemented
in hardware to iterate them. Therefore two parallel instances
of a kernel can be implemented by simply replicating the
statement(s) in the inner-most loop. We call such hardware
instances implementing a statement a functional unit (FU),
and we aim to select how many instances of each functional
unit should be implemented in the accelerator. We note that
depending on the kernels being merged, syntactically identi-
cal statements (after variable renaming) may occur: in this
case two functional units may compute exactly the same
operations, albeit perhaps with different iteration domains.
This can be easily detected from the kernels representations,
and we merge into a single FU those computing identical
operations, to facilitate solving the optimization problem
below. Note in our simple compilation phase to convert the
input straight-line program to a sequence of instructions,
we exploit the fact that multiple kernels/functionalities may
be mapped to the same FU, perhaps by adjusting the loop
bounds passed as argument to the instruction, to find a com-
pact scheduling+placement.

5

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

Number of replications The key challenge is to deter-
mine the number of replications of each kernel/functionality,
given that (a) different workloads may expose vastly differ-
ent amount of parallelism; and (b) how many elementary
operation(s) can be shared between kernels is related to the
number of replications of each kernel. Our objective is to
optimize throughput per area, in other words, we aim to in-
crease resource sharing without performance penalty, some-
thing typically achievable when operations would anyway
be otherwise idling due to sequences of dependent kernel
calls.
For a particular workload summarized as the number of

calls to each kernel, we aim to minimize the expected exe-
cution time under resource constraints, summarized in the
following optimization problem:

minimize
∑︁

𝐾∈𝐾𝑒𝑟𝑛𝑒𝑙𝑠
⌈#𝑐𝑎𝑙𝑙𝑠 (𝐾)/#𝐹𝑈 (𝐾)⌉ ∗ 𝑐𝑎𝑟𝑑 (D𝐾) ∗ 𝐼𝐿𝐾

subject to
∑︁
𝑖∈𝐹𝑈𝑠

𝐴𝑟𝑒𝑎(𝐹𝑈𝑖) ∗ #𝐹𝑈𝑖 < max_area

Where a FU, or Functional Unit, is a hardware implemen-
tation of the operations in a kernel K, and 𝐼𝐿𝐾 the iteration
latency to execute one inner-most loop iteration, that is the
latency of the FU to execute once. The unknown to be com-
puted is the number of FU, for each FU type. The workload
mix, given by the number of calls to each kernel/function-
ality, is input to this optimization problem. As we weight
the latency of an iteration by the cardinality of its iteration
domain, in case of an heterogeneous workload combining
𝑁 2 (e.g., matrix addition) and 𝑁 3 (e.g., matrix-multiplication)
operations, the dominant cost driving the solution found
will be for the 𝑁 3 operations. 𝐴𝑟𝑒𝑎(𝐹𝑈) is computed by ap-
proximating the DSP consumption of an FU, itself adjusted
if operations in a FU can be shared across multiple FUs: they
are of the same type, and can execute in pipelined fashion.
In practice, to solve this problem we simply enumerate all
solutions (i.e., number of FUs of each type) and for each
compute latency and resources. We output the first solution
that meets resource constraints with minimal latency.

4 Accelerator Implementation
In this section, we analyse the modules that compose the
accelerator and discuss their implementation.

Structure of the Accelerator The accelerator layout is il-
lustrated Fig 5, and is orchestrated around a single pipelined
loop dispatching user-specified computing tasks to Func-
tional Units (FUs), corresponding to loop bodies of merged
kernels. Such tasks are composed of four stages: the compu-
tation of the read/write locations as function of the current
loop iterator, the loading of the data, the computation, the
storage. The accelerator may be broken down to three sub-
modules: the loop control logic, handling dispatch of the
operation to the FU, the FUs themselves and the local buffer
storing the required data.

Matrix / Vector
Buffer

FUn

FU1
LBG

Loop
Control
Logic

IVG

Figure 5. Layout of the Generic Accelerator

While our accelerator architecture is designed for Xil-
inx Ultrascale+ MPSoC [29], that is, FPGA integrated with
a CPU, none of its features depends on CPUs. Therefore,
some implementation details may be specific such as the
communication-handling logic and the wrapping applica-
tion mentioned below, but they do not limit the genericity
of our approach.

Iteration Vector Generator (IVG) Thoughmerged kernel
are transformed to iterate on the same space, additional logic
is still needed to convert the global (scalar) loop index to the
iteration vector given as input to the FU – typically indexes
of accessed arrays. This computation is done by the IVG, that
initialise the iteration vectors to 0𝑑 and update them using
their former value through a fixed state machine.

