
Progress Report: A Deep Learning Guided Exploration
of Affine Unimodular Loop Transformations

Massinissa Merouani
New York University Abu Dhabi

mm12191@nyu.edu

Khaled Afif Boudaoud
Ecole Nationale Supérieure

d’Informatique
hk_boudaoud@esi.dz

Iheb Nassim Aouadj
Ecole Nationale Supérieure

d’Informatique
hi_aouadj@esi.dz

Nassim Tchoulak
Ecole Nationale Supérieure

d’Informatique

Fatima Benbouzid-Sitayeb
Ecole Nationale Supérieure

d’Informatique

Karima Benatchba
Ecole Nationale Supérieure

d’Informatique

Hugh Leather
Meta AI

Riyadh Baghdadi
New York University Abu Dhabi

baghdadi@nyu.edu

Abstract
In this paper, we present a work in progress about a deep
learning based approach for automatic code optimization in
polyhedral compilers. The proposed technique explores com-
binations of affine and non-affine loop transformations to
find the sequence of transformations that minimizes the exe-
cution time of a given program. This exploration is guided by
a deep learning based cost model that evaluates the speedup
that each sequence of transformations would yield. Prelim-
inary results show that the proposed techniques achieve a
2.35x geometric mean speedup over state of the art polyhe-
dral compilers (Pluto).

ACM Reference Format:
Massinissa Merouani, Khaled Afif Boudaoud, Iheb Nassim Aouadj,
Nassim Tchoulak, Fatima Benbouzid-Sitayeb, Karima Benatchba,
Hugh Leather, and Riyadh Baghdadi. 2022. Progress Report: A Deep
Learning Guided Exploration of Affine Unimodular Loop Transfor-
mations. In Proceedings of 12th International Workshop on Polyhedral
Compilation Techniques (IMPACT ’22). ACM, New York, NY, USA,
4 pages.

1 Introduction
Automatic code optimization is a long-sought goal in the
compiler community, It allows the generation of highly opti-
mized code without requiring extensive development effort
or domain expertise. For an automatic code optimization
tool to be effective, it needs to be able to quickly find the set
of legal transformations that achieve the desired goal (e.g.,
minimize the execution time of the input program). This
task is challenging for two main reasons. First, finding the
best sequence of transformations is hard because of the large
space of possible transformations. Since exhaustive search is
impossible, automatic optimization tools need to use efficient
search techniques while exploring this space. The second

IMPACT ’22, June, 2022, Budapest, Hungary
2022.

challenge is the need for fast and accurate cost models used
to evaluate the quality of candidate transformations. Evalu-
ating candidates by executing them renders most techniques
too slow and impractical [6]. Therefore, using deep learn-
ing based cost models for assessing the quality of candidate
transformations is an interesting alternative [1, 2, 5].

The Tiramisu auto-scheduler [2] is an automatic code op-
timization module included in the Tiramisu compiler [3].
It allows exploring sequences of code transformations that
include loop fusion, interchange, parallelization, tiling, and
unrolling using tree-based search techniques. It relies on a
deep learning based cost model for steering the exploration
towards finding interesting transformations. The cost model
is an LSTM based neural network that takes as input a set
of simple features representing the unoptimized code and
a sequence of code transformations. This model works by
recursively embedding a program depending on its AST
(Abstract Syntax tree) structure then, from the final embed-
ding, predicts the performance of the given transformations.
Many of the code transformations are simply represented as
boolean tags. For example, there is a boolean tag for each
loop level indicating whether the loop is parallel. There is an-
other tag indicating whether a given loop was interchanged.
While such a simple representation is enough for certain
non-affine transformations such as parallelization and vec-
torization, it is not expressive enough to represent the whole
space of affine transformations. For example, it is not well
suited to represent a combination of an arbitrary number
of affine transformations and cannot capture the order in
which these transformations are applied. The goal of this
project is to solve this problem. We achieve this by extending
the Tiramisu auto-scheduler in two different ways:

• First, extend the cost model: instead of having a cost
model that takes a simple list of features as input (e.g.,
use boolean tags to represent transformations), our
goal is to build a new model that takes the polyhedral



IMPACT ’22, June, 2022, Budapest, Hungary Merouani et al.

representation of the code and code transformations as
input. Both, code and code transformations will be rep-
resented as constraint matrices (iteration domain ma-
trix, schedule matrix, and array access matrices). The
new model also takes other non-polyhedral features
(that were used in the original model), such as boolean
tags for non-affine transformations (parallelization,
vectorization ...).

• Second, adapt the search space exploration technique
to cover the whole space of unimodular affine transfor-
mations. The goal here is to become able to apply an
arbitrary combination of unimodular transformations
(unlike the original technique which only supported
loop interchange).

