
A Pipeline Pattern Detection Technique in Polly
Delaram Talaashrafi
Western University

London, Ontario, Canada
dtalaash@uwo.ca

Johannes Doerfert
Argonne National Laboratory

Lemont, IL, USA
jdoerfert@anl.gov

Marc Moreno Maza
Western University

London, Ontario, Canada
moreno@csd.uwo.ca

Abstract
The polyhedral model has repeatedly shown how it facilitates
various loop transformations, including loop parallelization,
loop tiling, and software pipelining. However, parallelism
is almost exclusively exploited on a per-loop basis without
much work on detecting cross-loop parallelization opportu-
nities. While many problems can be scheduled such that loop
dimensions are dependence-free, the resulting loop paral-
lelism does not necessarily maximize concurrent execution,
especially not for unbalanced problems.

In this work, we introduce a polyhedral-model-based anal-
ysis and scheduling algorithm that exposes and utilizes cross-
loop parallelization through tasking. This work exploits
pipeline patterns between iterations in different loop nests,
and it is well suited to handle imbalanced iterations.

Our LLVM/Polly-based prototype performs schedule mod-
ifications and code generation targeting a minimal, language
agnostic tasking layer. We present results using an imple-
mentation of this API with the OpenMP task construct. For
different computation patterns, we achieved speed-ups of up
to 3.5× on a quad-core processor while LLVM/Polly alone
fails to exploit the parallelism.

Keywords: polyhedral model, pipelining, LLVM

ACM Reference Format:
Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza.
2022. A Pipeline Pattern Detection Technique in Polly. In Pro-
ceedings of IMPACT 2022. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Overview
The polyhedral model [15, 46] has proved to be very effective
for optimizing loop nests by using different methods such
as loop tiling, loop parallelizing, and software pipelining
[1, 4, 7]. Almost all these methods optimize for-loop nests on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IMPACT 2022, , Budapest, Hungary
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

a per-loop basis. However, another opportunity for optimiza-
tion might exist in the program, which one can exploit by
considering cross-loop parallelization; executing iteration
blocks of different loop nests in parallel when it does not
violate any dependence relations. There has been some ef-
forts to consider this parallelization opportunity. The paper
[40] generates pipelined multi-thread code by interleaving
iterations of some loops. Paper [23] proposes an algorithm
for detecting pipeline opportunities between iteration blocks
of two for-loop nests. Also, [10] uses cross-loop data reuse
for cache optimizations. However, we are not aware of any
fully-automatic, LLVM-based method for detecting and ex-
ploiting parallelization opportunities between iterations of
different for-loop nests through tasking.

The main objective of this paper is to detect the cross-loop
task parallelism in a program. We exploit this opportunity
by detecting pipeline pattern between iteration blocks of
different for-loop nests; 1 we call it cross-loop pipeline pattern.

Detecting cross-loop pipelining provides a building block
towards exploiting the natural data-flow parallelism. How-
ever, the existing loop optimization methods based on the
polyhedral model have a limited ability to extract cross-loop
pipeline patterns, as we explain in Section 2.
We assume the program consists of consecutive for-loop

nests. We also assume that an iteration of a loop nest may de-
pend on the previous iterations of the same loop nest, as well
as iterations of the loop nests before it. Detecting cross-loop
task parallelism is particularly important and effective for
programs where (1) compute-intensive functions are called
inside for-loop nests, or (2) no optimization opportunities
for individual for-loop nests exist.
For instance, consider the program in Listing 1, where A

and B are two initialized N × N matrices. Polly[20], LLVM-

1 for(i=0; i<N-1; i++)

2 for(j=0; j<N-1; j++)

3 S: A[i][j]=f(A[i][j], A[i][j+1], A[i+1][j+1]);

4

5 for(i=0; i<N/2-1; i++)

6 for(j=0; j<N/2-1; j++)

7 R: B[i][j]=g(A[i][2*j], B[i][j+1], B[i+1][j+1],

8 B[i][j]);

Figure 1. Example with cross-loop pipeline

1Not be confused with software pipelining and DOACROSS loops, where a
pipeline pattern exists between different iterations of the same loop nest.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

based framework for applying polyhedral transformations,
detects first level tiling, but it cannot detect parallelism for
any of the for-loops in the program. However, there is a
parallelization opportunity between iteration blocks of S
and iteration blocks of R. For instance, consider the first two
iterations of the second for-loop nest for computing B[0][0]
and B[0][1]. The only element of the matrix A we need for
the first iteration is A[0][0], and for the second iteration is
A[0][2]. Therefore, when A[0][0] is computed (after finishing
the first iteration of the first loop nest), we can compute
B[0][0] and the following elements of the matrix A in parallel.
With the same method, when A[0][2] is computed, we can
compute B[0][1] and the following elements of the matrix A
in parallel. Note that the iterations of each statement run in
their sequential order.
Figure 2 illustrates this idea. The upper part, 2a, shows

the sequential execution of the iterations of the statements
S and R, where iterations of R begin after all iterations of
S are finished. The lower part, 2b, shows the execution of
the program after exploiting cross-loop task parallelization.
In this case, thread_0 runs the iteration blocks of S, and
thread_1 runs the iteration blocks of R. Thread_1 can start
running an iteration of R right after thread_0 finishes the
iteration block of S that it depends on.

⟨S, [0, 0]⟩ ⟨S, [0, 1]⟩ ⟨S, [0, 2]⟩ ⟨S, last⟩ ⟨R, [0, 0]⟩ ⟨R, [0, 1]⟩ ⟨R, last⟩

(a) Sequential execution. R starts after iterations of S are finished.

⟨S, [0, 0]⟩
[⟨S, [0, 1]⟩
⟨S, [0, 2]⟩]

[⟨S, [0, 3]⟩
⟨S, [0, 4]⟩] ⟨S, last⟩

⟨R, [0, 0]⟩ ⟨R, [0, 1]⟩ ⟨R, last⟩

thread_0

thread_1

time

(b) Pipeline execution. Iterations of R are overlapped with iterations
of S, and R is not part of the critical path anymore.

Figure 2. Visualization of pipeline execution

In this work, we detect and exploit the cross-loop pipeline
pattern using the polyhedral model. Our method is imple-
mented as part of LLVM/Polly[20] and operates at compile
time on the LLVM-IR [25]. The main idea is to block iter-
ation domains such that finishing each block provides the
requirements for running not only the next block in the same
iteration domain, but also blocks in other iteration domains.
After computing dependence relations between newly gen-
erated blocks, we construct an OpenMP task for each block
to exploit the detected cross-loop task parallelism.
We begin by motivating our work by explaining related

works and comparing them to our research in Section 2. We
provide background information in Section 3; after that, we
explain our transformation algorithm in Section 4. Then, we

go through the details of the scheduling algorithm and code
generation in Section 5. We conclude with reporting on our
experimental results in Section 6 and the future plans for
continuing this project in Section 7.