Functional Units Functional Units (FU) are specialized,
fully pipeline units capable of executing one or more oper-
ations of the input kernel such as addition, multiplication,
data movement (e.g. for transposition), etc. They take as in-
put the iteration vector, load directly values from the local
buffer depending on the current iteration vector value, and
compute in one or more outputs, which are directly stored
back to the local buffer. An FU can expose several computa-
tion kernels capabilities, e.g. matrix addition and subtraction,
but cannot operates in our implementation on more that 2
source arrays and 1 destination array. This restriction is lead
by the gubernatorial amount of logic needed to load arbi-
trary values from the local buffer from HLS-based designs,
as discussed in Sec. 7.

In this case, we allow further sharing by flipping the sign
bit of one of the FP16-encoded operand, then using the adder
to perform 𝑎 + (−𝑏) with no additional DSP cost.
The load and store locations are constrained by the local

buffer implementation detailed below: due to memory port
pressure, FUs can only operate on a non-shared pool of the
local buffer during the time of their kernel computation, but
the data is afterward accessible by all FUs. As FUs are fully
pipelined, they must have no loop-carried dependence: the
minimal reuse distance of read-after-write dependence has
to be higher than the latency of the complete FU.

Loop Bound Generator (LBG) After each end of execu-
tion of kernels, the LBG scans all next kernels and compute
the cardinal of the minimal iteration space by maxing their
iteration space sizes. This value is then used as the trip count
of the FU-scheduling loop.

6

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Loop Control Logic The accelerator is organised around a
single loop defined in HLS-C++ as a for ranging from 0 to a
maximum value given by the LBG. This loop corresponds to
a flattened version of the fully merged loops of all accelerated
kernels, and is pipelined to achieve a maximum throughput
of 1 execution of all FU per cycle, i.e. to fully exploit all FUs.

The role of the loop control logic is twofold. First, it sched-
ules operations on the FU, and second it iterates over all
merged kernels to ensure a correct and complete execution
of the input workload.

Off-Chip Communications Data in the local buffer are
coalesced [32] for transfers into 64-bit packets that are sent
or received together in one burst to/from the off-chip DRAM
before and after execution of the accelerator. Execution time
is measured by an on-chip counter wired to the main clock,
whose value is fetched before the execution of the computa-
tion and right after its termination (i.e. not including commu-
nications). The local buffer communicates with off-chipmem-
ory using the AXI4 bus connected to one high-performance
communication port of the Zync MPSoC. Its setup is con-
trolled by MMIO-mapped registers using an AXILite bus,
managed by a wrapper C++ application running on CPU in-
tegrated in the ZCU104MPSoC. This application also handles
the execution flow as well as memory management from an
embedded Linux OS, using libraries provided by the PYNQ
framework as well as autogenerated drivers from Vitis HLS.

Access to the Local Buffer Each FU loads and stores
data from a global, on-chip buffer implemented with double-
port BRAMs whose accesses are spread over a three-stage
pipeline: read, execute and write in order to conserve the
initiation interval of 1 of the FU enforced by the loop control
logic. To allow off-chip communications at a rate of 64-bit
per cycle, the Local Buffer is partitioned cyclically by a factor
of 2, allowing 4 simultaneous FP16 loads/stores.

5 Experimental Results
In this section, we will analyse the performance of two
merged accelerators whose characteristics are reported in
Tbl. 3: one optimized for dense linear algebra computation,
the other for the computation of correlation matrices, as
expressed in PolyBench/C [25]. All measurements are done
on a ZCU104 board running the PYNQ 2.6 Linux image, and
all IP are generated from annotated C++ code using Xilinx
Vitis 2022.1 [30] on Linux 6.0.7. Resource usage is measured
after out-of-context P&R for each HLS accelerator, which
excludes AXI data routing to the integrated CPU. Cycles
measurements of the proposed accelerator are taken from
on-chip counter on the target board, whereas custom acceler-
ators execution time are computed from the pipeline latency
given by the HLS Tool report. Unless specified, the data type
used is 16-bit floating point. The total functionalities of the
accelerators are summarized in Tbl. 4.

Due to our implementation, we allow every merged mi-
crokernel to be executed on a compatible FU. Therefore, the
only difference of FU between the Linear Algebra (LA-GA)
and Correlation (CORR-GA) rely in 1) the support of trian-
gular iteration space for GA-LA and 2) the presence of one
square root / division unit for GA-CORR. On all accelerators,
only three different types of FU are integrated:

• one capable of handling mulmm and all the mul and
add/sub derivatives, based on two operators (± and ∗)

• one only handling add and its derivatives (including
sub) composed of one operator ±

