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Scheduling AI Fused Operators For All Scenarios

AI/DL frameworks are key tools for R&D and industry

• Map high-level DNN models to efficient implementations

• Hide the complexity of target architectures to AI/DL scientists

• Support fast development of new models

Operator fusion enables critical optimizations

• Improve data locality and use of processing elements

• Minimize intermediate result storing and communication

• Reduce the cost of kernel launch on accelerators

Automatic kernel generation is required

• Complement the limited scope of optimized libraries

• Exploit the regular nature of operators with polyhedral compilation

• Face the challenge of polyhedral optimization for all scenarios
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AI/DL Computational Graphs

Express numerical computation as a directed graph

• Nodes are operators with input and output tensors

• Either framework built-in operators or user custom operators

• Edges are tensors of various shapes and types

• Tensors may store input data, model parameters or temporaries

• Graphs are built using the framework input language

• And/or partially automatically generated by, e.g., autodiff

Graph compilation and execution

• Compilation builds subgraphs, selects or generates 

operators, and prepares scheduling 

• A runtime executes the graph, launching operators when 

their input is ready
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Operator Fusion

Substitution of a group of operators in the original computation graph with a 
new compound operator according to some construction rules

• Formula fusion: combine several operator formulas and map it to an operator 
(e.g., Conv + BN → Conv’)

• General fusion: combine a sub-graph into a new operator

Main benefits
• Data access and storage optimization

• Promote intermediate results to fast memory

• Remove communications with host

• Better hardware usage and occupancy
• Enable more loop-level optimization

• Reduce the cost of kernel launch on accelerators

• Independent operators may be merged to use available resources

• Inter-operator analysis

• Common subexpression and dead code elimination

• Algebraic simplifications
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MindSpore’s Graph Kernel Approach For Operator Fusion

Partition phase

• Opening compound “black-box” operators

• Cross-operator aggregation according to 
aggregation rules (designed to work well with 
polyhedral scheduling)

• Fused-operator analysis (CSE, DSE, algebraic 
optimization, etc.)

• Split sub-graph into micro-graphs for suitable 
polyhedral scheduling and code generation

Fusion phase

• [Layer I] Polyhedral loop fusion and 
optimization with AKG

• [Layer II] Memory stitching: fusing dependent 
kernels for better memory reuse

• [Layer III] Parallelism stitching: fusing 
independent kernels for better resource usage
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[Jie Zhao et al. Apollo: Automatic Partition-based Operator Fusion through Layer by Layer 

Optimization, MLSys 2022]



Operator Partition/Fusion Process Example
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Current Graph Kernel Application Effect

GPU platform speedup average

• NLP: 96.4 %

• Recommendation: 136.6 %

• CV: 30.7 %

Fusion strategy replaces raising

• Raising to polyhedral representation 

is guaranteed operator-wise

• While challenging in compilers

• But fusion strategy selection is critical 

for performance

• And it may depend on the target 

architecture…
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Multi-Target Architecture Challenge

Three architectures supported CPU + GPU + NPU

• Support widely different architectures best at different purpose

• Apply different optimization strategies as transparently as possible

• Limit software fragmentation as much as possible
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CPU

Application

• Prototypes requiring high flexibility

• Training simple/small models

Characteristics

• Exploit ILP, vectors, excellent for 
general programming

• Implicitly managed memory

GPU

Application

• Models with operators on GPU

• Training medium/larger size models

Characteristics

• Exploit SIMT, excellent for graphics

• Mixed implicitly/explicitly managed 
memory

NPU

Application

• Models with lots of matrix 
multiplications

• Training huge models

Characteristics

• Matrix and vector processing

• Explicitly managed memory

…And a new challenging era for compilers!



How To Bridge This?
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AKG: Auto Kernel Generator

Three supported input
• Fused operators from MindSpore higher level 

• Custom operators for user-defined operators (e.g., for 
scientific computing)

• TVM Hybrid DSL for fast design using built-in operators

Three main phases
• Operator normalization to prepare polyhedral processing

• Comply to linear constraints (e.g., embed complex conditionals)

• Reduce complexity (e.g., inlining, CSE, fusion)

• Automatic polyhedral scheduling (e.g., loop optimization, 
thread parallelization, tiling, vectorization, memory mapping)

• Backend optimization (e.g., TensorCore acceleration, storage 
flatten, double buffering, synchronization insertion)

Three backends CPU + GPU + TPU
• Currently CPU, NVIDIA V100/A100, Ascend910
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AKG Pass Overview (Current Dev Version)
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AutoPoly Pass Overview (Current Dev Version)
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All Scenarios Polyhedral Scheduling Challenges

Polyhedral scheduling is responsible for critical actions/decisions

• Parallelism extraction: expose parallel loops

• Permutability extraction: expose “tilable” loops

• Loop-level optimization: data locality, access pattern, etc.