2 Related works
Various lines of research have been investigated on automat-
ically detecting pipeline-related patterns. In this section, we
go through some of the papers that are related to our work.
Paper [35] discusses the exploitation of pipeline paral-

lelism, including use-cases, and the critical challenge of man-
aging dependencies between the source region and the target
region. We try to address this challenge in the case of pipelin-
ing iterations of for-loop nests. Also, the software pipelining
technique for pipelining iterations of a single loop is dis-
cussed in [24].
The paper [40] follows the same objective as our paper,

that is, to use the polyhedral model and exploit pipeline par-
allelism opportunities between loop nests so as to optimize
(part of) programs that conventional polyhedral optimizers
cannot optimize. However, there are differences between the
two approaches. Our prototype operates at the IR level of a
non-optimized program, whereas the prototype in [40] op-
erates at the source level of programs already optimized by
Pluto and parallelized by the OpenMP API. Also, it can detect
and exploit the pipeline pattern only if (1) the considered
loop nests have identical iteration domains and chunk sizes,
(2) are not associated with SIMD constructs, and (3) are in the
same parallel region. Moreover, each iteration of the target
loop nest should depend on the same or the previous itera-
tions of its source loop nest. With these considerations, the
prototype in [40] can use the clauses ordered and nowait
of OpenMP to exploit the pipeline pattern. In our work, by
using the general transformation algorithm described in Sec-
tion 4, and by taking advantage of the OpenMP constructs
task and depend, we can detect and exploit pipeline pat-
terns in loop nests of sequential programs with arbitrary
memory accesses. Also, our transformation algorithm for
task detection is independent of the OpenMP tasking layer.

The method explained in [23] detects pipeline parallelism
to make machine learning models executions more efficient
on the so-called computational memory accelerators consid-
ered in that paper. We provide more details on the algorithm
of this paper in Section 4.
The objectives of the authors in [21] are similar to ours:

they aim at exploiting parallelization between different loop
nests. However, the method of [21] and the output are differ-
ent. The authors discuss a method based on linear regression
for detecting pipeline patterns in pairs of consecutive loop
nests, using run-time information.
The Pluto [7] algorithm supports a method for detecting

software pipelining in the form of DOACROSS loops ap-
plied on a program tiled by the Pluto algorithm. Paper [13]

A Pipeline Pattern Detection Technique in Polly IMPACT 2022, , Budapest, Hungary

explains a polyhedral-model-based method for designing a
compiler-runtime system to exploit task parallelism in dis-
tributed and shared memory architectures. It uses Pluto’s
tiling and parallelization for task detection, and the runtime
system coordinates the dependencies between tasks.

Paper [41] uses the polyhedralmodel to exploit DOACROSS
loops using OpenMP. Contrary to our approach, their input
program is in data-flow graph language. The work explained
in [9] optimizes programs using OpenMP tasks, where pro-
gram annotations explicitly specify the tasks. Paper [37]
introduces OpenStream as a data-flow extension of OpenMP.
It can exploit pipeline and data-flow parallelism on an anno-
tated program.

A well-studied subject closely related to our work is auto-
matically extracting the data-flow graph from the program
to run it on data-flow architectures. For example, paper [27]
develops an algorithm for automatically extracting data-flow
threads from programs. In another work, the paper [31] de-
velops an LLVM-based prototype to find the data-flow graph
between LLVM-IR instructions of a program.
In paper [32], the authors propose a fully-automatic and

non-speculative compiler technique for improving the per-
formance of DOACROSS loops via reducing the cost of com-
munication. In themultiprocessor system on chip domain, pa-
per [8] uses a not fully-automatic method based on machine
learning and data mining algorithms to construct so-called
coupled blocks, the smallest unit of a program considered
as a task, and finds task parallelism relations between them.
In the same domain, paper [11] extracts software pipelin-
ing and optimizes the granularity of the stages using linear
programming.
Software pipelining is an important transformation and

well-studied subject in high-level synthesis (HLS). For exam-
ple, using the polyhedral model [30]improves the applica-
bility and efficiency of nested loop pipelining, also known
as nested software pipelining. In a similar approach, [28]
uses the polyhedral model to improve software pipelining
for HLS applications by extending the method to handle
loops with uncertain and non-uniform dependencies. More-
over, paper[2] develops an algorithm based on the polyhedral
model to optimize data transfer to offloading devices via dif-
ferent methods, including pipelining communications and
computation.

3 Background
In this section, we briefly explain the background of our
work, which includes some related concepts of the polyhe-
dral model, pipeline parallelism, and OpenMP tasking.

3.1 Polyhedral Model
The polyhedral model [33] is a mathematical description for
representing and manipulating static control parts (SCoPs)
[15] of a program by using Presburger’s arithmetic [39]. It

is based on the notions of iteration domain of dynamic in-
stances of a statement,memory access relation between those
dynamic instances, and their relative execution orders, as well
as the notion of a schedule. We refer to the articles [5, 16, 17]
for more detailed explanation on the notions.
The polyhedral model optimizes programs via different

loop transformations (e.g. fission, fusion, tilling). Each trans-
formation is equivalent to changing the schedule of state-
ments. Different approaches [1, 7] are proposed for loop
transformation and code generation [3, 42] in the polyhedral
model. Also, various libraries such as ISL[43–45], Polylib
[29], Piplib [14], and Omegalib [22] implement the polyhe-
dral model’s underlying mathematical operations. Following
Polly, we use the ISL library for Z-polyhedral computations.
The ISL library represents Z-polyhedra as sets of integer

tuples. A map is a binary relation from one set to another.
Different operations are defined on maps in the ISL library.
The inverse map of a map M , denoted by M−1, is the set of
the pairs (j⃗, i⃗) such that (⃗i, j⃗) ∈ M . The domain (resp. range)
of M denoted by Dom(M) (resp. Range(M)) is the set of
all first elements of members ofM (resp.M−1). We denote
by lexmax(M) the subset of M consisting of all pairs (⃗i, j⃗)
so that i⃗ ∈ Dom(M) and j⃗ is the lexicographically largest
k⃗ ∈ Range(M) so that (⃗i, k⃗) ∈ M . The composition of two
maps M1 and M2 is denoted by M1 (M2). It is the set of all
pairs (⃗i, j⃗), such that there exists a vector k⃗ , where (⃗i, k⃗) ∈ M2
and (k⃗, j⃗) ∈ M1

Schedule are represented in the form of a tree, called sched-
ule tree in the ISL library. Nodes in a schedule tree have
different types for representing different execution orders.
The most important ones that we are using in this article
are: domain node, band node, sequence node, mark node,
and expansion node. More detailed information on the tree
representation of the schedules can be found in [44, 45].

