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Abstract
In this work, we study fault tolerance of transient errors,
such as those occurring due to cosmic radiation or hardware
component aging and degradation, using Algorithm-Based
Fault Tolerance (ABFT). ABFT methods typically work by
adding some additional computation in the form of invari-
ant checksums which, by definition, should not change as
the program executes. By computing and monitoring check-
sums, it is possible to detect errors by observing differences
in the checksum values. However, this is challenging for two
key reasons: (1) it requires careful manual analysis of the
input program, and (2) care must be taken to subsequently
carry out the checksum computations efficiently enough for
it to be worth it. Prior work has shown how to apply ABFT
schemes with low overhead for a variety of input programs.
Here, we focus on a subclass of programs called stencil ap-
plications, an important class of computations found widely
in various scientific computing domains. We propose a new
compilation scheme to automatically analyze and generate
the checksum computations. To the best of our knowledge,
this is the first work to do such a thing in a compiler. We
show that low overhead code can be easily generated and
provide a preliminary evaluation of the tradeoff between
performance and effectiveness.
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1 Introduction
Computing technology continues to move in the direction
of more capability and more complexity in less space with
less power. Transient silent errors that originate in the hard-
ware and manifest as silent data corruption pose a serious
concern for software reliability. Such errors occur due to
phenomena such as cosmic radiation [1, 2] and hardware
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component aging and degradation [3, 4]. This is a problem
of both size and scale. At one end of the spectrum, as trends
push the development of smaller and lower power systems,
the likelihood of encountering such errors increases [5, 6].
On the other end, silent data corruption errors have even
been observed in large-scale infrastructure services running
at the global scale as recently as 2021 [7]. This also has impli-
cations in the realm of High-Performance Computing (HPC)
[8–10] where workloads can run for weeks and even months.
Waiting months for the computation to finish only to realize
that the result was incorrect has a significant impact given
the time wasted. The need for robust fault tolerance today is
becoming more and more prevalent as computing platforms
grow in capability and complexity.
One approach to enable fault tolerance involves duplica-

tion either in the software [11, 12] or in the hardware [13].
Duplication has the highest coverage, but also the highest
overhead. Other approaches avoid duplication and employ
compile-time analysis to augment the software with check-
sums to detect errors in the memory [14]. While this is less
expensive, it also has lower coverage. Silent errors that hap-
pen inside the floating-point arithmetic units, for example,
go undetected. Detection of silent transient errors is difficult
because the errors manifest in the data and doing so requires
running some analysis on the computed data, which most
hardware-based fault tolerance schemes ignore.
Algorithm-based fault tolerance (ABFT) [15] has been

widely studied since it was first proposed in 1984 and pro-
vides a relatively cheap way to detect, and correct, such
errors in the data. The main idea is to augment the computa-
tion with extra work in the form of invariant checksums by
exploiting algebraic identities, which by definition should
remain constant valued as the program executes. By com-
paring checksums evaluated periodically as the program ex-
ecutes, we can detect errors if their difference is above some
threshold. ABFT schemes have been studied on a variety of
different computational kernels from dense linear algebra
such as Fast-Fourier Transform networks, matrix multiplica-
tion, and more recently convolutional neural networks and
stencil computations [16–22].
In this work, we focus on ABFT in the context of scien-

tific computing. Specifically, we focus on stencil applications
which are commonly used to compute approximate solutions
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to partial differential equations modeling physical phenom-
ena such as (electro)dynamicwave propagation and heat flow.
Even among just stencil computations, there is a wide range
of variability. The structure of a particular stencil depends on
the specific properties of the particular phenomenon under
study, such as the rate at which heat flows through (poten-
tially multiple and different) physical media, just to give an
example. These flow rates may be the same in all physical di-
rections, referred to as isotropic diffusion in the literature, or
direction-dependent, anisotropic [23]. To complicate things
even further, these rates need not be the same everywhere,
they may have different magnitudes at different physical
points in space. All of these factors influence the particular
form of the input stencil program, which directly affects the
analysis required to carry out ABFT.

There are several challenges that make the application of
algorithm-based fault tolerance difficult:

1. identification of the ABFT-applicable regions of the
input program (and there may bemultiple independent
regions)

2. construction of the invariant checksums
3. computing the checksums efficiently enough to be

worth it (i.e., with low overhead)

Each of these is largely dependent on the input program and
requires very careful and manual analysis. However, there is
no suchABFT-compiler (yet) that can perform all of the above
from the input program alone. In this work, we propose
a new methodology to carry out this analysis at compile
time, embodied as a sequence of program transformations,
which can be automated thanks to polyhedral compilation
techniques. To this end, wemake the following contributions:

• We show how to carry out an ABFT analysis automat-
ically in a compiler.

• We present some preliminary data on the tradeoff be-
tween overhead and error detection effectiveness of
the generated code.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide several motivating examples showing
how ABFT works on stencils illustrating the challenges men-
tioned above. The framework and scope of our analysis are
reviewed in Section 3 followed by the description of our
compiler passes in Section 4 and preliminary performance
data and a discussion with respect to execution time (i.e.,
overhead) and effectiveness (i.e., ability to reliably detect
errors) in Sections 5. Finally, we discuss related work and
open questions in Sections 6 and 7.

2 Motivating Examples
Algorithm-based fault tolerance works fundamentally by
defining invariant checksums over subsets of the domains

of the computed variables and then asserting that the check-
sums do not change as the program evolves. For each check-
sum (in general, there may be multiple) this involves con-
structing two algebraically equivalent expressions that com-
pute the same value, each taken from different program slices,
and then asserting that their difference is zero1.

Stencils are typically implemented as a series of weighted
convolutions. The properties mentioned above manifest in
the code as different weight values and potentially differ-
ent convolution domains at different points in the domain.
This directly influences where it is possible to construct the
invariant checksum expressions. We illustrate this variabil-
ity with several examples of increasing complexity in the
following sections. One quickly appreciates the difficulty of
doing this manually and can see why it is desirable to leave
such analysis to a polyhedral compiler.