In this paper, we present our work-in-progress in order to
achieve these goals. So far we have achieved the following:

• We have extended the deep learning based cost model
in [2] to support unimodular affine transformations.
The original model only supported loop interchange.
The format of input to the model is now a schedule
matrix instead of a tag based representation.

• We have adapted the search space exploration in [2]
to cover the whole space of unimodular affine trans-
formations.

2 Search Space Exploration
We explore the space in two stages: first, we explore affine
unimodular transformations thenwe explore non-affine trans-
formations (parallelization, vectorization, ...).
In the first stage, in order to cover the whole space of

unimodular affine transformations, we explore combinations
of loop skewing, reordering, and reversal applied multiple
times in any order[8]. Each of these sequences is represented
using a single schedule matrix which is the product of the
respective schedule matrices of each transformation in the
sequence. The objective of this stage of the exploration is
to find affine transformation matrices that would improve
the data locality and enable thread-level and SIMD-level
parallelism.

The second stage of the search space consists in exploring
combinations of non-affine loop transformations. The loop
transformations that we are considering in this stage are
fusion, parallelization, tiling, and loop unrolling.

The exploration of these two stages is performed by a tree-
based search algorithm (such as Beam Search and Monte
Carlo Tree Search) that will consider the performance of
different combinations of these transformations along with
their different parameters. Throughout the exploration, ille-
gal transformations (i.e. schedules that violate data depen-
dencies) are detected and pruned (we use classical polyhedral
dependence analysis to compute the dependencies).

3 Cost Model
Due to the large size of the search space, we need a fast
and accurate way to evaluate the transformation candidates
that are encountered during exploration. We redesigned the
cost model [2] to support schedule matrices along with the
previously supported non-affine transformations (non-affine
transformations are represented using tags). This cost model
takes as input features that represent the program and code
transformations, including the schedule matrix, and pre-
dicts the expected speedup that would result from applying
these transformations to the program. The architecture of
the model is an AST (Abstract Syntax Tree) based recursive
model and takes an additional vector at its inner layers which
represents a learned embedding of the transformationmatrix.
This embedding vector is generated through a feed-forward
layer that summarizes the matrix into a single vector.
For training this model, we used a large corpus of trans-

formed Tiramisu programs for which we applied a large
number of different optimization combinations and recorded
the speedup of each combination. To create this dataset, we
randomly generated a large number of synthetic Tiramisu
programs on which we executed the previously described ex-
ploration procedure. Then, for each candidate visited during
the exploration, we measured its execution time and saved
the triplet - program, transformations, and execution time-
into our dataset. For a fair evaluation of the model, we make
sure that the programs used for evaluation are never encoun-
tered during the training even if the applied transformations
are different.

4 Preliminary Results
As a first iteration of the project and in order to evaluate the
potential of the proposed technique, we started by adding
two affine transformations to the search space (loop skewing
and loop reordering), in addition to having non-affine loop
transformations (loop parallelization, loop tiling, and loop
unrolling). To explore this space we use beam search, where
at each search level we explore different alternatives of a
given transformation.
In figure 1, we compare the speedups that our technique

achieves against speedups of the transformations found by
Pluto [4] using the --tile --parallel flags. In this exper-
iment, we evaluate both the model-guided exploration (i.e.
where the candidates visited during the beam search explo-
ration are evaluated using the deep learning cost model) and
the exploration guided by execution (i.e. where each visited
candidate is compiled and executed in order to measure its
runtime).
The cost model we used was trained on 14 million ran-

domly generated synthetic data points (each data point is a
program with a sequence of transformations). This model
was trained using the NDCG-loss2++ [7] loss to sort the
different sequences of transformations of a given program



Progress Report: A Deep Learning Guided Exploration of Affine Unimodular Loop Transformations IMPACT ’22, June, 2022, Budapest, Hungary

15.6 33.2 25.8

Figure 1. Speedups of the schedules found by both the execution guided and cost model guided exploration in comparison
with the schedules found by Pluto

based on their effectiveness. For this experiment, we focused
on training the model on single computation programs (i.e.
loop nests that have a single statement) and evaluating it
on single computation benchmarks over different problem
sizes. On a test set composed of 2.75 million data points, the
proposed model achieves an nDCG score of 0.97.

As shown in figure 1, for most benchmarks our technique
achieves higher speedups than Pluto. This is mainly due to
the fact that our technique uses a more precise cost model
compared to the objective function that Pluto uses (which
tries to minimize the distance between producer and con-
sumer statements and maximize outer parallelism).

For example, our cost model takes into consideration the
loop nest sizes (extents) when selecting the transformations
to apply whereas Pluto does not. For instance, our cost model
can detect whether a loop nest is large enough to be par-
allelized without causing the program to be slowed down
because of the overhead of parallelization whereas Pluto
always applies parallelization when it is legal. The effects of
this difference are considerable in small problem sizes the
program should not be parallelized depending on the size of
the iteration domain and the amount of work it contains.

