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Abstract

High-Level Synthesis (HLS) tools simplify the design of hard-
ware accelerators by automatically generating Verilog/VHDL
code starting from a general purpose software programming
language. They include a wide range of optimization tech-
niques in the process, most of them performed on a low-
level intermediate representation of the code. We believe
that introducing optimizations on a higher level of abstrac-
tion could significantly contribute to the automated design
process results; in particular, polyhedral techniques for the
manipulation of loops could have a significant impact on the
generated accelerators. This paper focuses on loop pipelin-
ing, which we use as a case study to explore the introduction
of compiler-based transformations on top of an existing HLS
process. We leverage the Multi-Level Intermediate Repre-
sentation (MLIR) and evaluate the impact of the proposed
transformations on an open-source HLS tool that would not
otherwise support loop pipelining. Preliminary results con-
firm that our implementation increased the performance of
the generated accelerators, without any modification to the
underlying HLS tool.
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1 Introduction

High-Level Synthesis (HLS) tools have become a critical ele-
ment of the hardware design process. By allowing developers
to describe an algorithm with a general purpose program-
ming language (typically C or C++) and translating it into an
implementation in a hardware description language (HDL)
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such as Verilog or VHDL, they significantly reduce the hard-
ware design productivity gap [1, 20]. In particular, HLS tools
enable to program Field Programmable Gate Arrays (FPGAs)
without writing any HDL code, making them more acces-
sible to users from different domains. Systems integrating
FPGAs can thus be exploited to implement highly special-
ized accelerators, as demonstrated by successes in machine
learning and data analysis [8].

HLS tools are effectively compiler frameworks, as they
translate a language into another language at a lower level
of abstraction. As such, they benefit from the same compiler
optimizations that identify instruction, memory, and data
parallelism for general purpose and specialized processors.
However, they also need to consider the very specific needs
of low-level circuit design, such as the notion of time, the dif-
ference between synchronous and asynchronous logic, and
wiring delays, so they typically work on a low-level inter-
mediate representation that is close to the actual hardware
design. Because of the mismatch between the requirements
of hardware abstractions and the characteristics of general
purpose programming languages, HLS tools often require
the addition of specific directives (pragmas) that augment
the input C/C++ specification to guide the generation of
specialized hardware.

Polyhedral optimization techniques are particularly suited
to workloads that involve deeply nested loops and arrays,
such as linear algebra solvers for high-performance scientific
simulation, or tensor-based machine learning frameworks [2,
9]. Typical targets for polyhedral compilers include modern
general purpose processing architectures with vector units
and large multi-level caches, and specialized accelerators
such as general purpose graphic processing units or tensor
processing units.

Recent works, however, have argued the importance of
the polyhedral model in the field of HLS and automated hard-
ware generation, usually by transforming and annotating
the input C/C++ code, either through ad hoc implementa-
tions to demonstrate specific optimizations or with the help
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of external frameworks [4, 13, 26]. Such approaches have
limited flexibility to allow the introduction of new types of
optimizations, and they risk loss of semantic information in
the process. In this paper, instead, we discuss the use of a
higher-level compiler framework to perform optimizations
for HLS in a modular way;, at a specific level of abstraction.

More specifically, we implement our approach exploiting
the MultiLevel Intermediate Representation (MLIR) frame-
work [11]. MLIR is a recent contribution to the LLVM project
that enables and encourages the implementation of reusable
compiler infrastructures; its key feature is providing mecha-
nisms to define new abstraction levels ("dialects") that solve
compiler transformation and optimization problems through
specialized representations. As MLIR was conceived ini-
tially to be applied within machine learning frameworks,
efficiently supporting the introduction of polyhedral opti-
mization was a key objective of the project, and one of the
first areas specifically addressed through a dedicated abstrac-
tion, i.e., the "affine" dialect.

In this paper, we choose to focus our attention on loop
pipelining, an optimization technique that is easily enabled
by polyhedral frameworks and that can have a significant im-
pact on HLS. Loop pipelining overlaps iterations depending
on available computational resources and memory depen-
dencies, with the aim of parallelizing as many operations as
possible. The ideal target is obtaining a loop with an Initi-
ation Interval (II) of one, meaning that a new iteration can
start executing every clock cycle. We evaluate the impact of a
loop pipelining transformation implemented in MLIR by us-
ing an open-source HLS tool, Bambu [7], and by comparing
our approach to traditional C-based HLS.

In summary, this paper makes the following contributions:

e we present an implementation of loop pipelining for
HLS leveraging a higher level of abstraction (MLIR)
than conventional HLS approaches;

o we show how the polyhedral abstraction provided by
the MLIR affine dialect facilitates the implementation
of such a transformation;

e we highlight how a modern reusable compiler infras-
tructure provides opportunities to improve the HLS
process, and to easily integrate new or unsupported
optimizations.

The paper proceeds as follows. Section 2 introduces the
main concepts and tools used in the implementation of our
approach; Sections 3 and 4 dive deeper into the details of
the design flow we are proposing. We present experimental
results in Section 5. Section 6 describes current approaches
for supporting polyhedral optimization in HLS and other
related work, Section 7 draws conclusions and outlines future
research directions.
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2 Background

This section briefly describes the compiler frameworks, tools,
and concepts that are used throughout the paper.

2.1 MLIR

MLIR [11] aims to build a reusable and extensible compiler
infrastructure, allowing optimizations on different levels
of abstraction through the concept of dialects. Elementary
MLIR defines an SSA-based IR consisting of MLIR opera-
tions, but dialects can extend the core MLIR structures by
representing a set of new operations, attributes, and types,
sharing a specific purpose.