• one handling sqrt and div, based on two operators:√· and /

Number of operators Nb. of IVG supports Local Buffer
𝑎 ± 𝑏 𝑎 ∗ 𝑏 𝑎/𝑏

√
𝑎 FU triangular loops Size

BLAS 2 1 0 0 2 Yes 25 Matrices
CORR 3 3 1 1 4 No 25 Matrices

Table 3. Configuration of the LA-GA accelerator and the
Correlation accelerator

Kernel Description Op. LA-GA CORR-GA
noop Do nothing None ✓ ✓
mulmm Matrix-matrix multiplication ± and ∗ ✓ ✓
mulmv Matrix-vector multiplication ± and ∗ ✓ ✓
multrmm Triangular matrix-matrix multiplication ± and ∗ ✓
multrmv Triangular matrix-vector multiplication ± and ∗ ✓
mulsm Scalar-matrix multiplication ∗ ✓ ✓
multrsm Scalar-triangular matrix multiplication ∗ ✓
mulsv Scalar-vector multiplication ∗ ✓ ✓
muls Scalar-scalar multiplication ∗ ✓ ✓
trm Matrix transposition None ✓ ✓
addm Matrix addition ± ✓ ✓
addv Vector addition ± ✓ ✓
adds Scalar addition ± ✓ ✓

addtrm Triangular matrix addition ± ✓
subm Matrix subtraction ± ✓ ✓

subcmv Column-wise matrix subtraction ± ✓ ✓
subv Vector subtraction ± ✓ ✓
subs Scalar subtraction ± ✓ ✓
pmulm Point-wise matrix multiplication ∗ ✓ ✓
pmulv Point-wise vector multiplication ∗ ✓ ✓
oprodv Outer (vector) product ∗ ✓ ✓
sqrtv Point-wise vector square root

√· ✓
sqrts Scalar square root

√· ✓
accsumcm Columns-wise accumulation of a matrix ± ✓ ✓
cutminv Vector round to 1 low values None ✓ ✓
divms Pointwise division of matrices / ✓
divvs Pointwise division of vectors / ✓
divcmv Point-wise division with column-wise value / ✓
set0m Initialisation of a matrix to 0 None ✓ ✓
setidm Initialisation of a matrix to 𝐼𝑑 None ✓ ✓
setd1 Initialisation of the diagonal of a matrix to 1 None ✓ ✓

Table 4. Supported kernel by either the Correlation or the
Linear Algebra accelerator

We compare our accelerator with the Max Sharing (MS)
design, where only one physical operator accelerator for
each operation type is instantiated, and the Max Throughput
(MT) that achieves minimal execution time while keeping
all data in a local buffer of the same characteristics than
the generic accelerator one. On both MT and MS, no gener-
icity of the design is possible, i.e. only a single benchmark
can be executed. We evaluate our generic accelerator on
three metrics: execution time (in cycle), throughput per area,

7

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

computed as 𝑁𝐵_𝐹𝐿𝑂𝑃
𝐸𝑋𝐸𝐶_𝑇 𝐼𝑀𝐸∗𝑁𝐵_𝑅𝐸𝑆𝑂𝑈𝑅𝐶𝐸 with 𝑁𝐵_𝐹𝐿𝑂𝑃 the

number of floating-point operation in the input benchmarks,
and 𝑀𝑁_𝑅𝐸𝑆𝑂𝑈𝑅𝐶𝐸 the number of DSP or chunk of 10
000 FF / LUT in the design; and occupancy, computed as

𝑁𝐵_𝑂𝑃
𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁 _𝑇 𝐼𝑀𝐸∗𝑁𝐵_𝑈𝑁𝐼𝑇 , with 𝑁𝐵_𝑂𝑃 the number of op-
erations being executable by the operator in the input pro-
gram, and 𝑁𝐵_𝑈𝑁𝐼𝑇 the number of compatible units in the
design.

5.1 Linear Algebra
Execution time, resources and performance per area metric
are reported in Tbl. 5, while Tbl. 6 report occupancy. Per-
formances on batches of 5 independent problems are also
evaluated, in Tbl. 7. The accelerator for linear algebra, noted
LA-GA is composed of two FUs: (a) one which supports ma-
trix multiplication, thus integrating an adder and a multiplier,
as well as all kernels relying on either an addition, a multi-
plication, a subtraction or a transposition; and (b) one which
only supports transposition as well a additions/subtractions.

This choice was guided by the necessity to cover all linear
algebra expressions (hence the first "generic" FU) while be-
ing able to coarse-grain pipeline kernels composed of both
multiplication and additions such as SCALE.
Indeed, SCALE is composed of two kernels: the first one

is mulsm (multiplication scalar-matrix, with 𝑂 (𝑁 2)) and the
second one is addm (addition of matrix, also with𝑂 (𝑁 2) com-
plexity). The accelerator is then able to execute in parallel
two different instances of SCALE on its two FUs. However,
this does not achieve full usage of the compute units as the
adder, also present in the first FU, stays idle. Moreover, the
coarse-grain pipeline must be filed and emptied at the start of
the batched execution sequence, which limits its maximum
occupancy to 1− 2

𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸+2 for a pipeline composed of 2
stages, resulting in, 71 % for a batch size of 5.