Furthermore, being loop size-aware gives our model the
ability to detect when it is worth trading-off locality for par-
allelism and vice versa. This happens in Box Blur XLarge
for instance where the extent of the outermost loop is 3 (the
number of color channels in the input image). Because Pluto
doesn’t take into consideration loop extents, it decides to
parallelize the outermost loop since it doesn’t carry any de-
pendencies. This leads to the program being run on only 3
parallel threads. Whereas our technique chooses to, first, in-
terchange the outermost loop with the subsequent one which
has an extent of 2560 (the width of the input image), and then
parallelizes the new outermost loop. This makes the program
utilize all the available parallel threads on the evaluation ma-
chine (which has 48 cores). Although interchanging loops,
in this case, deteriorates locality, the efficiency brought by
parallelization was worth sacrificing locality as the trans-
formation selected by our technique is, in this example, 14
times faster than the one found by Pluto.
Another key advantage of our technique compared to

Pluto is that it can decide whether to apply tiling or not,
select the best loops to tile, and choose the best tiling factors
depending on the program, whereas in Pluto, a default tiling
factor is used across the loop nest whenever possible (if



IMPACT ’22, June, 2022, Budapest, Hungary Merouani et al.

not specified manually). The effects of this difference are
noticeable in multiple benchmarks like Heat2D and Matmul.

In some benchmarks, Pluto finds better schedules than the
ones found by our technique. This is mainly due to its ability
to apply some transformation patterns that we are not con-
sidering at this early stage of the project. These unsupported
patterns include, for instance, multidimensional skewing
(three-dimensional or more) and complex loop reorderings
(combination of multiple interchanges). The addition of such
patterns to the search space is under-progress and will be
included in the next stages of the project.
This experimental evaluation was performed on a multi-

core dual-socket machine, each socket is a 12-core Intel
Xeon E5-2695 v2 CPU with 128 GB RAM total. On this ma-
chine, the model-guided exploration is, on average, 252 times
faster that the measurements-guided exploration on the pro-
posed set of benchmarks. The smallest improvement in terms
of search-speed occurs in small programs where the exe-
cution and compilation time of the program is relatively
close to inference time of the model. In this experiment, the
smallest search-time improvement occurs in Heat3D MINI
where model-guided exploration takes 9 seconds whereas
the measurements-guided one takes 111 seconds. On the
other end, the most important search time improvement
is noticeable on large programs and programs with huge
search spaces. This occurs in Jacobi2D LARGE for instance
where model-guided exploration takes 75 seconds whereas
the measurements-guided one takes 63 hours.

Figure 1 also shows that the speedups found by the model-
guided exploration are comparable to those found by the
measurements-guided exploration formost benchmarks (ground
truth, where we execute programs to measure performance
instead of using a model). This shows that the model can be
used as an accurate surrogate for the execution especially
since it provides a very interesting trade-off between search
time and the quality of transformations found.

5 Conclusion and Future Work
In this paper, we presented a work in progress that con-
sists of expanding the Tiramisu auto-scheduler to support
affine loop transformations. Preliminary results of this work
show that the proposed approach achieves satisfying results
compared to Pluto, a state-of-the-art polyhedral compiler.
The next iteration of this project will generalize the current
work to cover the whole space of unimodular affine transfor-
mations. The next stages also include using more adapted
search techniques that, unlike beam search, do not rely upon
making local decisions during the exploration.

References
[1] AndrewAdams, KarimaMa, LukeAnderson, Riyadh Baghdadi, Tzu-Mao

Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian,
Frédo Durand, et al. 2019. Learning to optimize halide with tree search
and random programs. ACM Transactions on Graphics (TOG) 38, 4 (2019),

1–12.
[2] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas,

Kamel Abdous, Taha Arbaoui, Karima Benatchba, et al. 2021. A deep
learning based cost model for automatic code optimization. Proceedings
of Machine Learning and Systems 3 (2021), 181–193.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral
compiler for expressing fast and portable code. In 2019 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO). IEEE,
193–205.

[4] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Pon-
nuswamy Sadayappan. 2008. A practical automatic polyhedral paral-
lelizer and locality optimizer. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 101–
113.

[5] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin.
2019. Ithemal: Accurate, portable and fast basic block throughput
estimation using deep neural networks. In International Conference on
machine learning. PMLR, 4505–4515.

[6] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices 48, 6 (2013), 519–530.

[7] YiningWang, LiweiWang, Yuanzhi Li, Di He,Wei Chen, and Tie-Yan Liu.
2013. A theoretical analysis of NDCG ranking measures. In Proceedings
of the 26th annual conference on learning theory (COLT 2013), Vol. 8.
Citeseer, 6.

[8] Michael E Wolf and Monica S Lam. 1991. A loop transformation theory
and an algorithm to maximize parallelism. IEEE Transactions on Parallel
& Distributed Systems 2, 04 (1991), 452–471.