Limitations related to all scenarios context

• Current (Pluto/isl) initial scheduling is domain and target independent

• Fixed iteration scheduling algorithm for outer parallelism and inner data-locality 

• Requires local rescheduling passes to address specific optimization

• Lack of constraints injection mechanism and prioritized optimization:

• Cannot specify optimization constraints and priorities for DSA features

• Cannot overcome the limitations of affine cost models and constraints

Our proposal

• A structured solution to incorporate optimization constraints decided 
by (possibly) non-linear approaches

• An application to optimize load/store vectorization on GPU
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Structured Constraint Injection “MindTricks” 

Specify desirable scheduling constraints with high expressiveness

• Dedicated “influence constraint tree” abstraction

• Cross-constrain any statement at any dimension

• Enable multiple prioritized optimization scenarios

Scheduling algorithm respecting the most profitable scenario 

• Influenced scheduling construction: depth-first search for a constrained solution

• Strictly respects mathematical correctness

• Construction of the influence constraint tree done by specialized, possibly non-linear, optimizer

• AI fused operators hold few dependencies and are likely to satisfy most profitable scenarios
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Application To GPU Fused-Operators LD/ST Vectorization

Non-linear optimization objectives

• Identify best innermost dimensions to 
prepare use of explicit vector types

• Identify best following dimension 
organization to maximize coalescing

• Identify statements that should be 
scheduled together

Experimental alternatives
• Baseline (1): standard isl scheduling

• tvm: manual hand-tuned scheduling

• no-explicit-vectors: influenced without 
explicit vectorization

• influence: influenced + vectorization

Key results
• Influenced operators: 50% to 90%

• 1.7x geomean speedup

• Highest impact on transpose operators
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Symbolic Tiling
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Determining the best tile size as critical as usual

• Only rectangular tiles are considered

• AKG embeds both tuning and automatic systems

• Not only classic problems…

• Hierarchical caches of various properties

• Data type and shape

• Data locality, reuse and alignment

• Vectorization and parallelization

• …But new challenges related to NPU support

• Special computing unit (Cube) and instructions (Reduce)

• Synergy of computing units (Scalar + Vector + Cube)

• Programmable buffers

• Pipeline-able computations and communications

Our approach

• Cost-equivalent abstract machine

• Symbolic analyzer of behaviors

• Memory peak usage

• Component allocation

• Pipeline, parallelization and vectorization

• Real-time tile-size optimizer

• Multi-dimensional resources repartition

• Multi-component resources repartition

• Granularity

Speedup of Fused Ops in GPT Neural Network
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Recent Call: DSA-Oriented Algorithms for Fused Operators
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• In multi-architecture computing scenarios, the development and maintenance of fusion

operators depend on manual scheduling and optimization, which usually require a

large amount of engineering efforts. The classic polyhedral scheduling algorithms (ILP-

based Pluto/Feautrier/isl), which leverage linear cost functions and fixed-priority

cascading search, can balance the outer loop parallelism and inner loop data locality

of operators. In the traditional parallel architecture (such as CPU/Legacy GPU),

automatic scheduling of high-performance fused operators can be achieved.

• The multi-dimensional AI accelerators (3D-Matrix/2D-Vector/1D-Scalar) of DSAs allow

deeper and wider operators fusion and optimization. However, the scheduling space

expands and the time and space scheduling constraints increase dramatically. This

leads to long modeling and solving in classical polyhedral scheduling algorithms,

which becomes the bottleneck of operator fusion in scenarios such as HPC and DNN

training.

Benefits: In scenarios such as scientific computing and DNN training, 

operator fusion and optimization based on automatic scheduling can

strongly speedup performance, minimize computing power, and greatly 

reduce engineering costs.

• [Challenge 1: Flexibility] Extending the polyhedral scheduling model capability, supporting time and

space (linear/non-linear optimization) scheduling constraints of multi-dimensional accelerator

architectures, and supporting heuristic search algorithms with customizable priorities, and achieving

configurable modeling to support domain-specific architectures.

• [Challenge 2: Scalability] Optimizing the scheduling space to adapt to specific scenarios and solving

the scheduling space expansion in the classic polyhedral scheduling models.

• [Challenge 3: ILP Solving] Implementing an ILP solver suitable for polyhedral scheduling models to

minimize the solving time while ensuring correctness, so as to speedup scheduling space searching.