2.1 1D Jacobi stencil with constant weights
The Jacobi 1D stencil updates an (𝑁 + 1)-element array over
a series of 𝑇 time steps. The primary computation of each
non-boundary point comes from the weighted sum of three
neighboring points from the previous time step.

𝐵𝑡,𝑖 =


𝐴𝑖 if 𝑡 = 0
𝐵𝑡−1,𝑖 elif 0 < 𝑡 ≤ 𝑇 and 𝑖 = 0 or 𝑖 = 𝑁

𝑤0𝐵𝑡−1,𝑖−1 +𝑤1𝐵𝑡−1,𝑖 +𝑤2𝐵𝑡−1,𝑖+1 else
(1)

In stencils, deriving the invariant checksum is achieved by
building two expressions such that no two points with the
same time step (i.e., the 𝑡 index value of 𝐵𝑡,𝑖 in Equation 1)
appear in both expressions.

2.1.1 Construct invariant checksums. Let us introduce
a new variable, 𝐶𝑡,𝑙,𝑚 , to denote the checksum at time step
𝑡 defined as the sum over the window of values of 𝐵𝑡,𝑖 for
𝑙 ≤ 𝑖 ≤ 𝑚,

𝐶𝑡,𝑙,𝑚 =

𝑚∑︁
𝑖=𝑙

𝐵𝑡,𝑖 1 ≤ 𝑙 ≤ 𝑚 ≤ 𝑁 − 1 (2)

This is illustrated as the solid boxed region in Figure 1. By
substituting the definition of 𝐵𝑡,𝑖 where 1 ≤ 𝑙 ≤ 𝑚 ≤ 𝑁 − 1
from Equation 1 into Equation 2 we obtain,

𝐶𝑡,𝑙,𝑚 =

𝑚∑︁
𝑖=𝑙

(
𝑤0𝐵𝑡−1,𝑖−1 +𝑤1𝐵𝑡−1,𝑖 +𝑤2𝐵𝑡−1,𝑖+1

)
(3)

Notice that the points of 𝐵 can be grouped based on the com-
bination of 𝑤0, 𝑤1, and 𝑤2 through which they contribute,
shown by the dashed boxes in Figure 1. The middle dashed
rectangle represents the points at time step 𝑡 − 1 that con-
tribute to 𝐶𝑡 by all three weights. After some algebra we

1In reality, we deal with floating point arithmetic which is not associative
so the difference will never truly be zero. Instead, we can assert that it is
below some sufficiently small threshold.
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𝑖

𝑡

𝑙 𝑚

𝐶 = 𝑓(𝑋!)𝑂 𝑇𝑁

𝐶′ = 𝑓(𝑋!-#)

Figure 1. Single checksum illustration. Points contributing to 𝐶𝑡,𝑙,𝑚 in Equation 2 shown in the solid boxed region and points
contributing to 𝐶′

𝑡,𝑙,𝑚
in Equation 4 in dashed boxed regions. Repeating this each time step at every (𝑚 − 𝑙 )’th position along 𝑖

leads to an overall cost of 𝑂 (𝑇𝑁 ).
obtain,

𝐶′
𝑡,𝑙,𝑚

≡ (𝑤0)𝐵𝑡 -1,𝑙-1 + (𝑤0 +𝑤1)𝐵𝑡 -1,𝑙

+ (𝑤0 +𝑤1 +𝑤2)
𝑚−1∑︁
𝑖=𝑙+1

𝐵𝑡 -1,𝑖

+ (𝑤1 +𝑤2)𝐵𝑡 -1,𝑚 + (𝑤2)𝐵𝑡 -1,𝑚+1 (4)
which we will denote as𝐶′

𝑡,𝑙,𝑚
. The right-hand sides of Equa-

tions 2 and 4 both compute the same numerical value using
different elements in the domain of the variable 𝐵. Equation 2
uses elements solely from time step 𝑡 , and Equation 4 from
time step 𝑡−1.

The only way for 𝐶𝑡,𝑙,𝑚 and 𝐶′
𝑡,𝑙,𝑚

to evaluate to different
values is if some error were to occur between their compu-
tation. To use this, we assert that their difference,

Δ𝐶𝑡,𝑙,𝑚 ≡ 𝐶′
𝑡,𝑙,𝑚

−𝐶𝑡,𝑙,𝑚

is below some threshold, large enough to be distinguish-
able from floating-point round-off errors, and small enough
to actually detect most errors. This is discussed further in
Section 5.

2.1.2 Achieve low overhead with interpolation. For
any fault tolerance scheme to be feasible, the cost of imple-
menting it needs to be sufficiently low. However, computing
and comparing checksums as shown in the previous section
has a significant amount of overhead. This is because the
work required to compute Δ𝐶𝑡,𝑙,𝑚 from Equation 2 in Figure 1
is asymptotically the same as the main stencil computation.
The overhead here is too high, however, it is possible to do
better.
Instead of comparing expressions across adjacent time

steps where,
𝐶′ = 𝑓 (𝐵𝑡−1,𝑖 ) (5)

we could compare them across several, say 𝜏 , time steps such
that𝐶′ is a function of only the points in 𝐵 at time step 𝑡 − 𝜏 ,

𝐶′ = 𝑓 (𝐵𝑡−𝜏,𝑖 ) (6)
To achieve this, we can repeatedly substitute 𝐵 in 𝐶′. After
two substitutions we will have 𝐶′ = 𝑓 (𝐵𝑡−2,𝑖 ), after three

𝑡

𝑖𝑙 𝑚

𝑡

𝑡

𝐶! = 𝑓(𝑋"#$,&)

𝑡

𝐶! = 𝑓(𝑋"#',&)
𝜏

𝑂 𝑇𝑁 𝜏⁄

Figure 2. Interpolated checksum illustration after 𝜏 = 4
repeated substitutions. Interpolation is more efficient than
Figure 1.