3.2 Pipeline Parallelism
Pipeline parallelism is a well-known technique [6, 18, 26, 36]
for parallelizing different applications. It can be used when a
sequence of data items has to go through a sequence of stages,
and the input of each stage is the output of its previous stage.
Concurrency happens when a stage i can start operating on
a data item d after stage i − 1 has finished processing d , but
not the whole sequence of data items.

3.3 Tasking in OpenMP
Since version 3.0, OpenMP[12, 34] supports task parallelism,
using the omp task pragma. To increase the applicability of
task parallelism, OpenMP 4.0 introduces the depend clause.
Let M be a shared memory location. Using the depend(in:M),
depend(out:M), and depend(inout:M) clauses, one can spec-
ify whether the considered task reads, writes, or both reads
and writes M. The runtime system uses this information to

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

manage dependencies between tasks, and decide whether a
task can execute, or should wait for other tasks to finish.

4 Transformation Algorithm
In this section, we explain our algorithm for detecting the
cross-loop pipeline pattern in a program. We explain each
step in detail and conclude the section with performance
analysis of the algorithm.
The algorithm proposed in [23] provides the foundation

for our transformation algorithm. The algorithm of [23] first
considers two for-loop nests, called source and target, where
iterations of the source loop nest write to a shared array,
and iterations of the target loop nest read from that same
shared array. Then, this algorithm finds a relation that maps
the index of each write in the shared array to the maximum
iteration of the target that can safely execute. Finally, us-
ing the specifications of the so-called computational memory
accelerator studied in that paper, this map coordinates dif-
ferent pipeline stages between iteration blocks of the two
considered for-loop nests.

The pipeline map computed by our algorithm (Section 4.1)
considers iteration blocks of the source and the target for-
loop nests for coordinating different stages of the pipeline.
Moreover, on the contrary to the method in [23], our al-
gorithm does not stop after finding the pipeline relations
between pairs of for-loop nests. By computing pipeline block-
ing maps of iteration domains (Section 4.2), we extend the
algorithm of [23] to detect the pipeline pattern between all
dependent loop nests in the program. In addition, we com-
pute pipeline dependency maps (Section 4.3) to determine
dependence relations between tasks at compile time and
make them suitable for generating task-parallel OpenMP
program in the next phase.

4.1 Pipeline Map
Consider two statements S and T with respective iteration
domains I and J . Also, assume that the iterations of S
write in a set of memory locationsM, and that the iterations
of T read fromM. We define the pipeline map between S

and T to be the relation TS,T (I → J), where (⃗i, j⃗) ∈ TS,T
if and only if (1) after running all iterations of S up to i⃗ ,
we can safely run all iterations of T up to j⃗, and (2) i⃗ is
the smallest (lexicographically) vector and j⃗ is the largest
(lexicographically) vector with Property (1). This map is
called the pipeline map; because for every pair (⃗i, j⃗) in TS,T,
we can run iterations of T up to j⃗ and iterations of S after i⃗ ,
in parallel. Repeating this pattern creates a pipeline among
iteration blocks of the loop nests.

To compute the pipeline map, we take a similar approach
as the one used in [23]. LetWr (I →M) be thewrite relation
of S, that is, the set of the pairs (⃗i,m) ∈ I×M so that location
m is written at iteration i⃗ . Similarly, let Rd (J →M) be the
read relation of T, that is, the set of the pairs (j⃗,m) ∈ J ×M

so that locationm is read at iteration j⃗. Also, assume that
there is no over-write, that is,Wr is injective.
UsingWr and Rd , we define P (J → I), as the compo-

sition ofWr−1 by Rd , that is, P = Wr−1 (Rd). Relation P
relates the two iteration domains.
Then, we find the domain of P, DP . By mapping each

member of DP to all other members that are lexicographi-
cally less than or equal to it, we get the map D ′(J → J).
After that, we find the relation H (J → I) defined by

H = lexmax(P (D ′)). This relation maps each read iteration
j⃗ of the target statement to the lexicographically largest write
iteration i⃗ of the source statement that j⃗ and its previous
iterations depend on.

The final step to get the pipeline map is to findH −1 (I →
J), and deduce the pipeline map TS,T as:

TS,T = lexmax(H −1). (1)
Because one iteration of the source statementmay bemapped
to multiple iterations of the target statement, we use the
operation lexmax to get the maximum one.

As an example, consider Listing 1 with N=20. The pipeline
map between statements S and R is:
{S[i0, i1]→R[o0,o1] : ∃(e0 = ⌊(i1)/2⌋ :

o0 = i0 ∧ 2e0 = i1 ∧ 2o1 ≥ i1 ∧ 2o1 ≤ 1 + i1
∧ i0 ≥ 0 ∧ i0 ≤ 8 ∧ i1 ≥ 0 ∧ i1 ≤ 16)}.

In the next step, we use the pipeline maps to partition the
iteration domain of each statement to get the iteration blocks
that are in pipeline relation. For a statement S and a pipeline
map T , if S is the source (resp. target) statement, we first
partition its iteration domain, I, such that each element of
Dom(T) (resp. Range(T)) is the lexicographically largest
member of its part. Then, by mapping each member of each
part to the lexicographically largest member of that part, we
get a source blocking mapVS (I → I) (resp. a target blocking
mapYS (I → I)). To compute these maps, let B = Dom(T)
if S is the source in the pipeline map T (resp.B = Range(T)
if S is the target in the pipeline map T). We compute B ′ as:

B ′ = lexleset(I,B)

Then, the source blocking map,VS (I → I) (resp. the target
blocking map YS (I → I)) is as:

lexmin(B ′
T
). (2)

If there are no iterations of T depending on the final itera-
tions of S, then those last iterations of S do not appear in
TS,T; therefore, they do not appear in the source blocking
map. To handle this case, we add a block consisting of all re-
maining iterations by mapping them to the lexicographically
maximum iteration of the iteration domain.

Continuing with the example of the Listing 1, one part of
the source blocking map is:
∃(e0 = ⌊(o1)/2⌋ : o0 = i0 ∧ 2e0 = o1 ∧ i0 ≥ 0 ∧ i0 ≤ 8∧
i1 ≥ 0 ∧ i1 ≤ 16 ∧ o1 ≥ i1 ∧ o1 ≤ 1 + i1).

A Pipeline Pattern Detection Technique in Polly IMPACT 2022, , Budapest, Hungary

Therefore, some elements of the map are:
{S[1, 1]→ S[1, 2], S[1, 2]→ S[1, 2],
S[1, 3]→ S[1, 4], S[1, 4]→ S[1, 4]}.

This means that iterations [1, 1] and [1, 2] are in one block,
and [1, 3] and [1, 4] are in another block.