On SCALE and GER, the LA-GA is around 2 times slower
than MS for non-batched workloads. This is due to the dedi-
cated accelerator expressing in one fully pipelined loop nest
the complete application, whereas the LA-GA splits it in
several (fully pipelined) kernels, increasing the final latency.
These differences fade away when the input is batched as the
LA-GA will overlap kernel execution through coarse-grain
pipelining and preset systematically faster execution that MS
except for GER, where the batching factor is not enough to
benefit from coarse-grain pipelining due to a 3-stage pipeline.

However, occupancy and throughput-per-area falls behind
both MS and MT for two reasons: first, coarse-grain pipelin-
ing is limited by the first and last stages of the pipeline;
and the genericity of the accelerator is achieved at the cost
of area, both because of glue logic and idling units. The
former can be quantified by the performance-per-LUT and
performance-per-FF, which remains between 3 and 20 times
lower than dedicated accelerator. For idling units, we take the
GER BLAS primitive as an example. GER does not use mulmm

no mulmv (or their triangular derivative), which means that a
maximum of one unit (either ± or ∗) is active in the first FU.
Conversely, dedicated accelerators (both MS or MT) do not
have this constraint, hence resulting in higher occupancy.

5.2 Correlation
For data science applications such as Covariance, linear alge-
bra primitives are not sufficient as other kernels are needed:
column-wise accumulation of the matrix (a one-kernel im-
plementation of 𝐴𝑡 · 1𝑣𝑒𝑐𝑡𝑜𝑟), column-wise subtraction of
a vector to a matrix and cut-of of a vector (used to avoid
floating-points error when divising by a near-zero value) as
well as division and square root.

Therefore, we enriched our accelerator with one FU merg-
ing these two kernels to create the CORR-GA accelerator
whose configuration is detailed in Tbl. 3: (a) 3 FU capable of
computing mulmm and all derivatives (kernels relying on ±
and/or ∗); and (b) 1 FU capable of computing either

√· or /
This topology was tailored to a batched execution of size

3: as seen in Sec. 2, ∗ and / are shareable instructions across
batches as they are dominated in terms of occupancy time
by the final matrix multiply of the correlation computation.
Reports of the execution time as well as performance-per-
area metrics are summarized in Tbl. 8, while occupancy of
the units is detailed in Tbl. 9.

Globally, the CORR-GA performs similarly to the LA-GA:
execution time is slower than MS due to the decomposition
of kernels that are otherwise expressible in one loop nest.
However, as the accelerator was tailored for 3 executions of
CORR (instead of a trade-off of all benchmarks), we exhibit
occupancy gains in this workload. Indeed, occupancy of ±
and ∗ units are dominated by the final matrix multiplication
of CORR, while

√· and / usage tripled due to their sharing
between the three batched instance.

5.3 Scaling and comparison
We evaluate the scalability of our approach on three different
aspect: data type, number of entries of the local buffer and
problem size. Area measurements are reported after P&R in
Tbl. 10. While switching from half precision to double pre-
cision doubles LUT due to the additional routing resources
necessary to handle the supplementary data, the accelerator
only increase by around 25 % when quadrupling the size of
the local buffer. This is due to the fact that loading and stor-
ing units that are the only elements to scale with its size: the
remaining data dispatch, FU selection and iteration vector
generation stay identical. On the other hand, LUT and FF and
DSP usage increase linearly with the number of FU, suggest-
ing that our approach does not generate quadratic amount
of logic with respect to its raw computation power. However,
synthesis time increases significantly with the number of
FUs, reaching several hours for a GA with 10 FUs.

8

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Bench Arithmetic Execution Time (cycles) FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT
name expression MS MT LA-GA MS MT LA-GA MS MT LA-GA MS MT LA-GA
SCALE 𝐴 = 𝛼 · 𝐴 + 𝐵 5572 2059 8258 0.368 0.497 0.165 5.080 13.593 2.193 7.722 20.466 1.053
GEMV 𝑦 = 𝛼 · 𝐴 · 𝑥 + 𝛽 · 𝑦 4553 2126 4396 0.457 0.391 0.315 3.960 12.950 4.184 5.686 18.752 2.010
TRMV 𝑦 = 𝛼 · 𝐴 · 𝑥 + 𝛽 · 𝑦 2339 2435 2380 0.458 0.293 0.300 6.177 5.894 3.982 9.311 8.735 1.913
GER 𝐴 = 𝛼 · 𝑥 · 𝑦𝑡 +𝐴 4738 2057 8343 0.436 0.401 0.165 6.093 13.528 2.187 9.348 20.058 1.051

GEMM 𝐶 = 𝛼 · 𝐴 · 𝐵 + 𝛽 ·𝐶 307586 134018 274540 0.433 0.397 0.323 5.759 12.934 4.287 8.860 19.011 2.059
TRMM 𝐶 = 𝛼 · 𝐴 · 𝐵 + 𝛽 ·𝐶 149696 155840 145516 0.458 0.293 0.314 5.964 5.816 4.169 8.991 8.688 2.002