substitutions 𝐶′ = 𝑓 (𝐵𝑡−3,𝑖 ), and so on as illustrated in Fig-
ure 2. At each step, we need to account for the combinations
of weights. As we show in Section 4.1.5 since the checksum
accumulates points computed by a convolution, this leads
to a very regular pattern, but still, this is not something one
would want to do by hand.
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Expressing 𝐶′ as a function of 𝐵𝑡−𝜏,𝑖 has the same effect
as what prior work [22] refers to as “interpolating” check-
sums solely from other checksums at previous iterations.
However, we have shown the interpolation here in the op-
posite order (i.e., from 𝑡 to 𝑡 − 1). Regardless of the order
in which it is done, this process of interpolation is critically
necessary to be able to carry out the checksum computations
with low overhead. The intuition behind this can be under-
stood by comparing the complexities of the non-interpolated
scheme (Figure 1) and the interpolated scheme (Figure 2).
The non-interpolated version is 𝑂 (𝑇𝑁 ) which has the same
complexity up to a constant order as the stencil computa-
tion itself. The interpolated version, on the other hand, has
the complexity 𝑂 (𝑇𝑁 /𝜏). This tunable parameter 𝜏 directly
influences the complexity of checksum computation and
consequently the overhead.

2.2 Stencils with multiple time dependencies
The interpolation process as described above is straightfor-
ward when there are only stencil dependencies from 𝑡 to
𝑡 − 1, but consider the same example now with one addi-
tional dependency on 𝑡 − 2,

𝐵𝑡,𝑖 =


𝐴𝑖 if 0 ≤ 𝑡 < 2
𝐵𝑡−1,𝑖 elif 2 ≤ 𝑡 ≤ 𝑇 and 𝑖 = 0 or 𝑖 = 𝑁

𝑤0𝐵𝑡−1,𝑖−1 +𝑤1𝐵𝑡−1,𝑖 +𝑤2𝐵𝑡−1,𝑖+1
+𝑤3𝐵𝑡−2,𝑖 else

(7)

adapted from finite-difference time-domain (FDTD) acoustic
wave simulation code [24].

In this example, the process of repeated substitution re-
sults in an alternate expression of the form,

𝐶′ = 𝑓 (𝐵𝑡−𝜏,𝑖 ) + 𝑔(𝐵𝑡−𝜏−1,𝑖 ) (8)
for two different functions 𝑓 and 𝑔. This is because each
substitution introduces terms across the previous two time
steps. The difficulty of identifying the correct combinations
of weights here is magnified. Again, this is not something
that we would want to do by hand. We show how to handle
this example in Section 4.1.5 but the reader is encouraged
to try to work out the equivalent version of Equation 4 and
perform 𝜏 repeated substitutions obtaining the expressions
for 𝑓 and 𝑔 to fully appreciate this for themselves.

2.3 Stencils with variable weights
Not all stencil programs are directly amenable to ABFT be-
cause it may not always be possible to do the interpolation
step described in Section 2.1.2 as illustrated by the following
example in Equation 9. The reason it was possible to rewrite
Equation 2 as shown in Equation 4 was that the weight ex-
pressions were constant at each point in space allowing them
to be factored out of the middle summation term.
Consider this slightly modified piece of stencil code in

Equation 9, which is identical to Equation 1 except now

there may be unique weight values at each point in space.

𝐵𝑡,𝑖 =


𝐴𝑖 if 𝑡 = 0
𝐵𝑡−1,𝑖 elif 0 < 𝑡 ≤ 𝑇 and 𝑖 = 0 or 𝑖 = 𝑁

𝑤𝑖−1𝐵𝑡−1,𝑖−1 +𝑤𝑖𝐵𝑡−1,𝑖 +𝑤𝑖+1𝐵𝑡−1,𝑖+1 else
(9)

It is necessary to further inspect the definition of the value
of the weights,𝑤𝑖 before proceeding. If there exist regions
with constant weights, as is common in isotropic stencils [23]
with absorbing boundaries for example, then it is possible to
carry out ABFT with low overhead. For example, isotropic
stencils with absorbing boundaries typically have weights
with varying values near the boundaries (i.e., close to 𝑖 = 0
and 𝑖 = 𝑁 in our example here) but constant “in the middle”.
The definition of𝑤𝑖 could be of the following form,

𝑤𝑖 =


𝑓 (𝑖) 0 ≤ 𝑖 < 𝑀

0.333 𝑀 ≤ 𝑖 ≤ 𝑁 −𝑀

𝑓 (𝑖) 𝑁 −𝑀 < 𝑖 ≤ 𝑁

(10)

where 𝑓 is some arbitrary non-constant function. In this
case, it is possible to do ABFT, just not on the entire domain.
The solution is to recognize that the third branch of Equa-
tion 9 can be split into three branches, one for each branch
in Equation 10, of which the middle branch then has the
desired constant-weights form. This is straightforward for a
clever human to see, but much more difficult for a classical
compiler that reasons at the statement level. All of these
challenges are magnified in higher dimensions and beyond
the most simple symmetrical stencils implementations, this
is not something that we would want to do by hand. This
kind of analysis is aptly suited to polyhedral compilation
which enables reasoning at the statement instance level.

3 Polyhedral program representation
The polyhedral model [25–30] is a mathematical formalism
for reasoning about a precisely defined class of computa-
tions. It provides the technology to map high-level descrip-
tions of compute- and data-intensive programs to a range
of highly parallel targets. Polyhedral “programs” are most
cleanly viewed as equations defined over polyhedral domains,
evaluating an expression at each point therein. In the context
of ABFT, it enables us to reason precisely at the program
statement instance level to construct the compact sets char-
acterizing the hyper-trapezoidal regions illustrated previ-
ously in Figure 2. The Alpha language [31, 32] is a high-level
equational language that separates the specification of the
program from its execution plan. The semantics of an Alpha
program closely follows the program’s equivalent equational
representation.