References:

[1] Cutting to the Core of Pseudo-Boolean Optimization: Combining Core-Guided Search with Cutting Planes 

Reasoning. In AAAI 2021.

[2] Fast linear programming through transprecision computing on small and sparse data. In OOPSLA 2020.

[3] Polyhedral auto-transformation with no integer linear programming. In PLDI 2018.

Technical Challenges

Current Situation

Technical Requirements

• The classic polyhedral scheduling algorithms do not support DSA-oriented scheduling constraints or

multi-priority search algorithms. The scheduling results require a large amount of manual optimization

and modification.

• The classic polyhedral scheduling algorithms use a one-size-fits-all modeling, resulting in huge

scheduling space in typical DNN networks (ResNet/Bert/GPT3) were operators are fused.

• Polyhedral scheduling is about multi-objective optimization. Generally, the solver is called hundreds of

times. Each solving process needs to be completed within milliseconds. However, mainstream solvers

still require further improvements to meet this requirement.

• DSA hardware constraint modeling: extend polyhedral scheduling algorithm to support time and

space scheduling constraints and implement a heuristic search that supports user-defined priorities for

DSA hardware such as Ascend 910.

• Second-level solution for polyhedral scheduling: achieve adaptive modeling, reduce the scheduling

space to one third of the original and improve solution performance by 10 times in typical DNN

(ResNet/Bert/GPT3) fusion scenarios so that the solution process of the scheduling algorithm can be

completed in seconds and theoretically optimal solution can be achieved in 90% of the scenarios.



Challenge 4: Accelerated Sparse Computation Support

Structured tensor sparsity support for performance improvement

• Opportunities to limit overhead w.r.t. unstructured/random sparsity

• Regular enough for polyhedral compilation 

Unstructured sparsity support to address particular problem classes, e.g., scientific computing or graph neural networks

• Graph neural networks (GNNs) include the processing of the graph adjacency matrix, sparse by nature

• How to handle sparsity support in an optimized way?
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Challenge 5: Trading Accuracy For Speed, The Wild Wild Way

Optimizing compilation community is strong about preserving semantics, but…

AI/DL is full of approximations

• Usage of low-precision floating point arithmetic

• Hyper-parameter selection (batch size, epoch, initialization, random attention matrices in transformers…)

• Quantization, sparsification, pruning

• Dropout layers

• Models built with lots of alchemy/art

Taking advantage of AI/DL models robustness

• Weak dependence analysis, weak synchronization

• Auto-adjusted shapes (no safe padding but plain removal of computation space parts, e.g., non-full tiles)

• Code generation restricted to computation core (special cases for convolution borders, really?)

• What is actually critical? How far can we go?
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[Poly + Approximation: Schmitt et al. Automatic adaptive approximation for stencil computations. CC 2019]



Challenge 6: Rare Polyhedral Compilation Expertise

Industry has a high interest in the polyhedral technology

Expertise resource is scarce

• Efforts required to promote and teach polyhedral compilation

• New doctors needed (wanted!) along with their fundamental research
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Conclusions And Invitation

New polyhedral framework for AI/DL
• Raising challenge (from AST to polyhedral representation) from usual compilers is fully solved

• Replaced by more scientifically interesting operator fusion strategy selection

• But all other challenges are even bigger!

• Scalability is a top concern with much more statements, tensor dimensions and iteration domain dimensions

• Extracting parallelism isn’t heroic but exploiting it for performance is the real issue

• Innovation related to the all-scenario context

• Scheduling is influenced by injecting specific optimization constraints decided by non-linear optimization 

• Specific “MindTricks” influence constraint tree abstraction and adapted scheduling construction

• Additional constraints and priorities may be adapted to input problem and target architecture

• Enable better global optimization and simplify the compiler design by avoiding rescheduling passes

• 1.7x geomean speedup over classic polyhedral scheduling on GPU

• Symbolic approach for determining best tile sizes and reduce/remove the need for tuning

A space for (polyhedral) breakthrough opportunities
• Already efficient but many open challenges: flexibility, scalability, sparsity, approximation, etc.

• Open source, access to end-to-end AI/DL scenarios and usecases

• You are kindly invited to test, compare, contribute 

25 Copyright © 2022 Huawei Technologies Co., Ltd. All rights reserved.

https://gitee.com/mindspore/akg



Copyright©2022 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.

This presentation and recording belong to Huawei Technologies Co. Ltd.

No distribution is allowed without Huawei Technologies Co. Ltd.’s permission

Contact: cedric.bastoul@huawei.com