Table 5. Throughput of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator
(LA-GA) for several Linear Algebra Benchmarks

Bench Occupancy (±) Occupancy (∗) Global Occupancy
name MS MT LA-GA MS MT LA-GA MS MT LA-GA
SCALE 73.51% 99.47% 24.80% 73.51% 99.47% 49.60% 73.51% 99.47% 41.33%
GEMV 89.96% 96.33% 46.59% 92.77% 49.67% 96.09% 91.37% 65.22% 79.59%
TRMV 88.93% 85.42% 43.70% 94.40% 45.34% 92.77% 91.66% 58.70% 76.41%
GER 86.45% 99.56% 24.55% 87.80% 50.56% 49.86% 87.13% 66.89% 41.42%

GEMM 85.23% 97.80% 47.74% 87.89% 67.24% 98.47% 86.56% 79.46% 81.56%
TRMM 88.93% 85.42% 45.74% 94.40% 90.68% 97.11% 91.66% 88.05% 79.99%

Table 6. Occupancy of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator
(LA-GA) for several Linear Algebra Benchmarks

Bench Exec. Time (cycles) Occupancy (𝑎 ± 𝑏) Occupancy (𝑎 · 𝑏) Global Occupancy
name MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA

SCALEx5 27860 10295 24726 73.51% 99.47% 41.41% 73.51% 99.47% 82.83% 73.51% 99.47% 69.02%
GEMVx5 22765 10630 21544 89.96% 96.33% 47.53% 92.77% 49.67% 98.03% 91.37% 73.00% 81.20%
TRMVx5 11695 12175 11379 88.93% 85.42% 45.70% 94.40% 45.34% 97.02% 91.66% 65.38% 79.91%
GERx5 23690 10285 41279 86.45% 99.56% 40.71% 87.80% 50.56% 82.70% 87.13% 75.06% 68.71%

GEMMx5 1537930 670090 1356136 85.23% 97.80% 48.33% 87.89% 67.24% 99.67% 86.56% 82.52% 82.56%
TRMMx5 748480 779200 711016 88.93% 85.42% 46.81% 94.40% 90.68% 99.37% 91.66% 88.05% 81.85%

Table 7. Occupancy of a custom IP optimised for maximum efficiency and the Custom Generic Accelerator (LA-GA) for a
batched subset of Linear Algebra Benchmarks

Bench Arithmetic Execution Time (cycles) FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT
name expression MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA

CENTER 𝑋𝐶𝑖 𝑗 = 𝑋𝑖 𝑗 − (∑𝑖′ 𝑋𝑖′ 𝑗)/𝑛 8343 4166 12480 0.495 0.495 0.055 10.362 19.448 1.090 9.570 15.374 0.425

STDDEV 𝜎𝑋𝑗 =

√︃∑
𝑖 (𝑋𝐶𝑖)2/𝑛 16691 8370 29053 0.247 0.247 0.047 7.796 13.991 0.936 6.148 10.148 0.365

CENTER-REDUCE-DIV 𝑋𝐶𝑅𝑖 𝑗 =
(
𝑋𝑖 𝑗 −

∑
𝑖′ 𝑋𝑖′ 𝑗

)
/(𝜎𝑋𝑗 ·

√
𝑛) 20935 10486 33352 0.247 0.164 0.052 6.579 9.707 1.021 5.579 7.761 0.398

CORR (𝑋𝐶𝑅)𝑡 · 𝑋𝐶𝑅 291221 144614 303763 0.468 0.314 0.150 10.905 17.962 2.955 9.119 13.834 1.152
CORRx3 3×CORR 873663 433842 320603 0.468 0.314 0.425 10.905 17.962 8.400 9.119 13.834 3.275

Table 8. Throughput of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator
(CORR-GA) for Covariance subexpressions

Bench Occupancy (±) Occupancy (∗) Occupancy (/) Occupancy (
√·) Global occupancy

name MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA
CORR 94.23% 94.88% 30.11% 91.44% 46.04% 29.22% 0.02% 0.02% 0.02% 1.43% 1.44% 1.37% 46.78% 37.68% 22.43%
CORRx3 94.23% 94.88% 85.60% 91.44% 46.04% 83.06% 0.02% 0.02% 0.06% 1.43% 1.44% 3.89% 46.78% 37.68% 63.74%

Table 9. Occupancy of a custom IP custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic
Accelerator (CORR-GA) for Correlation subexpressions

Data Type Nb. Entries Nb. FU Pb. Size LUT FF DSP BRAM
FP16 25 2 64 9418 4524 6 109
FP64 25 2 64 19535 7428 14 109
FP16 50 2 64 10945 4705 6 109
FP16 100 2 64 11899 4952 6 409
FP16 25 2 150 12701 4939 8 650
FP16 25 4 64 14723 5971 12 109
FP16 25 6 64 20957 7382 18 109
FP16 25 10 64 31998 10947 30 112
FP16 25 20 64 HLS Synthesis time out (> 3h)