The task of extracting the polyhedral representation (i.e.,
the set of affine recurrence equations) from a series of nested
loops with affine control structure has been well studied [33].
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Given a set of affine recurrence equations, one can subse-
quently write the equivalent Alpha program in a straightfor-
ward manner. We do not review how to do this here and for
the remainder of our discussion, we assume that the input
stencil program under study is itself an Alpha program.
In Figure 3, we provide an Alpha implementation of the

1D FDTD stencil from Section 2.2. This will be our working
example for the remainder of the paper. Note the layout,
with the following main sections of code: inputs, outputs,
locals, and equations. The domains of the program variables

0 : af f ine f d t d [T ,N ,M] − > { : 1<M<N and 2<T }
1 : inputs
2 : A : { [ i ] : 0<= i <=N}
3 : outputs
4 : A_out : { [ i ] : 0<= i <=N}
5 : l o c a l s
6 : B : { [ t , i ] : 0<= t <=T and 0<= i <=N}
7 : w0 , w1 : { [ i ] : 0<= i <=N}
8 : l e t
9 : w0[ i ] = case {

1 0 : { : 0<= i <M or N−M<i <=N } : f ( i ) ;
1 1 : { : M<= i <=N−M } : 0 . 2 8 4 ;
1 2 : } ;
1 3 : w1[ i ] = case {
1 4 : { : 0<= i <M or N−M<i <=N } : f ( i ) ;
1 5 : { : M<= i <=N−M } : 0 . 1 4 8 ;
1 6 : } ;
1 7 :
1 8 : B [ t , i ] = case {
1 9 : { : 0<= t <2 } : A[ i ] ;
2 0 : { : t >2 and ( i =0 or i =N ) } : B [ t −1 , i ] ;
2 1 : { : t >2 and 0< i <N} : w0[ i − 1 ] ∗B [ t −1 , i −1]

+ w0[ i ] ∗ B [ t −1 , i ]
+ w0[ i +1 ] ∗B [ t −1 , i +1]
+ w1[ i ] ∗ B [ t −2 , i ] ;

2 2 : } ;
2 3 : A_out [ i ] = B[T , i ] ;
2 4 : .

Figure 3. 1D FDTDAlpha programwithmultiple time depen-
dencies (from Section 2.2) and regions with variable weights
(Section 2.3).

are represented as sets of integer points with a syntax that
closely follows that of isl (the integer set library) [34]. Local
variables are used only in the context of this program (i.e.,
they only have scope in this program).

3.1 Equations
Alpha equations are of the form below where 𝑌 is a program
variable, 𝐸 is an expression defined over the domain D𝐸 and
𝑓 is an affine function,

𝑌 [𝑓 (𝑧)] = 𝐸 [𝑧] ∀𝑧 ∈ D𝐸

The expression 𝐸 is evaluated at each point 𝑧 in D𝐸 and
the answer is written to the location in the variable 𝑌 speci-
fied by 𝑓 (𝑧). Each Alpha expression is associated with two

polyhedral domains. First, the expression domain of 𝐸 is
the domain over which 𝐸 is well defined and is computed
bottom-up. Next, the context domain of 𝐸 is the domain
over which it needs to be evaluated (i.e., where each value
that contributes to an answer in the output needs to be writ-
ten) and is computed top-down. For example, the expression
𝐵 [𝑇, 𝑖] in line 23 of Figure 3 has the expression domain,
[𝑇, 𝑁 ] → {[𝑡, 𝑖] : 0 ≤ 𝑡 ≤ 𝑇 and 0 ≤ 𝑖 ≤ 𝑁 } with 𝑂 (𝑇𝑁 )
points because this is the domain over which the variable 𝐵
is defined. Since it only contributes to an answer in 𝐴_𝑜𝑢𝑡
when 𝑡 = 𝑇 , its context domain is [𝑇, 𝑁 ] → {[𝑡, 𝑖] : 𝑡 =

𝑇 and 0 ≤ 𝑖 ≤ 𝑁 } with 𝑂 (𝑁 ) points. The important thing
to keep in mind is that Alpha expressions are defined over
polyhedral domains and when we use point-wise expres-
sions like this, we are implicitly handling subsets of these
domains.

The Alpha grammar formally defines and supports many
special types of expressions. We will only review the aspects
minimally needed to make our discussion in this paper self-
contained.

3.2 Dependence expressions
A dependence expression is an expression of the following
form, where 𝑓 is an affine function and 𝑧 is a point in the
expression domain of the expression 𝐸,

𝐸 [𝑓 (𝑧)]

and should be understood as “the expression 𝐸 evaluated at
the point mapped from 𝑧 by 𝑓 ” or equivalently as, “read the
expression 𝐸 at the point 𝑓 (𝑧)”. All of the variable accesses
in Figure 3 (e.g., w[𝑖 − 1], B[𝑡 − 1, 𝑖 + 1], etc.) are dependence
expressions.

3.3 Restrict expressions
A restrict expression is an expression of the following form,
where D is some domain,

D : 𝐸

which should be read as “the expression 𝐸 restricted to the
subdomain D”. The expression domain of this restrict ex-
pression is the intersection ofD with the expression domain
of 𝐸.

3.4 Case expressions
Expressions can also be piecewise expressions defined over
multiple semicolon-delimited disjoint pieces using case ex-
pressions, which have the following form,

𝑐𝑎𝑠𝑒 {D0 : 𝐸0; D1 : 𝐸1; D2 : 𝐸2; ...}

for any number of disjoint domains D𝑖 . Here, each of the
pieces is itself a restrict expression.
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3.5 Reduce expressions
Finally, the Alpha language also supports reduction expres-
sions as first-class objects. Alpha reduce expressions gener-
ally have the following form, where 𝑌 is a program variable,
𝐸 is the expression of the reduction body with the domain
D𝐸 , and 𝑓𝑝 is an affine function,

𝑌 [𝑓𝑝 (𝑧)] =
⊕

𝐸 [𝑧] ∀𝑧 ∈ D𝐸

where the expression 𝐸, evaluated at each point 𝑧 in D𝐸 , is
accumulated into the element of the variable𝑌 at the location
𝑓𝑝 (𝑧) by the ⊕ operator. The syntax for the reduce expression
that represents this is,

