
Bringing Presburger Arithmetic to MLIR with FPL
Arjun Pitchanathan
University of Edinburgh

arjun.pitchanathan@ed.ac.uk

Kunwar Shaanjeet Singh Grover
IIIT Hyderabad

kunwar.shaanjeet@students.iiit.ac.in

Michel Weber
ETH Zurich

webmiche@student.ethz.ch

Tobias Grosser
University of Edinburgh
tobias.grosser@ed.ac.uk

Abstract
Presburger arithmetic provides the mathematical core for
the polyhedral compilation techniques that drive analyti-
cal cache models, loop optimization for ML and HPC, for-
mal verification, and hardware design. Despite many efforts
to use Presburger arithmetic in production compilers, the
most powerful polyhedral compilation techniques have thus
far been confined to optional extensions of the compilation
flow as traditional Presburger libraries were developed as
standalone projects that were not part of the core compiler
toolchain. After developing FPL, a fast new Presburger li-
brary, we worked with the LLVM community to make Pres-
burger arithmetic an integral part of the production-focused
MLIR compiler framework. We show how developers can
use FPL in MLIR and report on our experience in working
with the LLVM/MLIR community on integrating FPL into
MLIR. With FPL now a native, performant, and approachable
component of the LLVM ecosystem, compiler developers can
co-develop the Presburger library and polyhedral transfor-
mations with ease. As a result, we expect that scientists and
compiler engineers will now be able to jointly develop even
more IMPACTful polyhedral optimizations.

1 Introduction
Polyhedral compilation [19] based on Presburger arithmetic
is used for performance optimization in high-performance
computing and machine learning [1, 3, 6, 18], formal ver-
ification [13], cache modelling [8], the derivation of data
movement bounds [14], and configurable computing [16].
Over the last thirty years, several libraries provided mathe-
matical foundations for polyhedral compilation. Omega [9]
and Polylib [11], developed many of the early ideas and in-
spired the design of polyhedral math libraries. The Parma
Polyhedral Library (PPL) [2] was the first polyhedral library
to be used in GCC, as part of Graphite [17]; isl further
improved on its robustness, provided the foundations for
LLVM/Polly [5] and Tensor Comprehensions [18], among
others, and is considered state-of-the-art in polyhedral li-
braries. Finally, VPL [4] demonstrated formally verified im-
plementations for certain operations on sets of rationals.
As a Presburger library for LLVM/Polly [6], GCC [17],

and many other tools, isl outgrew its mathematical roots

 LLVM

Pollyisl

Polyhedral

 MLIR

Affine FPL

Figure 1. While classical polyhedral compilers have been
confined to optional extensions of the compilation flow that
interface with external libraries, FPL integrates Presburger
arithmetic into MLIR upstream.

quickly and increasingly incorporated broader compiler con-
cepts. In particular, isl offered code generation facilities [7]
as well as higher-level code representations such as schedule
trees [20]. While schedule trees made polyhedral compilers
more powerful, they were incompatible with the design and
needs of LLVM [10]. MLIR then generalized schedule trees
with nested regions, and used these with the Affine dialect
to create a simplified loop model that integrates well with
the broader LLVM ecosystem. Until now it was necessary
to choose between a well-integrated simple loop optimizer
and full polyhedral transformations [12] that translate MLIR
dialects into isl-compatible formats. Unfortunately, the con-
version costs and community disconnects hindered deeper
integration of such approaches into MLIR.

With a generalization of schedule trees available in MLIR,
the last missing piece is a fast and complete library for Pres-
burger arithmetic. We fill in this gap by contributing a Pres-
burger library, FPL[15], to LLVM. FPL was written from the
ground up to meet the community’s standards, incentivizing
further participation in the development of these mathemat-
ical foundations and allowing for the polyhedral compiler to
be co-developed with the Presburger library. The Presburger
library is already being used in the MLIR Affine dialect for
loop fusion1 and in the CIRCT project for dependence anal-
ysis. 2 Thus, we now have a Presburger library co-existing
with (a currently somewhat restricted instance of) a polyhe-
dral transformation framework within the LLVM ecosystem,
able to make full use of each other.
Having a library deeply integrated with the compiler al-

lows compiler engineers to leverage the full power of Pres-
burger arithmetic while seamlessly translating information
1https://github.com/llvm/llvm-project/commit/c8fc5c0385dbb47623c1cca5efa0b96d5e5f8151
2https://github.com/llvm/circt/commit/82b9de0f35f3d14a4a6aa69a3842992c7414cb8b

https://github.com/llvm/llvm-project/commit/c8fc5c0385dbb47623c1cca5efa0b96d5e5f8151
https://github.com/llvm/circt/commit/82b9de0f35f3d14a4a6aa69a3842992c7414cb8b

Conference’17, July 2017, Washington, DC, USA Arjun Pitchanathan, Kunwar Shaanjeet Singh Grover, Michel Weber, and Tobias Grosser

affine.for i = 0 to 4 {
 %c = affine.load %C[%i] : memref<4xf32>
 affine.store %c, %B[%i] : memref<4xf32>
}
affine.for j = 0 to 4 {
 %c = affine.load %B[3 - %j] : memref<4xf32>
 affine.store %c, %B[%j] : memref<4xf32>
}