Table 10. Scaling properties of the LA-GA accelerator

Data Type Implementation OP/Cycle/DSP
INT32 ResNet-18 ScaleHLS [33] 1.343
INT32 ResNet-18 TVM-VTA [23] 0.344
INT32 LA-GA GEMM 0.646
FP32 GEMM ScaleHLS 0.393
FP32 LA-GA GEMM 0.277

Table 11. Performance per area comparison with data ex-
tracted from other published accelerators

9

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

We also provide as a indicative example in Tbl. 11 a com-
parison of our performance against two state-of-the art de-
signs dedicated tomachine learningworkloads: ScaleHLS [33]
and VTA [23], on GEMM, extrapolated from their FP16 (2
DSP per addition, 2 DSP per multiplication) to an FP32 pro-
jection (2 DSP per addition, 3 DSP per multiplication) and
and INT32 one (0 DSP per addition, 3 DSP per multiplication)
from the ScaleHLS publication, and compare to ours. On this
metric, we achieve comparable performance to their designs,
however ScaleHLS optimizes a single workload and is not
producing a generic accelerator.

6 Related Work
The topic of semi-specialized accelerator design [5, 18, 20]
have been widely studied, targeting a variety of subdomains
such as encryption [21], graph processing [4] or machine
learning [1, 3, 12, 34]. For example Cong et al. [8] propose
a technique to quickly generate accelerators on a template
architecture, but targets single application acceleration on
MPSoC, in contrast to our multi-functionality approach.
ScaleHLS [33] is an end-to-end MLIR-based framework for
throughput-optimized accelerator generation, and does not
target merging efficiently multiple functionalities/kernels to
accelerate.

The Versatile Tensor Accelerator [23] relies on concepts of
decomposition of programs into kernels for deported execu-
tion on an accelerator, but is optimised for deep learning with
functional units limited to configurable GEMM and tensor-
specialised ALU, for which kernels have to be described
using micro-code instead of directly integrating them in the
design. In contrast, the functional units themselves that are
candidate for resource sharing are design parameters in our
generic accelerator design.

Resource sharing for area-efficient accelerator generation
is another weel-studied research topic [16, 26]. Li et al.[17]
proposed a method based on loop body components require-
ments to create area-efficient design suited for coarse-grain
replication. However, this method does not consider neither
coarse-grain pipelining nor generality of the accelerator. Jain
et al. [15] manually derive the accelerator architecture from
targeted worklaods, while we automatically infer its param-
eters given polyhedral description of the functionalities.

Morvan et al. [24] tackled the problem of under-usage of
imperfectly nested loop pipelining by automated insertion of
padding computations. Such an approach can be applied on
the merged loops presented in this paper to further reduce
idle time of the FU.

7 Limitations
Though the kernel merging approach for general accelerator
generation is promising, our implementation suffers from
several flaws, both on the technical side (unused/overused
FPGA resources) and on our evaluation of the accelerator.

Routing between FU and Buffers Our implementation
allows every FU can access every memory location of the
local buffer for easier customisation of the generated acceler-
ator. Indeed, a generic local buffer load/store IP is integrated
for every FU, that rely on costly multiplexers, which can be
avoided by specializing it to the access pattern of the FU.
Deeper polyhedral analysis and re-scheduling may also

exhibit cross-FU reuse when the same data is used by 2 differ-
ent FU. A future research directionmay be to ensuremaximal
merging of these data path to avoid as best as possible re-
dundant loading; but we expect this analysis to lead to few
real-life usse cases.

Merging ofKernels withDifferent Iteration Space In all
tested benchmarks, the iteration space vector can be shared
amongst all merged kernel. However, this is not true in gen-
eral: two kernels may iterate over dimensions of different
size, which requires the generation of two iteration vector
by the IVG. This leads to additional LUT-based logic limiting
the application of our approach on LUT-constraints designs,
but should not disturb the execution time

Data Reuse: Optimizing Buffer Communication Our
implementation does not consider reuse of data inter iter-
ation of the FU, as this may introduce loop carried depen-
dencies and thus stall the pipeline. However, short-distance
single-producer / multiple consumer data can be kept in
FF-based memory to alleviate BRAM’s load, diminishing
pressure on ports and allowing further parallel computation
on the now-loadable data.

Further Sharing of Operations inside FU Our current
framework does not allow an FU realising a fused multiply-
add (FMA) to work as a both an adder and a multiplier at the
same time. However, such a behaviour is crucial for maximal
usage of the accelerator on tasks graphs that do not rely
on FMA, but still uses both additions and multiplications as
(single) operators. Adding such capabilities require a signifi-
cant increase of the front-end on the FU, in the sense that
additional logic and routing is needed for the transmission
of second operator arguments; logic that cannot be reused
in any non-parallel kernel. Therefore, we expect a trade-off
between the occupancy of the operators and the amount of
glue needed for the flexibility to fully utilise them.