4.2 Pipeline Blocking Maps of Iteration Domains
It is important to note that for each statement, there are
several pipeline maps. As a result, there are several source
and target blocking maps. For instance, consider Listing 3,
which adds a for-loop nest to Listing 1. There are two source

1 for(i=0; i<N-1; i++)

2 for(j=0; j<N-1; j++)

3 S: A[i][j]=f(A[i][j], A[i][j+1], A[i+1][j+1]);

4

5 for(i=0; i<N/2-1; i++)

6 for(j=0; j<N/2-1; j++)

7 R: B[i][j]=g(A[i][2*j], B[i][j+1], B[i+1][j+1],

8 B[i][j]);

9

10 for(i=0; i<N/2-1; i++)

11 for(j=0; j<N/2-1; j++)

12 U: C[i][j]=h(A[2*i][2*j], B[i][j], C[i][j+1],

13 C[i+1][j+1], C[i][j]);

Figure 3. Example with 3 loop nests

blocking maps for the statement S; one for the pipeline map
between S and R, and one for the pipeline map between S and
U. For the statement R, there is one target blocking map for
the pipeline map between S and R, and one source blocking
map for th pipeline map between R and U. For the statement
U, there are two target blocking maps; for the pipeline maps
between S and U, and between R and U.

However, we need to have a single pipeline blocking map
of iteration domain per statement, where each pipeline block
can be considered an atomic task. Therefore, for each state-
ment, we should integrate all its source and target blocking
maps such that we can establish a pipeline relation between
all blocks of all statements. We also need to choose these
blocks to maximize the number of blocks of different loops
that can execute in parallel to get the best possible perfor-
mance at the end. To satisfy both conditions, we minimize
the size of the blocks as much as possible and construct the
optimal blocks from all blocking maps associated with each
statement. In fact, for each statement, we compute the lexmin
of the union of all source and target pipeline blocking maps:

ES = lexmin((
⋃
j

(V j
S) ∪ (

⋃
i

(Yi
S))). (3)

In this equation, Yi
S (resp. V j

S) goes over the target (resp.
source) blocking maps of Swith respect to the pipeline maps

between S and other statements that S depends on (resp.
statements that depend on S).

From this point on, for two vectors i⃗ and j⃗ in the iteration
domain of S, if ES (⃗i) = ES (j⃗) = ℓ⃗, we say that i⃗ and j⃗ are in
the same block, and we call this block ℓ⃗. With this definition,
we can say that equation 3 assigns to each iteration the
smallest block that it belongs to, among all source and target
blocking maps.

To illustrate the effectiveness of choosing optimal blocks
for correctness and efficiency, consider figure 4. In this ex-
ample, statements S1 and S2 are sources of the statement
S3, and S3 is the source for statement S4. We want to find
the first pipeline block of S3 after j⃗0. In other words, we are
looking for the lexicographical maximum vector of the first
block after j⃗0.
After finishing the execution of S1 up to iteration i⃗1, the

dependencies to S1 are satisfied for iterations of S3 up to j⃗1.
The same holds for iterations of S2 up to i⃗2 and iterations of
S3 up to j⃗2. On the other hand, after finishing iterations of S3
up to j⃗3, we can run iterations of S4 up to i⃗3. As a result, after
finishing iterations of S1 up to i⃗1, and iterations of S2 up to i⃗2,
we can safely run S3 up to iteration j⃗2. Therefore, considering
any vector between j⃗0 and j⃗2 maintains the correct execution
of S3. However, by we choose j⃗3, the optimal block computed
by equation 3, we maximize the number of blocks of different
statements that can run in parallel; because S4 can also start
running right after j⃗3 is finished.

S4
i⃗3

j⃗2j⃗3 j⃗1j⃗0

S3

S2
i⃗2

S1
i⃗1

S4 iterations

S3 iterations

S2 iterations

S1 iterations

Figure 4. Choosing j⃗3 as the first pipeline block after j⃗0
maintains correctness and maximizes the number of blocks
of different statements that can run in parallel.

4.3 Pipeline Dependency Relations
Up to this point, we have found the pipeline blocking maps
of the iteration domain of each statement. These blocks of
iterations are considered as the tasks (pipeline stages). How-
ever, to have a correct task-parallel program, we also need to
compute the dependence relations between different tasks so
that they can be used to coordinate OpenMP tasks. Therefore,
after computing pipeline blocking maps of all statements,
in the next step, we find the requirements of each block. By

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

requirements of a block, we mean the blocks of its source
statements it needs to execute safely. This part explains how
to find pipeline dependency relations, which aremaps between
each block and its requirements. These maps will be used
as in-dependencies (depend(in:)) of the OpenMP tasks we
create in the next phase.
To find pipeline dependency relations of a statement S,

consider a specific pipeline map Ti and its corresponding
target blocking map, Yi . First, for every block of S, that is,
for each element of Range(ES), we compute the block of Yi
that it belongs to. Then, we can get the last required block
using Ti . Considering all target blocking maps of S, we get
an array of maps showing the requirements of the blocks of
S. We show this array with QS, and each index of it with Qi

S.
Relation 4 shows the computation of each map Qi

S.

Qi
S = T

−1
i (Yi (Range(ES))). (4)

In equation 4, Ti goes over all pipeline maps that S is consid-
ered as their target statement, and Yi is the target blocking
map corresponds to Ti .

Furthermore, running each block of a statement S provides
the requirements for some blocks of the statements that are
dependent on S. This only depends on the last executed
iteration of S. We can get this relation from the identity map
of Range(ES), and we call it Q ′S. This maps will be used as
the out-dependency (depend(out:)) of the OpenMP tasks
we create in the next phase.

The final algorithm for finding the cross-loop pipeline
relation of a SCoP is summarized in Algorithm 1.

Algorithm 1: Pipeline detection algorithm
Input :Scop in its polyhedral representation
Output :Scop with pipeline information

1 for all statement pairs S and T of the Scop do
2 if T depends on S then
3 TS,T = pipeline map(S, T);
4 VS,T = source blocking map(S,TS,T);
5 YT,S = target blocking map(T,TS,T);
6 ES = ES ∪VS,T;
7 ET = ET ∪ YT,S;

8 for all statements S of the Scop do
9 ES = lexmin(ES);

10 Q ′S = identity map(Range(ES));
11 for all pipeline maps TS,T do
12 QT = append(T −1S,T (YT,S (Range(ET)),QT);
13 for all statements S of the Scop do
14 add ES, QS, Q ′S to the Scop;
15 return Scop;

4.4 Algorithm Efficiency
In this part, we show that in the general case of the algorithm,
the best performance we can get from cross-loop pipelining
is constraint by the most time-consuming loop nest. We
also explain that with our transformation algorithm, we can
automatically get the ideal speedup (ignoring the overhead
related to task creation).

Assume that the input program consists of N for-loop nests
L1, · · · , LN. We want to compare the total running time of
the pipelined execution and the sequential execution.