𝑌 [𝑓𝑝 (𝑧)] = reduce(⊕, 𝑓𝑝 ,D𝐸 : 𝐸 [𝑧])

3.6 Checksums as Alpha reductions
We use reductions to represent the checksum values over
the program variables in the following sections. Equation 2
can be expressed in Alpha as,
C[ t , l ,m] = reduce ( + , ( t , l ,m, i −>t , l ,m) ,

{ : l <= i <=m } : B [ t , i ] )

for some new variable 𝐶 representing the family of all pos-
sible checksum instances at a particular time step 𝑡 over a
particular range of 𝑖 for 𝑙 ≤ 𝑖 ≤ 𝑚. We need the family to fully
cover the program as discussed in Section 4.2. The reduction
body here is a restrict expression with a 4-dimensional ex-
pression domain over the indices 𝑡 , 𝑙 ,𝑚, and 𝑖 . At each point
in this domain, the program variable 𝐵 is read at 𝐵 [𝑡, 𝑖] and
accumulated into the checksum instance at 𝐶 [𝑡, 𝑙,𝑚].
In this context, the objective is to transform this reduce

expression into the equivalent efficient expression over the
base of the corresponding trapezoidal domain in Figure 2.
Alpha supports algebraic substitution and simplification of
individual expressions, which makes this possible.

4 Automatic Checksum Derivation
To facilitate the presentation we make the following assump-
tions about the input stencil program,

• the outer dimension on stencil variables is interpreted
as the index over time

• the equations characterizing the stencil body update
points at time step 𝑡 from points at strictly earlier time
steps (i.e., 𝑡 − 𝑘 for some constant 𝑘 > 0)

• the dimensionality of all stencil variables is the same
This introduces no loss in generality because it is always
possible to achieve this by reindexing the program variables.
For example, consider the following Gauss-Seidel stencil
equation,

𝑋𝑡,𝑖 = 𝑎𝑋𝑡,𝑖−1 + 𝑏𝑋𝑡−1,𝑖 + 𝑐𝑋𝑡−1,𝑖+1 (11)
with the dependency across the same time step from [𝑡, 𝑖] to
[𝑡, 𝑖 − 1]. In such cases, we can reindex 𝑋 such that all depen-
dencies point strictly backward in time with the mapping

!
! ", $ → ! ", $-1
! ", $ → !["-1, $]
! ", $ → !["-1, $		1]+

"

!

" !! ", $ = ![2" + $, 2$]

!′ #, % → !′ #-1, %-2
!′ #, % → !′[#-2, %]
!′ #, % → !′[#-1, %		2]+

Figure 4. Normalization of dependencies in Equation 11
(top) such that all dependencies subsequently point strictly
backward along time 𝑡 (bottom).

{[𝑡, 𝑖] → [2𝑡 +𝑖, 2𝑖]} as illustrated in Figure 4. The interested
reader can notice that this is the task of finding a set of valid
scheduling hyperplanes.

With these assumptions in mind, principally our approach
involves the following three steps to automate ABFT,

1. constructing checksums via algebraic substitution
2. replicating checksums over the program domain
3. scheduling and code generation

which are discussed in detail in the following subsections.

4.1 Step 1 - Construct invariant checksum with
computer algebra

Given an input stencil program like the one provided in
Figure 3, the goal of this step is to express the stencil in such
a way that we can systematically build, and subsequently
insert, two algebraically equivalent expressions computing
the same checksum.

4.1.1 Merge variables. Some preprocessing may be re-
quired. We will call two stencil variables, 𝑋 and 𝑌 , coupled
if they belong to the same strongly connected component in
the program dependency graph. For example, if the equation
for𝑋 has an expression involving𝑌 and the equation for𝑌 in
turn has some expression involving 𝑋 , then we will say that
𝑋 and 𝑌 are coupled. There could be more than two variables
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as well. For example, imagine that 𝑋 depends on 𝑍 which
depends on 𝑌 . In this case we will say that 𝑋 is coupled
with both 𝑌 and 𝑍 and we will refer to the set of coupled
variables as {𝑋,𝑌, 𝑍 }. When there exist coupled variables
like this, we merge them into a single variable as follows. Let
𝑋𝑖 [𝑠] be a dependency expression on the 𝑖’th such coupled
variable. First, create a new higher dimensional variable 𝑋 ′

with an additional dimension. Then embed the equations for
each variable 𝑋𝑖 in 𝑋 ′ by associating the 𝑖’th index value in
this additional dimension with 𝑋𝑖 . This is purely a syntactic
rewrite and is always legal.
Many user-written stencil codes simulating electromag-

netism, for example, contain multiple stencil variables. Con-
sider the following example, adapted from other FDTD codes
in the MathWorks library [35], with separate variables for
the electric (𝐸) and magnetic (𝐻 ) fields,

𝐸𝑡,𝑖 =

{
𝐸𝑡−1,𝑖 𝑡 > 0 and 𝑖 = 0
𝐸𝑡−1,𝑖 − 𝑎𝑖 (𝐻𝑡−1,𝑖 − 𝐻𝑡−1,𝑖−1) 𝑡 > 0 and 0 < 𝑖 ≤ 𝑁

𝐻𝑡,𝑖 =

{
𝐻𝑡−1,𝑖 − 𝑏𝑖 (𝐸𝑡−1,𝑖+1 − 𝐸𝑡−1,𝑖 ) 𝑡 > 0 and 0 ≤ 𝑖 < 𝑁

𝐻𝑡−1,𝑖 𝑡 > 0 and 𝑖 = 𝑁

which can be merged into a single variable (𝑀) as,

𝑀𝑡,𝑖,𝑧 =


𝑀𝑡−1,𝑖,𝑧 ...and 𝑧 = 0
𝑀𝑡−1,𝑖,𝑧 − 𝑎𝑖 (𝑀𝑡−1,𝑖,𝑧+1 −𝑀𝑡−1,𝑖−1,𝑧+1) ...and 𝑧 = 0
𝑀𝑡−1,𝑖,𝑧 − 𝑏𝑖 (𝑀𝑡−1,𝑖+1,𝑧−1 −𝑀𝑡−1,𝑖,𝑧−1) ...and 𝑧 = 1
𝑀𝑡−1,𝑖,𝑧 ...and 𝑧 = 1

with the same piecewise constraints associated with the
new index 𝑧. Here 𝑧 is the index associated with the new
dimension, and since there are two coupled variables, 𝑧 only
takes on two values. The original variable 𝐸 is associated
with 𝑧 = 0 and 𝐻 with 𝑧 = 1.