Vectorisation of the FU In our evaluation, we only con-
sider FU composed of one operation of fused multiply-add.
While this is a technical limitation of our current imple-
mentation, there is no reason to do so in the general case.
Though we expect the relative quantity of glue logic to de-
crease with the size of the FUs, we also expect sub-optimal
uses of these larger FUs as they also come with a more spe-
cialised (hence less reusable) operation graph that single or
double-operation units.

10

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

8 Conclusion
While the accessibility and ease-of-use of fixed-function ac-
celerator design has significantly increased, updating the
functionalities being accelerated can be tedious if at all possi-
ble. In contrast, multi-purpose accelerators aim to keep most
benefits of fixed-function acceleration, while being efficient
on a variety of workloads.

In this work, we presented a system to build a throughput-
oriented, multi-functionality accelerator from a set of in-
put polyhedral kernels. We conducted detailed evaluation
with on-board measurements of two generic accelerators
for dense linear algebra workloads, exposing the merits and
limitations of such multi-functionality accelerator design.

References
[1] Stefan Abi-Karam, Yuqi He, Rishov Sarkar, Lakshmi Sathidevi, Zihang

Qiao, and Cong Hao. 2022. GenGNN: A Generic FPGA Framework
for Graph Neural Network Acceleration. CoRR abs/2201.08475 (2022).
arXiv:2201.08475 https://arxiv.org/abs/2201.08475

[2] C. Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier
Than You Think. In 13th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT. IEEE, Antibes, France, 7–16.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: end-to-end optimization stack for deep
learning. arXiv preprint arXiv:1802.04799 11, 2018 (2018), 20.

[4] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong,
and Deming Chen. 2021. ThunderGP: HLS-Based Graph Processing
Framework on FPGAs. In The 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
’21). Association for Computing Machinery, New York, NY, USA, 69–80.
https://doi.org/10.1145/3431920.3439290

[5] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigo-
rian, and Glenn Reinman. 2012. CHARM: A Composable Heteroge-
neous Accelerator-Rich Microprocessor. In Proceedings of the 2012
ACM/IEEE International Symposium on Low Power Electronics and
Design (Redondo Beach, California, USA) (ISLPED ’12). Association
for Computing Machinery, New York, NY, USA, 379–384. https:
//doi.org/10.1145/2333660.2333747

[6] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang.
2016. Software infrastructure for enabling FPGA-based accelerations
in data centers. In Proceedings of the 2016 International Symposium on
Low Power Electronics and Design. 154–155.

[7] JasonCong, PengWei, CodyHao Yu, and Peng Zhang. 2018. Automated
accelerator generation and optimization with composable, parallel and
pipeline architecture. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[8] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. 2018. Auto-
mated Accelerator Generation and Optimization with Composable,
Parallel and Pipeline Architecture. In 2018 55th ACM/ESDA/IEEE De-
sign Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC.
2018.8465940

[9] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming 20, 1 (1991), 23–53.

[10] P. Feautrier. 1992. Some efficient solutions to the affine scheduling
problem, part II: multidimensional time. International Journal of Par-
allel Programming 21, 6 (1992), 389–420.

[11] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. 2006. Semi-Automatic Com-
position of Loop Transformations. International Journal of Parallel
Programming 34, 3 (June 2006), 261–317.

[12] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi,
Xi Chen, Guangyu Sun, Wei Zhang, and Jason Cong. 2017. FP-DNN:
An Automated Framework for Mapping Deep Neural Networks onto
FPGAs with RTL-HLS Hybrid Templates. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 152–159. https://doi.org/10.1109/FCCM.2017.25

[13] Andrei Hagiescu, Weng-Fai Wong, David F Bacon, and Rodric Rabbah.
2009. A computing origami: Folding streams in FPGAs. In Proceedings
of the 46th Annual Design Automation Conference. 282–287.

[14] Intel. 2022. High Level Synthesis Compiler. https://www.intel.com/
content/www/us/en/software/programmable/quartus-prime/hls-
compiler.html.

[15] Abhishek Kumar Jain, Douglas L Maskell, and Suhaib A Fahmy. 2016.
Throughput oriented FPGA overlays using DSP blocks. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1628–1633.

[16] Lana Josipović, Axel Marmet, Andrea Guerrieri, and Paolo Ienne. 2022.
Resource Sharing in Dataflow Circuits. In 2022 IEEE 30th Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 1–9.