We have to run all iterations of all loops, and since we do
not consider any other form of parallelism in the general
case, we do not reduce the running time of individual for-
loop nests. The performance improvement comes from the
places that we can overlap the execution of iteration blocks
of different for-loop nests. Therefore, the performance of the
pipelined program is limited to the loop nest with themaximum
running time, Lmax , and we have the following formula for
the running time of the pipelined program:

time(Lmax) ≤ time(pipeline) ≤ time(sequential) (5)
The lower bound happens when the first loop nest has the
maximum running time and the execution of all other for-
loop nests can be covered by that. The average case is when
the ith loop nest has the maximum running time. Also, we
usually cannot assume that the running time of all loop
nests after the maximum loop can be covered. For instance,
consider Figure 5.

L1

L2

L3

L4

starting time finishing timeLmax

Figure 5. Average case performance of pipelined program,
where the third loop has the largest running time.

As a result, we can compute the total running time of the
pipelined program with equation 6.
time(pipeline) = starting time + time(Lmax) + finishing time

(6)
In equation 6, starting time is the duration between the begin-
ning of the program and beginning of the Lmax , and finishing
time is the duration between the termination of Lmax and
the termination of the program.
As explained in 4.2, we use optimal blocks for blocking

iteration domains. In fact, with the assumption that we have
enough hardware resources, the program starts running an
iteration block as soon as its requirements are satisfied. As
a result, we minimize the starting and finishing times, and

A Pipeline Pattern Detection Technique in Polly IMPACT 2022, , Budapest, Hungary

we get the maximum possible overlap between the iteration
blocks of different for-loop nests.

5 Implementation
We implement the algorithm explained in Section 4 as a
part of Polly [20] and use the ISL library [43] for polyhe-
dral computation. We modify Polly passes in the analysis,
transformation, and code generation phases to add support
for the pipeline pattern detection and code generation. For
exploiting the detected parallelism, we use OpenMP task
constructs.

5.1 Analysis
In the analysis passes, we extend the definition of the SCoP
to include information needed for pipelining. We use the
iteration domains and memory access relations and compute
the maps ES, QS, and Q ′S for every statement in the SCoP,
by using Algorithm 1.

5.2 Transformation and Scheduling
In this step, we use the pipeline information of the SCoP
to find the new schedule tree. For each statement S, we
transform its schedule to separate the loops iterating over
the blocks determined by ES, from the ones iterating inside
each block. The reason is that each block is an atomic task,
with its dependencies computed in QS array of maps.

We define the pipeline loop to be the inner-most loop that
iterates over blocks. The critical property of a pipeline loop
is that its body iterates inside the blocks. Therefore, each of
its iterations is a single task. To summarize, our goal is to
construct a new schedule tree that:

1- blocks iteration domains,
2- finds pipeline loops, and
3- attaches dependency information to each task.

To begin with, we want the pipeline dependency relations
to be defined as functions of the induction variables of the
loops iterating over blocks. Therefore, for each statement
S, we construct a pw_multi_aff_list from the maps in the
array QS and a pw_multi_aff from the map Q ′S. After that,
we create a mark node from them to add to the schedule tree.

To construct the final schedule, we begin by creating two
separate schedule trees: one for iterating over blocks and
one for iterating inside each block. Then, we expand the first
schedule tree with the second one.
Let DES and RES be the domain and the range of ES, re-

spectively. We first create a schedule domain node from RES .
Then, we get the partial schedule of the identity map of RES
and add the corresponding band node to the created domain
node. This schedule tree iterates over the blocks in lexico-
graphical order. The next step is to construct the expansion
schedule tree for iterating inside the blocks. This time, we
repeat the same process as above, and we use DES (instead of
RES) for creating the domain node and the partial schedule.

At this step, we add the mark node containing pipeline de-
pendency information. Note that this mark node is located
before the band node iterating inside the block, and it can be
used for finding the pipeline loop. To complete the expansion
process, we need to provide the contraction function for map-
ping domain elements of the original schedule and domain
elements of the expansion schedule. For this purpose, we use
the map ES, as it defines this relation by definition.

To summarize, Algorithm 2 is our final scheduling method.

Algorithm 2: Schedule tree computations
Input :Pipeline information of statements in a scop
Output :Updated schedule tree

1 for all statements S in scop do
2 DES = Domain(ES), RES = Range(ES);
3 ps1 = partial schedule(identity map(RES));
4 ps2 = partial schedule(identity map(DES));
5 m = mark node(QS,Q

′
S);

6 node1 = domain node(RES);
7 sch1 = insert partial schedule(ps1,node1);
8 node2 = domain node(DES);
9 sch2 = insert partial schedule(ps2,node2);

10 sch2 = insert mark node(m,node2);
11 contraction = union_pw_multi_aff(ES));
12 schS = expand(sch1, sch2, contraction);
13 sch = sequence(sch∀S∈scop);
14 return sch

5.3 AST
In the AST generation phase, we use the schedule tree to
create the AST. Specifically, we use the mark nodes in the
schedule tree to annotate the AST. Listing 6 shows parts of
the AST of the transformed program of Listing 3. In Listing 6,
there exists a for-loop nest corresponding to each loop nest
in the original program. The comments in lines 3, 11, and 16
are representatives of the AST annotations. They show that
the for loops in lines 2, 10, and 15 are the pipeline loop in
their loop nest. They also contain the pipeline dependency
information for the block that follows them.

5.4 Code Generation
The main idea for the code generation phase is to extract the
tasks, which are the bodies of pipeline loops, to function calls.
Then by passing the extracted function along with its depen-
dency information to a high-level function implemented in
a framework capable of task parallelism, we can utilize the
detected parallelism. In this prototype, we can generate code
for programs with for-loop nests of depth at most two, with

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

1 for(c0=0; c0 <N; c0+=1)

2 for(c1=0; c1 <N; c1+=1) {

3 // task

4 ...

5 S(c0 ,c1)

6 ...

7 }

8 if (N>=2) {

9 for (c0=0; c0<N/2; c0+=1)

10 for (c1=0; c1<N/2; c1+=1) {

11 // task

12 R(c0 , c1);

13 }

14 for (c0=0; c0<N/2; c0+=1)

15 for (c1=0; c1<N/2; c1+=1) {

16 // task

17 U(c0 , c1);

18 }

19 }

Figure 6. Example of the AST of pipelined program

only one task annotation per loop nest. However, consider-
ing loops in the general case is feasible, and it is a matter of
further developing our code generation function.
To get the pipeline dependency information, we use the

annotations of the AST and convert them to the format
needed by the framework we are using. In this work, we
use OpenMP task constructs with depend clauses. Remem-
ber that the annotation assigns a pw_multi_aff_list and
a pw_multi_aff to each task. Using OpenMP terms, each
member of the pw_multi_aff_list is an in-dependency of
the task, and the pw_multi_aff is its out-dependency. To
find pipeline dependency information of each task, we com-
pute unique integer values from each in-dependencies and
the out-dependency. Each piece is a vector that we convert
to an integer. We multiply each dimension to a large enough
integer and add them all to get a single integer. To distin-
guish between each pw_multi_affs, we pair an index with
the integer we got in the previous step.