4.1.2 Normalize Sum of Products Expressions. Expres-
sions for each merged stencil variable, 𝑋 , and its weights,𝑤𝑖

are transformed into expressions of the form,

𝑤1 [𝑓1 (𝑧)] ∗ 𝑋 [𝑓1 (𝑧)] +𝑤2 [𝑓2 (𝑧)] ∗ 𝑋 [𝑓2 (𝑧)] + ... (12)

denoting a normal Sums of Products (SoP) expression, where
the left-hand side of each product is an expression for the
weights and the right-hand side is the stencil variable. For
example, the expression,

X[ t −1 , i ] − a [ i ] ∗ ( X[ t −1 , i +1] − X[ t −1 , i ] )

is rewritten as the following normal SoP expression,

1 ∗X[ t −1 , i ] + ( −1 ∗ a [ i ] ) ∗ X[ t −1 , i +1] + a [ i ] ∗X[ t −1 , i ]

This is purely a preprocessing step for the next step to iden-
tify the regions with constant weights.

4.1.3 Identify convolution domains. Given two Alpha
variables 𝑋 and𝑊 , let us define the convolution of𝑊 with
𝑋 by the operator

⊗
at the point 𝑠 ∈ D𝑋 as2,

𝑊
⊗

𝑋𝑠 =
∑︁

𝑠′∈D𝑊

𝑊𝑠′𝑋𝑠+𝑠′ (13)

Given an SoP expression involving 𝑋 as defined in Equa-
tion 12, we construct a definition for𝑊 . We want to identify
the subdomain P that reads the same value from each weight
expression appearing in the SoP. Then we define the value of
𝑊 [𝑠] for each 𝑠 ∈ P as the corresponding constant weight
subexpression. Then we rewrite the portion of the SoP in P
as the convolution defined in Equation 13.

As an example, consider the following equation,

𝑋 [𝑖] = 𝑤 ∗ 𝑋 [𝑖 − 1] (14)

for the 1D variable 𝑋 with the domain D𝑋 . The binary ex-
pression𝑤 ∗𝑋 [𝑖] on the right-hand side is defined over D𝑋 ,
and the subexpression 𝑤 is read at each point in this do-
main. The subexpression 𝑤 here should be understood as
the dependence expression that reads the scalar variable𝑤
at each point in the expression domain by the affine function
𝑓 : [𝑖] → []. We say that there is reuse of𝑤 in context of its
use because the null space of 𝑓 has a non-empty intersection
with the expression domain3. This notion of reuse in con-
text is drawn from a related polyhedral optimization called
simplifying reductions [36]. We leverage this to identify the
reuse space common to all products in the SoP expression.
Looking again at the body of the restrict expression on

line 21 of Figure 3, this reuse analysis can be run on each
of the four expressions in a bottom-up fashion. The con-
text domain Dcontext of this expression is {[𝑡, 𝑖] : 0 ≤ 𝑡 ≤
𝑇 and 0 < 𝑖 < 𝑁 }, taken from its parent restrict expression.
The first weights expression 𝑤0[𝑖 − 1] is only constant in
the subdomain {[𝑡, 𝑖] : 0 ≤ 𝑡 ≤ 𝑇 and 𝑀 ≤ 𝑖 − 1 ≤ 𝑁 −𝑀}.
All four weights expressions are simultaneously constant in
the subdomain P = {[𝑡, 𝑖] : 0 ≤ 𝑡 ≤ 𝑇 and 𝑀 < 𝑖 < 𝑁 −𝑀}.
From here, we split the case branch containing this SoP

into two cases. In this example, we are left with the following
two expressions,

{ : t >2 and (0 < i <=M or N−M<= i <N ) } :
w0[ i − 1 ] ∗B [ t −1 , i −1] + w0[ i ] ∗ B [ t −1 , i ]

+ w0[ i +1 ] ∗B [ t −1 , i +1] + w1[ i ] ∗ B [ t −2 , i ] ;
{ : t >2 and M<i <N−M} : / / the c onvo l u t i on

0 . 2 8 4 ∗ B [ t −1 , i −1] + 0 . 2 8 4 ∗ B [ t −1 , i ]
+ 0 . 2 8 4 ∗ B [ t −1 , i +1] + 0 . 1 4 8 ∗ B [ t −2 , i ] ;

The second expression here with constant weights can be
seen as the convolution𝑊

⊗
𝐵𝑠 where𝑊 [−1,−1],𝑊 [−1, 0],

and𝑊 [−1, 1] are 0.284 and𝑊 [−2, 0] is 0.148.

2The symbol “∗” is commonly used denote convolutions, but to avoid con-
flating it with Alpha’s multiplication, we use

⊗
for convolutions here.

3Note that we use the isl[34] notation to indicate that 𝑓 maps onto a
0-dimensional space denoted by the empty tuple [ ].
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4.1.4 Stencil SSTC form. Given a convolution expression
involving the stencil variable 𝑋 , we rewrite the convolution
as, what we will call, the following Sum of Single Timestep
Convolutions (SSTC) form,

𝑋𝑡,𝑖,... =𝑊1
⊗

𝑋𝑡−1,𝑖,... +𝑊2
⊗

𝑋𝑡−2,𝑖,... + ... (15)

where𝑊𝑘 denotes the slice of𝑊 with length 1 along the
time dimension such that 𝑡 − 𝑘 = 0. In other words, the
index values of the time dimension for all points in D𝑊1
is −1, for all points in D𝑊2 is −2, so on and so forth. This
time step separation is used subsequently in Section 4.1.5 to
determine where to perform the substitutions. Looking again
at the convolution identified at the end of Section 4.1.3, we
can identify D𝑊1 = {[−1,−1]; [−1, 0]; [−1, 1]} and D𝑊2 =

{[−2, 0]}.