(i) -> (x): (i >= 0 and i < 4 and x = i)

(j) -> (y): (j >= 0 and j < 4 and y = 3 - j)

(y) -> (j): (j >= 0 and j < 4 and y = 3 - j)

 (i) -> (j): (i >= 0 and i < 4 and i >= j + 1
 and j >= 0 and j < 4 and i = 3 - j)

MemRefAccess srcAccess = ..., dstAccess = ...;
// Create access relations from the MemRefAccesses.
IntegerRelation srcRel, dstRel;
srcAccess.getAccessRelation(srcRel);

dstAccess.getAccessRelation(dstRel);
// Compute the dependence relation by composing
// `srcRel` with the inverse of `dstRel`.
dstRel.inverse();

dstRel.compose(srcRel);
dstRel.addInequality({1, -1, -1}); // i >= j + 1.
bool hasDependency = !dstRel.isIntegerEmpty()

hasDependency = true

Figure 2. Example flow for performing analysis operations in MLIR with FPL. In this case, we are checking whether it is
permissible to fuse the two loops on the left. This is allowed if there is no memory access dependency between an iteration of
the 𝑖 loop with an earlier iteration of the 𝑗 loop. We can easily check this by converting the MemRefAccess objects created
from the load/store IR operations to the Presburger library’s IntegerRelations and performing some Presburger operations.

between the IR level and the mathematical abstractions. This
enables closer integration between the IR and the mathe-
matical foundations that would be more difficult to achieve
when the library is an external one.

2 Using FPL with MLIR
FPL provides four main data structures for Presburger arith-
metic: IntegerRelation and IntegerPolyhedron are rela-
tions and sets respectively defined by a set of affine con-
straints that must all be satisfied by every element in the set
or relation. They support existentially quantified variables,
so they can be thought of as projections of convex objects.
Both can have symbols, i.e. parameters that have constant
but unknown values, such as the size of an array that does
not change during the course of a loop but whose size is
not known at compile-time. The classes PresburgerSet and
PresburgerRelations are unions of IntegerPolyhedrons
and IntegerRelations respectively – they can support dis-
junctions of constraints. We support integer-exact set op-
erations like union, intersect, subtract, complement, equal-
ity checks, emptiness checks, and lexicographic optimiza-
tion. For more algorithmic details on these operations, see
Pitchanathan et al. [15] or the MLIR documentation.3

MLIR provides support to define domain-specific IRs known
as dialects. One example is the Affine dialect, which repre-
sents affine loop nests in a format suitable for polyhedral
compilation. We present an example (Figure 2) of the kind
of analyses FPL enables over the Affine dialect. In this exam-
ple, we wish to check whether the load in the second loop
depends on the store of the first one.
In MLIR, a MemRefAccess represents a memory load or

store access. We take the MemRefAccesses built from the
store/load instructions and call getAccessRelation to ob-
tain an IntegerRelation mapping the loop index to the
memory location accessed. Inverting the second relation
gives us a relation from memory locations accessed by the
3https://mlir.llvm.org/doxygen/namespacemlir_1_1presburger.html

Jul
 20

Se
p 2

0
Nov

 20
Jan

 21
Mar

21

May
 21

Jul
 21

Se
p 2

1
Nov

 21
Jan

 22
Mar

22
0

50

100
Number of landed patches

Figure 3. Landed patches over time. Each colour denotes a
different contributor; we already have five contributors.

second loop to its induction variable. Composing these gives
a relation representing the dependencies between the iter-
ations 𝑖 of the first loop to the iterations 𝑗 of the second.
By adding a constraint 𝑖 ≥ 𝑗 + 1, we obtain a relation that
has the dependencies from iterations of the first loop to ear-
lier iterations of the second. These two loops can be fused
only if there are no such dependencies, which we can check
by running the integer emptiness check on this final de-
pendence relation. In this case, there exists a dependence
between 𝑗 = 1 and 𝑖 = 2, so fusing the loops would be a
miscompile. By providing support for Presburger operations,
we lay the foundations for future work leveraging FPL for
more complex polyhedral compilation techniques.

3 Contributing FPL into MLIR
TheMLIRAffine dialect initially had some limited support for
Presburger-style operations, including a rational emptiness
check using Fourier-Motzkin elimination. Over 20 months,
110 patches, and over 1,500 Phabricator comments, we up-
streamed support for full Presburger arithmetic to MLIR,
including integer-exact operations such as the emptiness
check. Apart from the usage of our library in loop fusion,
developers outside of our initial team have already expressed
interest in working on FPL itself. Over time, more developers
have joined our effort (Figure 3). In fact, this nascent compo-
nent of the LLVM ecosystem already has five contributors.

https://mlir.llvm.org/doxygen/namespacemlir_1_1presburger.html

Bringing Presburger Arithmetic to MLIR with FPL Conference’17, July 2017, Washington, DC, USA