In the final step, we extract all loop nests that we want to
pipeline in another function. This function is called in omp
parallel and omp single pragmas to launch and initialize
the tasks.

5.5 OpenMP Tasks
In the final step, we design a high-level OpenMP function
for exploiting the detected task parallelism.
Each task is defined as a function pointer with its in-

put arguments integrated into a structure. We use the in-
dependencies and out-dependencies of the tasks as computed
in 5.4. We also need the size of the input argument and the
total number of statements that a task depends on them.
Listing 7 shows the signature of this high-level function.

1 void CreateTask(void (*f) (void *), void *input ,

2 int outDepend , int outIdx ,

3 int *inDepend , int *inIdx ,

4 int inputSize , int dependNum)

Figure 7. Signature of the function for creating tasks

To coordinate between tasks, we define a global integer
pointer dependArr and initialize it with NULL. We treat the
pointer dependArr as a linearized two-dimensional array,
where each column corresponds for each statement, and
each row is for a specific iteration block of that statement.
We also define a variable, writeNum to keep the number of
loop-nests in the program that are sources of other loop-
nests. With these assumptions, each task writes in the lo-
cation [writeNumber*outDepend+outIdx] and reads from
the locations [writeNumber*inDepend[i]+inIdx[i]] of
dependArr. Also, based on equation 1 and the definition
of pipeline maps, for maintaining the correctness of the pro-
gram, blocks of the same for-loop nest should run in order.
To add this in-dependency, we use the fact that all tasks
created from iterations of the same for-loop nest have the
same function pointer. Therefore, we keep track of the num-
ber of tasks created from each loop nest in a global array,
funcCount, and use the function pointer of each task to co-
ordinate different blocks of that task. The code in Listing 8
illustrates the creation of a task in the general case.

1 void *taskInput = malloc(inputSize);

2 memcpy(taskInput , input , inputSize);

3 int *self = (int *) f;

4 #pragma omp task

5 depend(out:dependArr[writeNum*outDepend+outIdx])

6 depend(iterator(i=0: dependNum),in:dependArr

7 [writeNum*inDepend[i]+inIdx[i]])

8 depend(in:self[funcCount[outIdx]-1])

9 depend(out:self[funcCount[outIdx]])

10 {

11 f(taskInput);

12 free(taskInput);

13 }

Figure 8. Function for creating task in OpenMP

6 Evaluation
This section shows the evaluation of our algorithm and pro-
totype using two benchmark sets, where programs are com-
piled using the Clang compiler with the O3 option, and all
tests run on an x86_64 Intel quad-core processor with two
threads per core, clocks at 2900.000 MHz.

In the first benchmark set, we want to show the improve-
ments that cross-loop pipelining can make to the programs it

A Pipeline Pattern Detection Technique in Polly IMPACT 2022, , Budapest, Hungary

is designed for; programs consist of a sequence of compute-
intensive serial for-loop nests. For this benchmark, we sim-
ulate compute-intensive kernels by using the next_prime
function of the GMP library [19]. The basic data structure,
gmp_data, is an array of mpz (data structure formulti-precision
integer in the GMP library), and it has SIZE elements. All
loop nests have depth two, and the ith loop nest of the pro-
gram updates elements of the matrix Ai by calling a function
that adds its input arguments element-wise and finds the
numthi prime number after that (with next_prime function).
The Ais are two dimensional N × N matrices of gmp_data.
Kernels are designed such that Polly cannot parallelize the
loops (loops are sequential) and the running time of the ver-
sion optimized with Polly is comparable with the sequential
version. Table 9 shows the properties of our experimental
data. The Specification column shows the number of loop
nests and the values of numis. The Memory access column
shows the read access of each statement from the arrays
written in the previous loop nests (lower and upper bounds
of the loops are set accordingly). In this column, Si is the
statement in the ith loop nest.

Recall that blocks of one for-loop nest should run sequen-
tially. Therefore, for a program with n loop nests, there can
be at most n tasks running in parallel. Figure 10 shows the
pipelined program’s speed-up compared with the sequential
program for different values of N and SIZE. From Table 9
and Figure 10, we can see that cross-loop pipelining always
gains speed-up; however the amount of it depends on the
loops access patterns.

In the second benchmark set, we use different variants of
a sequence of matrix multiplication, the 2mm and 3mm bench-
marks of Polybench [38] followed by the similar kernel 4mm.
To be able to generate code and also tomake it amore suitable
application of our framework, we consider matrix multiplica-
tion as consecutive vector-matrix multiplications. Our goal
in this benchmark is to illustrate the advantages and disad-
vantages of cross-loop pipelining compared to Polly (Pluto’s
scheduling algorithm).
For n=2,3,4, the nmm and nmmt kernels are n consecu-

tive matrix multiplications; in nmmt kernels, the second ma-
trix is transposed beforehand. Similarly, the ngmm and ngmmt
kernels are generalized matrix multiplication. Wherein the
loop nest, each element of the result matrix (e.g. C[i][j])
is multiplied by the addition of the element of the result
matrix (C) in the same column of the next row (C[i+1][j])
and the element in the same row of the previous column
(C[i][j-1]). Figure 11 shows the logarithm of speed-ups
of the programs generated by applying cross-loop pipelin-
ing (pipeline), Polly running with all available threads
(polly_8), and Polly running with n threads (n is the number
of loop nests) (polly), with respect to the sequential version.

Name Specifications Memory access

P1 2 for-loop
num1,2 = 1 S2← A1[i][j]

P2 2 for-loop
num1 = 2 S2← A1[2 ∗ i][2 ∗ j]
num2 = 6

P3 3 for-loop S2, S3← A1[i][j]
num1,2,3 = 1 S3← A2[i][j]

P4 3 for-loop S2← A1[i + j][j]
num1,2 = 2 S3← A1[2 ∗ i + j][2 ∗ j]
num3 = 8 S3← A2[2 ∗ i][2 ∗ j]

P5 4 for-loop S2, S3, S4← A1[i][j]
num1,2,3,4 = 1 S3, S4← A2[i][j]

S4← A3[i][j]
P6 4 for-loop S2, S3, S4← A1[i + j][j]

num1 = 1 S3, S4← A2[i][j]
num2 = 8 S4← A3[i][j]
num3,4 = 32

P7 4 for-loop S2, S3← A1[2 ∗ i][2 ∗ j]
num1 = 1 S3← A2[2 ∗ i][2 ∗ j]
num2,3,4 = 8 S4← A1[i][j]

S4← A2[i][j]
P8 4 for-loop S2, S3← A1[i][j]

num1,2,3,4 = 1 S4← A2[i][j]
P9 4 for-loop S2, S4← A1[i][2 ∗ j]

num1,2,3,4 = 1 S3← A1[i][j]
S3← A2[i][2 ∗ j]
S4← A2[i][j]

P10 4 for-loop S2← A1[i + j][j]
num1 = 1 S3← A1[i][j]
num2,3,4 = 2 S4← A2[i][j]

Figure 9. Properties of the experimental data. The Specifica-
tion column shows the number of loop nests and values of
numi s. The Memory access column shows the read accesses
of each statement.