4.1.5 Construction of the invariant checksums. For
each SSTC expression associated with the stencil variable
𝑋 defined over the domain P identified by the preceding
analysis, we construct one checksum expression pair 𝐶 and
𝐶′. Let 𝐶 be defined as the following reduction over points
in Q, a rectangular subdomain of P,

𝐶 [𝑠] =
∑︁
𝑠∈Q

𝑋 [𝑠] (16)

Let𝐶′
𝑖 denote the alternate checksum initialized as the SSTC

expression based on the definition of 𝑋 in Equation 15,

𝐶′ [𝑠] =
∑︁
𝑠∈Q

(
𝑊1

⊗
𝑋 [𝑠] +𝑊2

⊗
𝑋 [𝑠] + ...

)
(17)

Now we repeatedly perform the following steps, 𝜏 times:
1. Split the reduction 𝐶′ into two pieces, 𝐶′

1 and 𝐶′
2 such

that 𝐶′
1 only contains the points with the largest time

index and 𝐶′
2 contains everything else.

𝐶′ = 𝐶′
1 +𝐶′

2

=
∑︁
𝑠1

(𝐴
⊗

𝑋 [𝑠1]) +
∑︁
𝑠2

(𝐵
⊗

𝑋 [𝑠2] + ...)

2. Substitute occurrences of 𝑋 [𝑠1] in 𝐶′
1 by its definition,

the SSTC expression.
3. Recombine 𝐶′

1 and 𝐶′
2 into a single reduction in the

form of Equation 17.
Convolutions are associative and commutative,

𝐴
⊗(

𝐵
⊗

𝑋

)
=

(
𝐴
⊗

𝐵

)⊗
𝑋 (18)

This property is used when𝐶′
1 and𝐶′

2 are recombined in step
3 above. Since the time dependencies all point strictly back-
ward, after 𝜏 repeated substitutions, we have an expression
for 𝐶′ as a function of points with time step no greater than
𝑡 − 𝜏 . Each 𝐶 and 𝐶′ pair form a hyper-trapezoid as shown
previously in Figure 2. Points in 𝐶 reside on the “top” of
the trapezoid and points in 𝐶′ on the “bottom”. Silent errors
occurring at any point inside the trapezoid result in different
computed values for 𝐶 and 𝐶′.

𝑀 𝑁

𝑁-𝑀
𝑇
𝑡

𝑖

𝐶!,# 𝐶′!,#

𝐶$,$ 𝐶′$,$

Figure 5. Striding checksum expression pairs over the corre-
sponding convolution domain, shown here for the example
in Figure 3. The subscripts [𝑐𝑡, 𝑐𝑖] here denote the 𝑐𝑡 ’th row
(from bottom to top) and 𝑐𝑖’th column. The shaded red region
illustrates the domain where duplication is needed.

4.2 Step 2 - Program Error Protection Coverage
Now we have a single checksum expression pair for each
convolution appearing in the normalized program. However,
each pair only enables the detection of errors within their
corresponding hyper-trapezoidal subdomain. In order to use
this over the rest of the convolution, we fix the trapezoid
to a constant (non-parametric) size from the family of all
possible checksums and then stride it over the convolution
domain (very similar to tiling for all intents and purposes)
as shown in Figure 5.
Still, it is not possible to cover every point. Points in the

red region in Figure 5 need to be handled with some other
error detection scheme because they are not contained by
any trapezoid. We can use duplication here, which is not a
concern from an overhead perspective since this only occurs
on the boundaries with an asymptotically smaller complexity.
LetD𝐵 denote the domain of the stencil variable 𝐵 defined in
line 6 of Figure 3. LetD𝐴𝐵𝐹𝑇 denote the domain of the union
of all trapezoids. Let D𝑑𝑢𝑝 denote the duplication domain
and be defined as, D𝑑𝑢𝑝 = D𝐵 \ D𝐴𝐵𝐹𝑇 where “\” denotes
set difference. Then we add another program variable, called
𝐵_𝑑𝑢𝑝 , using the same equation as 𝐵 but restricted to D𝑑𝑢𝑝 .

4.3 Step 3 - Scheduling and code generation
At this point, the original stencil computation and the check-
sum expression pairs are completely decoupled. Here we
describe how to schedule the checksum computations rela-
tive to the corresponding stencil variable. Everything needs
to be computed in a lock-step fashion because practical sten-
cil implementations only use as much memory as required
for two time steps’ worth of computation. For example, typi-
cal implementations of the Jacobi 1D stencil in Section 2.1
look like the following code snippet,
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for ( t = 1 ; t <=N ; t ++) {
B [ ( t ) % 2 ] [ 0 ] = B [ ( t − 1 )% 2 ] [ 0 ]
for ( i = 1 ; i <N ; i ++)

B [ ( t ) % 2 ] [ i ] = w0∗B [ ( t −1 )%2 ] [ i −1] + . . .
B [ ( t ) % 2 ] [N] = B [ ( t −1 )%2 ] [N]

}

with “modulo 2” accessing used on the time dimension. Points
in the checksums need to be accumulated into 𝐶 and 𝐶′ be-
fore they are overwritten at the next time step iteration.