References
[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele

Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhe-
dral Compiler for Expressing Fast and Portable Code. In Proceed-
ings of the 2019 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO 2019). IEEE Press, 193–205. https:
//dl.acm.org/doi/10.5555/3314872.3314896

[2] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The
Parma Polyhedra Library: Toward a Complete Set of Numerical Ab-
stractions for the Analysis and Verification of Hardware and Soft-
ware Systems. Sci. Comput. Program. 72, 1–2 (June 2008), 3–21.
https://doi.org/10.1016/j.scico.2007.08.001

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C.
Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 578–
594. https://www.usenix.org/conference/osdi18/presentation/chen

[4] Alexis Fouilhe. 2015. Revisiting the abstract domain of polyhedra :
constraints-only representation and formal proof. Theses. Université
Grenoble Alpes. https://tel.archives-ouvertes.fr/tel-01286086

[5] Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly
– Performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters 22, 04 (2012). https://doi.org/
10.1142/S0129626412500107

[6] Tobias Grosser and Torsten Hoefler. 2016. Polly-ACC Transparent
Compilation to Heterogeneous Hardware. In Proceedings of the 2016
International Conference on Supercomputing (ICS ’16). Association for
Computing Machinery, New York, NY, USA, Article 1, 13 pages. https:
//doi.org/10.1145/2925426.2926286

[7] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Poly-
hedral AST Generation Is More Than Scanning Polyhedra. ACM
Trans. Program. Lang. Syst. 37, 4, Article 12 (July 2015), 50 pages.
https://doi.org/10.1145/2743016

[8] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler.
2019. A Fast Analytical Model of Fully Associative Caches. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2019). Association for Computing
Machinery, New York, NY, USA, 816–829. https://doi.org/10.1145/
3314221.3314606

[9] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Sh-
peisman, and DaveWonnacott. 1996. The Omega calculator and library,
version 1.1. 0. College Park, MD 20742 (1996), 18.

[10] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 75–86.

[11] Vincent Loechner. 1999. PolyLib: A library for manipulating parame-
terized polyhedra. (1999).

[12] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Olek-
sandr Zinenko. 2021. Polygeist: Affine C in MLIR. (2021).
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/
IMPACT_2021_paper_1.pdf Not a formal proceedings.

[13] Kedar S. Namjoshi and Nimit Singhania. 2016. Loopy: Programmable
and Formally Verified Loop Transformations. In Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8-10,
2016, Proceedings (Lecture Notes in Computer Science), Xavier Rival
(Ed.), Vol. 9837. Springer, 383–402. https://doi.org/10.1007/978-3-662-
53413-7_19

[14] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan,
and Fabrice Rastello. 2020. Automated Derivation of Parametric Data

Movement Lower Bounds for Affine Programs. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 808–822. https://doi.org/10.1145/3385412.3385989

[15] Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoefler,
and Tobias Grosser. 2021. FPL: Fast Presburger Arithmetic through
Transprecision. Proc. ACM Program. Lang. 5, OOPSLA, Article 162 (oct
2021), 26 pages. https://doi.org/10.1145/3485539

[16] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong.
2013. Polyhedral-Based Data Reuse Optimization for Configurable
Computing. In Proceedings of the ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA ’13). Association for
Computing Machinery, New York, NY, USA, 29–38. https://doi.org/10.
1145/2435264.2435273

[17] Konrad Trifunović, Albert Cohen, David Edelsohn, Feng Li, Tobias
Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjödin,
and Ramakrishna Upadrasta. 2010. GRAPHITE Two Years After: First
Lessons Learned FromReal-World Polyhedral Compilation. In 2nd GCC
Research Opportunities Workshop (GROW). http://citeseerx.ist.psu.edu/
viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.220.3386

[18] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. arXiv
e-prints, Article arXiv:1802.04730 (Feb. 2018), arXiv:1802.04730 pages.
arXiv:cs.PL/1802.04730

[19] Sven Verdoolaege. 2016. Presburger formulas and polyhedral compila-
tion. (2016).

[20] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
2014. Schedule trees. In International Workshop on Polyhedral Compila-
tion Techniques, Date: 2014/01/20-2014/01/20, Location: Vienna, Austria.

https://dl.acm.org/doi/10.5555/3314872.3314896
https://dl.acm.org/doi/10.5555/3314872.3314896
https://doi.org/10.1016/j.scico.2007.08.001
https://www.usenix.org/conference/osdi18/presentation/chen
https://tel.archives-ouvertes.fr/tel-01286086
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/2925426.2926286
https://doi.org/10.1145/2925426.2926286
https://doi.org/10.1145/2743016
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3314221.3314606
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://doi.org/10.1007/978-3-662-53413-7_19
https://doi.org/10.1007/978-3-662-53413-7_19
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3485539
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2435264.2435273
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.220.3386
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.220.3386
https://arxiv.org/abs/cs.PL/1802.04730

	Abstract
	1 Introduction
	2 Using FPL with MLIR
	3 Contributing FPL into MLIR
	References