As Figure 11 shows, the speed-up we gain by using Polly
is more than that by cross-loop pipelining in the nmm and
nmmt. For these kernels, Polly can optimize locality by tilling,
and it also parallelizes all loop nests. However, in the gnmm
and gnmmt kernels, Polly cannot detect any optimization, but
by using cross-loop pipelining, we can gain speed-up.

7 Conclusion and Future Works
In this work, we developed a polyhedral model-based al-
gorithm for detecting cross-loop task parallelism. We im-
plemented our algorithm as part of LLVM/Polly. With this
prototype, we can detect parallelization opportunities that
conventional polyhedral optimizers cannot detect. We ex-
ploit the detected parallelism using OpenMP task constructs.
We tested our prototype on kernels with compute-intensive

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

[20
,20
]
[20
,60
]

[20
,10
0]

[40
,30
]
[40
,60
]

[40
,10
0]

[50
,70
]

[50
,10
0]

[10
0,1
00]

[15
0,1
00]

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

1.71

1.54

2.39

1.35

3.01

1.57

1.9

3.05

1.88

1.74

1.79

1.56

2.49

1.36

3.1

1.57

1.89

3.14

1.92

1.79

1.82

1.57

2.52

1.36

3.13

1.58

1.92

3.2

1.94

1.78

1.88

1.31

2.73

1.39

3.52

1.95

2.01

3.51

2.46

1.58

1.86

1.29

2.71

1.42

3.44

1.95

2.01

3.52

2.47

1.6

1.89

1.28

2.75

1.41

3.5

1.97

2.02

3.59

2.45

1.6

1.86

1.39

2.75

1.4

3.52

2.01

2.1

3.51

2.62

1.57

1.86

1.39

2.78

1.41

3.48

2.01

2.1

3.57

2.65

1.57

1.92

1.58

2.77

1.28

3.37

1.94

2.12

3.39

2.51

1.35

1.93

1.6

2.64

1.3

3.34

1.87

2.1

3.32

2.34

1.29

speed-up per size

1.5

2.0

2.5

3.0

3.5

Figure 10. Speed-up of the tests from Table 9, considering
different values for N and SIZE, comparing sequential version
and pipelined version

2m
m

3m
m

4m
m

2m
mt

3m
mt

4m
mt

2g
mm

3g
mm

4g
mm

2g
mm

t
3g
mm

t
4g
mm

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0 pipeline
polly_8
polly

Figure 11. Comparing logarithm of speed-up gains of Polly
running by all available threads, Polly running by n threads
(n is the number of loop nests), and cross-loop pipelining for
variants of generalized matrix multiplication.

function calls inside for-loop nests and reported the speed-
ups considering different sizes and different memory access
patterns. We also considered kernels with variants of a se-
quence of generalized matrix multiplications and compared
the speed-ups of cross-loop pipelining and Polly.
We plan to generalize our code generation phase to gen-

erate code for loops with arbitrary depth and the number of

tasks per loop. After this generalization, we can experiment
with more complicated algorithms.

Also, as mentioned in Section 4, we assume that the write
functions are injective; we want to study the possibilities of
extending the transformation algorithm to relax this assump-
tion. Moreover, we would like to extend both the transfor-
mation algorithm and the prototype to work correctly with
the algorithms that detect DOACROSS parallelism in loops.

An essential factor in the performance of the final program
is the granularity of the tasks. An interesting idea would be
to develop an algorithm to choose a good task granularity
when there are multiple choices.

The system’s design is so that the tasking layer is indepen-
dent of creating and scheduling the task. Therefore, we ex-
pect to be able to change the tasking layer from the OpenMP
task to other platforms with minimal changes. For future
works, we would like to experiment with this idea and have
results in both performance improvements of different task-
ing platforms and how easy it is to use our method and make
it compatible with other platforms.

In the current version of this work, when using the cross-
loop tasking, we do not take advantage of other paralleliza-
tion opportunities. We would like to know the effect of the
cross-loop pipelining on the other patterns and study the
results of possible combinations of this method with other
optimization techniques on the performance improvements.
As explained in Section 2, an important application of

detecting task relations in a program is mapping data to
data-flow architectures. They may need to have the relation
between LLVM level instructions of a program. It is an inter-
esting idea to consider the transformation algorithm of this
paper to lower-level instructions.

References
[1] Aravind Acharya and Uday Bondhugula. 2015. Pluto+: Near-complete

modeling of affine transformations for parallelism and locality. ACM
SIGPLAN Notices 50, 8 (2015), 54–64.

[2] Christophe Alias, Alain Darte, and Alexandru Plesco. 2013. Optimizing
remote accesses for offloaded kernels: Application to high-level synthe-
sis for FPGA. In 2013 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 575–580.

[3] Cédric Bastoul. 2004. Code generation in the polyhedral model is
easier than you think. In Proceedings. 13th International Conference
on Parallel Architecture and Compilation Techniques, 2004. PACT 2004.
IEEE, 7–16.

[4] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and
Olivier Temam. 2003. Putting polyhedral loop transformations to work.
In International Workshop on Languages and Compilers for Parallel
Computing. Springer, 209–225.

[5] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. 2010. The polyhedral model is more widely
applicable than you think. In International Conference on Compiler
Construction. Springer, 283–303.

[6] Guy E Blelloch andMargaret Reid-Miller. 1999. Pipelining with futures.
Theory of Computing Systems 32, 3 (1999), 213–239.

A Pipeline Pattern Detection Technique in Polly IMPACT 2022, , Budapest, Hungary

[7] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. 2008.
Pluto: A practical and fully automatic polyhedral program optimiza-
tion system. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation (PLDI 08), Tucson,
AZ (June 2008). Citeseer.

[8] Jianjiang Ceng, Jerónimo Castrillón, Weihua Sheng, Hanno Schar-
wächter, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Tsuyoshi Is-
shiki, and Hiroaki Kunieda. 2008. MAPS: an integrated framework for
MPSoC application parallelization. In Proceedings of the 45th annual
Design Automation Conference. 754–759.

[9] Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. 2015. Polyhedral
optimizations of explicitly parallel programs. In 2015 International
Conference on Parallel Architecture and Compilation (PACT). IEEE, 213–
226.

[10] Keith Cooper, Ken Kennedy, and Nathaniel McIntosh. 1996. Cross-loop
reuse analysis and its application to cache optimizations. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing.
Springer, 1–19.