For each identified convolution in the normalized program,
there are three sets:

1. {𝑉 [𝑡, 𝑖1, ..., 𝑖𝑑 ] : ...}, the domainDV of the correspond-
ing variable V

2. {𝐴[𝑐𝑡, 𝑐𝑖1, ..., 𝑐𝑖𝑑 , 𝑡, 𝑖1, ..., 𝑖𝑑 ] : ...}, the domain D𝐴𝐵𝐹𝑇

of the ABFT region (i.e., the union of trapezoids)
3. {𝐷 [𝑡, 𝑖1, ..., 𝑖𝑑 ] : ...}, the domain D𝑑𝑢𝑝 of the duplica-

tion region of V

We can construct the schedule where at each time step, we
first update the stencil variables, followed by any correspond-
ing checksum variables if they exist, followed by duplication
regions. Note that many time steps have no updates to any
checksum variables since updates only occur at the bottom
and top of the trapezoidal tiles. Alpha can be used to generate
C code.

5 Evaluation
At the time of writing, we do not yet have a complete imple-
mentation and we hope to have a more complete evaluation
in a future version of this work. Here, we present some pre-
liminary data for Jacobi 1D stencil from Section 2.1. We mea-
sure the overhead in terms of execution time relative to the
input stencil without any added checksum code. We measure
effectiveness in terms of the error detection rate as we inject
errors by flipping a random bit in a random location of the
data grid. Both are measured as a function of the checksum
size (i.e., the area of the trapezoidal regions in Figure 5). In
all experiments, single-precision (32-bit) data types are used.
We generated 21 different versions of the Jacobi 1D stencil
using trapezoids with the following sizes, where (𝑐𝑇 )x(𝑐𝑁 )
corresponds to the height 𝑐𝑇 and width 𝑐𝑁 : 2x8, 2x16, 2x32,
4x16, 4x32, 4x64, 8x32, 8x64, 8x128, 16x64, 16x128, 16x256,
32x128, 32x256, 32x512, 64x256, 64x512, 64x1024, 128x512,
128x1024, and 128x2048.
5.1 Overhead
We expect smaller sizes to result in slower execution times
because the entire data grid must be touchedmore frequently.
The generated codes do not include duplication code (the
red region in Figure 5) at this time, so the execution times
reported in our overhead experiments do not reflect this.
This should not be a concern since these regions are asymp-
totically smaller than the main ABFT-covered regions and
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Figure 6. Overhead vs. checksum size

we wish to study the penalty incurred by scheduling the
checksum computations together with the original program.

To measure the overhead, we compare the execution times
of the same stencil program with and without the trapezoidal
checksum regions. The ratio of execution times is reported
in Figure 6. In all overhead experiments, we use a data grid
size of 𝑁 = 1, 000, 000 updated over 𝑇 = 1000 time steps.
As expected, we see that for sufficiently large trapezoids
(consisting of more than 104 elements) the overhead drops
below 10%.

5.2 Detection Accuracy
For each ABFT-augmented stencil version, we flip a single
bit at a random location in the data grid at a random time
step. We use a data grid size of 𝑁 = 12, 000 updated over
𝑇 = 100 time steps. For each bit flip position, we run 100
trials. If there was at least one checksum expression pair
with a difference (Δ𝐶𝑖, 𝑗 = 𝐶𝑖, 𝑗 −𝐶′

𝑖, 𝑗 from Figure 5) above the
threshold4 10−5, then the run is counted as a success. The
fraction of total successes is reported for each checksum size
and bit flip position in Figure 7.

We can see that even for very small checksum sizes, not all
bit flips (below the 10th least significant bit) can be detected.
It is likely that flips to these bit positions should not even
be treated as true errors, but we have not studied this here.
As we expect, the detection rate drops as the trapezoid size
becomes large enough, even for the higher order bits (blue
and green in Figure 7). We see a sharp drop-off in the ability
to detect bit flips in the middle of the fraction section. Taken
together, from Figures 6 and 7, we can see that there is a
sweet spot where both the overhead is low and the detection
rate is high.

4We have not said much about how to choose the appropriate threshold. For
now, we just use the value based on the analysis given in prior work [22].
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Figure 7. Error detection rate after 100 trials of randomly
injected bit flips.

6 Related Work
With any fault tolerance scheme, there is typically a trade-
off between error coverage and overhead. Duplication and
related schemes like Triple Modular Redundancy [37], for
example, have the highest error coverage but are often too
costly. Cavelan and Ciorba showed how to use ABFT on
stencil computations via interpolating checksum expressions
over multiple time steps [22]. Their approach requires very
careful and manual human analysis, however, and can not
handle stencils with multiple time dependencies as with
the example in Section 2.2. Their work is a rediscovery of
an even older work on ABFT in the context of stencils by
Roy-Chowdhury et. al. [21]. Our work can be viewed as a
generalization of these two approaches with a wider range
of applicability.

There is other prior work that employs fault tolerance anal-
ysis at compile time. Tavarageri et. al. proposed a compiler-
assisted detection of memory errors [14]. Their approach
works by ensuring that any data written to memory locations
remain unchanged during any of its subsequent uses. This
is achieved by augmenting the input program with check-
sums at compile time to keep track of the values written
into and subsequently read from memory. Their approach
has low overhead but has a lower error coverage than ABFT
approaches. Errors that occur outside of memory, in the float-
ing point arithmetic units, for example, go undetected. Our
analysis here is based on numerical properties of the com-
puted data whichmeans we can detect errors anywhere in the
pipeline as long as they are not swallowed by floating-point
round-off noise.

7 Open Questions and Future Work
Our approach relies on being able to identify regions in
the stencil domain computed using convolutions. However,

these weight expressions in the stencil’s convolution kernel
may not be constant at each point in space or time. Stencils
of this form correspond to the class of anisotropic partial
differential equations [23]. If the weights truly are unique at
each point in space, then efficient interpolation of checksums
across time steps is not possible. This is because the weights
can not be factored out of the expression in Equation 4. To
the best of our knowledge, there has been no prior work
on how to carry out ABFT efficiently on such anisotropic
stencil applications and this remains an open and interesting
problem.

8 Conclusion
We have studied the use of ABFT for stencil computations
and proposed a new technique to automatically augment
the input program with checksums to detect the occurrence
of silent transient errors. We show that low overhead code
can be easily generated and our preliminary results illustrate
that there is an interesting trade-off worth exploring further.
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