[17] Peng Li, Peng Zhang, Louis-Noel Pouchet, and Jason Cong. 2015.
Resource-Aware Throughput Optimization for High-Level Synthe-
sis. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA
’15). Association for Computing Machinery, New York, NY, USA,
200–209. https://doi.org/10.1145/2684746.2689065

[18] Cheng Liu, Ho-Cheung Ng, and Hayden Kwok-Hay So. 2015. Quick-
Dough: A rapid FPGA loop accelerator design framework using soft
CGRA overlay. In 2015 International Conference on Field Programmable
Technology (FPT). 56–63. https://doi.org/10.1109/FPT.2015.7393130

[19] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhen-
grong Wang, Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani,
Lucheng Zhang, et al. 2022. OverGen: Improving FPGA Usability
through Domain-specific Overlay Generation. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 35–56.

[20] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman,
and Gilles Pokam. 2018. TAPAS: Generating Parallel Accelerators
from Parallel Programs. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 245–257. https://doi.org/10.
1109/MICRO.2018.00028

[21] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki. 2017. HLS design
of a hardware accelerator for Homomorphic Encryption. In 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). 178–183. https://doi.org/10.1109/DDECS.
2017.7934578

[22] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan,
Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
et al. 2019. A hardware–software blueprint for flexible deep learning
specialization. IEEE Micro 39, 5 (2019), 8–16.

[23] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan,
Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2019. A Hardware–Software Blueprint for
Flexible Deep Learning Specialization. IEEE Micro 39, 5 (2019), 8–16.
https://doi.org/10.1109/MM.2019.2928962

[24] Antoine Morvan, Steven Derrien, and Patrice Quinton. 2013. Polyhe-
dral Bubble Insertion: A Method to Improve Nested Loop Pipelining
for High-Level Synthesis. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 32, 3 (2013), 339–352. https:
//doi.org/10.1109/TCAD.2012.2228270

[25] L.-N. Pouchet. 2011. PolyBench: The Polyhedral Benchmarking suite,
version PolyBench/C 4.2.1. http://polybench.sf.net. Last accessed:
May 2017.

[26] Bajaj Ronak and Suhaib A Fahmy. 2016. Multipumping flexible DSP
blocks for resource reduction on Xilinx FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 36, 9 (2016),

11

https://arxiv.org/abs/2201.08475
https://arxiv.org/abs/2201.08475
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.1145/2333660.2333747
https://doi.org/10.1145/2333660.2333747
https://doi.org/10.1109/DAC.2018.8465940
https://doi.org/10.1109/DAC.2018.8465940
https://doi.org/10.1109/FCCM.2017.25
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1145/2684746.2689065
https://doi.org/10.1109/FPT.2015.7393130
https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/DDECS.2017.7934578
https://doi.org/10.1109/DDECS.2017.7934578
https://doi.org/10.1109/MM.2019.2928962
https://doi.org/10.1109/TCAD.2012.2228270
https://doi.org/10.1109/TCAD.2012.2228270
http://polybench.sf.net

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

1471–1482.
[27] Nicholas Weaver. 2008. Retiming, repipelining and c-slow retiming.

Reconfigurable Computing (2008), 383–399.
[28] Xilinx. 2022. The Merlin compiler. https://github.com/Xilinx/merlin-

compiler.
[29] Xilinx. 2022. UltraScale Architecture Configuration User Guide (UG570).
[30] Xilinx. 2022. Vitis High-Level Synthesis User Guide (UG1399).
[31] Xilinx. 2022. Vitis Unified Software Platform. https://www.xilinx.com/

products/design-tools/vitis/vitis-platform.html.
[32] Xilinx. 2022. Vitis Unified Software PlatformDocumentation: Application

Acceleration Development (UG1393).
[33] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang,

Stephen Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New

Scalable High-Level Synthesis Framework on Multi-Level Intermedi-
ate Representation. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 741–755.

[34] Xinyi Zhang, Weiwen Jiang, and Jingtong Hu. 2020. Achieving Full
Parallelism in LSTM via a Unified Accelerator Design. In 2020 IEEE
38th International Conference on Computer Design (ICCD). 469–477.
https://doi.org/10.1109/ICCD50377.2020.00086

[35] Heidi Ziegler, Byoungro So, Mary Hall, and Pedro C Diniz. 2002.
Coarse-grain pipelining on multiple FPGA architectures. In Proceed-
ings. 10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. IEEE, 77–86.

12

https://github.com/Xilinx/merlin-compiler
https://github.com/Xilinx/merlin-compiler
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://doi.org/10.1109/ICCD50377.2020.00086

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Example: Data Centering
	2.2 A More Complex Example: Correlation

	3 Kernel Merging For Multi-Functionalities
	3.1 Polyhedral kernel representation
	3.2 Kernel Set and Workloads
	3.3 Kernel Merging
	3.4 Profitability Criteria

	4 Accelerator Implementation
	5 Experimental Results
	5.1 Linear Algebra
	5.2 Correlation
	5.3 Scaling and comparison

	6 Related Work
	7 Limitations
	8 Conclusion
	References