[11] Daniel Cordes, Andreas Heinig, Peter Marwedel, and Arindam Mallik.
2011. Automatic extraction of pipeline parallelism for embedded
software using linear programming. In 2011 IEEE 17th International
Conference on Parallel and Distributed Systems. IEEE, 699–706.

[12] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry
standard API for shared-memory programming. IEEE computational
science and engineering 5, 1 (1998), 46–55.

[13] Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. 2016.
Compiling affine loop nests for a dynamic scheduling runtime on
shared and distributed memory. ACM Transactions on Parallel Com-
puting (TOPC) 3, 2 (2016), 1–28.

[14] Paul Feautrier. 1988. Parametric integer programming. RAIRO-
Operations Research 22, 3 (1988), 243–268.

[15] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming 20, 1 (1991), 23–53.

[16] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem. I. One-dimensional time. International journal of parallel
programming 21, 5 (1992), 313–347.

[17] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem. Part II. Multidimensional time. International journal of parallel
programming 21, 6 (1992), 389–420.

[18] Michael I Gordon, William Thies, and Saman Amarasinghe. 2006. Ex-
ploiting coarse-grained task, data, and pipeline parallelism in stream
programs. ACM SIGPLAN Notices 41, 11 (2006), 151–162.

[19] Torbjörn Granlund and the GMP development team. 2012. GNU MP:
The GNUMultiple Precision Arithmetic Library (5.0.5 ed.). http://gmplib.
org/.

[20] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral op-
timization in LLVM. In Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.

[21] Zia Ul Huda, Rohit Atre, Ali Jannesari, and Felix Wolf. 2016. Automatic
parallel pattern detection in the algorithm structure design space. In
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 43–52.

[22] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Sh-
peisman, and David Wonnacott. 1995. The omega library interface
guide.

[23] Kornilios Kourtis, Martino Dazzi, Nikolas Ioannou, Tobias Grosser,
Abu Sebastian, and Evangelos Eleftheriou. 2020. Compiling Neural
Networks for a Computational Memory Accelerator. (2020).

[24] Monica Lam. 1988. Software pipelining: An effective scheduling tech-
nique for VLIW machines. In Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation. 318–
328.

[25] Chris Arthur Lattner. 2002. LLVM: An infrastructure for multi-stage
optimization. Ph. D. Dissertation. University of Illinois at Urbana-
Champaign.

[26] I-Ting Angelina Lee, Charles E Leiserson, Tao B Schardl, Zhunping
Zhang, and Jim Sukha. 2015. On-the-fly pipeline parallelism. ACM
Transactions on Parallel Computing (TOPC) 2, 3 (2015), 1–42.

[27] Feng Li, Antoniu Pop, and Albert Cohen. 2012. Automatic extraction
of coarse-grained data-flow threads from imperative programs. IEEE
Micro 32, 4 (2012), 19–31.

[28] Junyi Liu, John Wickerson, Samuel Bayliss, and George A Constan-
tinides. 2017. Polyhedral-based dynamic loop pipelining for high-level
synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 9 (2017), 1802–1815.

[29] Vincent Loechner. 1999. PolyLib: A library for manipulating parame-
terized polyhedra.

[30] Antoine Morvan, Steven Derrien, and Patrice Quinton. 2013. Polyhe-
dral bubble insertion: A method to improve nested loop pipelining for
high-level synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 32, 3 (2013), 339–352.

[31] Manideepa Mukherjee, Alexander Fell, and Apala Guha. 2017. DFGen-
Tool: A dataflow graph generation tool for coarse grain reconfigurable
architectures. In 2017 30th International Conference on VLSI Design and
2017 16th International Conference on Embedded Systems (VLSID). IEEE,
67–72.

[32] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I August. 2005.
Automatic thread extraction with decoupled software pipelining. In
38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’05). IEEE, 12–pp.

[33] David Padua. 2011. Encyclopedia of parallel computing. Springer
Science & Business Media.

[34] Josep M Perez, Vicenç Beltran, Jesus Labarta, and Eduard Ayguadé.
2017. Improving the integration of task nesting and dependencies in
OpenMP. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 809–818.

[35] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, et al. 2011. The
tao of parallelism in algorithms. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation.
12–25.

[36] Antoniu Pop and Albert Cohen. 2011. A stream-computing extension
to OpenMP. In Proceedings of the 6th International Conference on High
Performance and Embedded Architectures and Compilers. 5–14.

[37] Antoniu Pop and Albert Cohen. 2013. Openstream: Expressiveness
and data-flow compilation of openmp streaming programs. ACM
Transactions on Architecture and Code Optimization (TACO) 9, 4 (2013),
1–25.

[38] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark
suite. URL: http://www. cs. ucla. edu/pouchet/software/polybench 437
(2012), 1–1.

[39] William Pugh and David Wonnacott. 1994. Static analysis of upper
and lower bounds on dependences and parallelism. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 4 (1994), 1248–
1278.

[40] Harenome Razanajato, Cédric Bastoul, and Vincent Loechner. 2020.
Pipelined Multithreading Generation in a Polyhedral Compiler. In
IMPACT 2020, in conjunction with HiPEAC 2020.

[41] Alina Sbîrlea, Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. 2015.
Polyhedral optimizations for a data-flow graph language. In Languages
and Compilers for Parallel Computing. Springer, 57–72.

[42] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. 2006. Polyhe-
dral code generation in the real world. In International Conference on
Compiler Construction. Springer, 185–201.

http://gmplib.org/
http://gmplib.org/

IMPACT 2022, , Budapest, Hungary Delaram Talaashrafi, Johannes Doerfert, and Marc Moreno Maza

[43] Sven Verdoolaege. 2010. isl: An integer set library for the polyhedral
model. In International Congress on Mathematical Software. Springer,
299–302.

[44] Sven Verdoolaege. 2016. Integer set library: Manual. Tech. Rep. (2016).
[45] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.

2014. Schedule trees. In International Workshop on Polyhedral Compila-
tion Techniques, Date: 2014/01/20-2014/01/20, Location: Vienna, Austria.

[46] Tomofumi Yuki, Paul Feautrier, Sanjay Rajopadhye, and Vijay Saraswat.
2013. Array dataflow analysis for polyhedral X10 programs. In Proceed-
ings of the 18th ACM SIGPLAN symposium on Principles and practice of
parallel programming. 23–34.

	Abstract
	1 Overview
	2 Related works
	3 Background
	3.1 Polyhedral Model
	3.2 Pipeline Parallelism
	3.3 Tasking in OpenMP

	4 Transformation Algorithm
	4.1 Pipeline Map
	4.2 Pipeline Blocking Maps of Iteration Domains
	4.3 Pipeline Dependency Relations
	4.4 Algorithm Efficiency

	5 Implementation
	5.1 Analysis
	5.2 Transformation and Scheduling
	5.3 AST
	5.4 Code Generation
	5.5 OpenMP Tasks

	6 Evaluation
	7 Conclusion and Future Works
	References