MLIR operations consist of a name, operands, attributes,
results, and, optionally, nested regions. A region represents
an ordered list of MLIR blocks, while blocks represent or-
dered lists of operations with a single terminator operation
at the end. Blocks are compiler basic blocks that compose the
control flow graph of a program. MLIR provides the concept
of passes to expose entry points for IR analyses and transfor-
mations which traverse the program to either collect useful
information or apply transformations.

Dialects typically operate at higher levels of abstraction
with respect to C/C++, and to the instruction-level IRs of
HLS tools; moreover, the possibility of combining different
dialects in the same representation opens the way to the
integration of novel compilation passes and optimizations.
In particular, high-level affine structures can coexist with
low-level operations on SSA values, allowing the application
of both polyhedral loop transformations and traditional com-
piler optimizations. This is an improvement with respect
to traditional polyhedral frameworks, as they usually re-
quire relevant parts of the program to be "raised" to a higher
level of abstraction; conversion to and from such a different
representation is not trivial and risks the loss of valuable
information.

Basic operations such as memory or computation oper-
ations are provided within the "standard" dialect; we will
focus on the standard and affine dialects in our implemen-
tation, but other dialects that can be lowered to standard
and affine could exploit our loop pipelining passes, and may
provide future opportunities for optimization.

2.2 Loop pipelining

Loop optimizations have been widely studied both in soft-
ware and hardware research. A single loop iteration usually
does not contain enough optimization potential, so various
techniques have been used to overcome this problem. The
simplest example is loop unrolling: by replicating the loop
body multiple times, the single iteration becomes larger and
exposes more possibilities to execute instructions in parallel.
Loop pipelining, instead, aims at overlapping the execution
of multiple iterations, and it involves a more complicated
transformation process than loop unrolling. This technique
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has been successfully used in compiler infrastructures for
decades [10], and it generally consists of two steps: loop
scheduling and code generation. Depending on the available
computation and memory resources, and if inter-iteration
data dependencies allow it, a pipelined loop can issue the
execution of a new iteration at every clock cycle.

2.3 HatSchet scheduler

Loop scheduling requires knowledge about both the opera-
tions contained in the loop body, and the available computa-
tional resources. Achieving the optimal or close to optimal
operation schedule, i.e., a list of operations assigned to a
clock cycle number and a resource identifier, is not a trivial
process: this job is performed by schedulers using various
scheduling algorithms and heuristics. We use the library pro-
vided by HatSchet 0.8 [18], an open-source scheduling tool
with the purpose of making HLS processes more efficient.
HatSchet requires data flow graph and resource availabil-
ity information as inputs, and it offers various scheduling
algorithms, enabling control over scheduling run time and
quality trade-offs.

2.4 High-Level Synthesis tools

We choose two different HLS tools to validate our approach:
Bambu and Vitis HLS. Bambu [7] is an open-source HLS tool
compatible with both C/C++ and LLVM IR inputs, and it has
no internal support for loop pipelining. Vitis HLS, instead,
is a commercial tool by Xilinx supporting C/C++ inputs
augmented by custom pragmas; in its backend Vitis HLS
automatically tries to pipeline all loops in the code with an
Iteration Interval of 1, progressively relaxing the constraint
if necessary.

Bambu is the main target of our case study, precisely be-
cause it is able to synthesize LLVM IR (which is a natural tar-
get for MLIR lowering), and because it would not otherwise
be able to pipeline loops. Xilinx recently released an open-
source frontend for Vitis HLS that operates on LLVM IR, but
it is tightly connected with the custom pragma annotations
on one side, and to the hardware generation (closed-source)
backend on the other: this makes it difficult to implement
optimizations for Vitis HLS that can be reused by other tools.
We use Vitis HLS to verify that our MLIR-based approach
to polyhedral transformations has similar or greater effects
on the generated accelerator performance with respect to a
low-level implementation of the same optimization.

3 Proposed approach

Our approach aims to leverage high-level code optimiza-
tions to provide a hardware-oriented input description to
High-Level Synthesis. This section presents an overview of
the proposed design flow, leaving implementation details to
the next section. Figure 1 shows the main steps and tools
involved: our input code contains a loop to be pipelined, so
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Figure 1. Overview of the proposed optimization flow.

the code is first passed to a scheduler to obtain a loop iter-
ation schedule. Then, we implement code transformations
that work on the input code and use the schedule to produce
the pipelined loop. The resulting code is finally translated
and processed by the HLS tool to generate an accelerator
description in Verilog/VHDL.

As previously mentioned, loop pipelining requires a sched-
uling phase and a code generation phase; we will introduce
here a simple example that will be useful to illustrate these
steps more in detail. Let us consider a for loop that reads
values from an array, multiplies them with a constant, and
writes them into another array. A single iteration of this
simple loop contains three operations: load, multiply, and
store. Figure 2a represents the data flow graph of one itera-
tion; clearly, the three operations depend on each other and
cannot be parallelized.

Loop pipelining allows to schedule operations from differ-
ent original iterations together: as these operations would
not depend on each other, they could be executed in par-
allel without constraints. The result is shown in Figure 2b,
where each column represents one iteration of the new loop,
and operations originating from the same original iteration
use the same color. By overlapping original iterations, loop
pipelining eliminates the parallelization constraints: all op-
erations within the same iteration are independent now, so
they can be executed in parallel. Incomplete iterations at
the beginning form a loop prologue; the last few iterations
are also incomplete, and they form a loop epilogue. The new
loop is built of the complete iterations between prologue and
epilogue. In the example shown in Figure 2b, iterations I1
and I2 belong to the loop prologue, IN+1 and I N+2 represent
the epilogue, while the actual new loop starts from I3. If we
assume that all functional units execute in one clock cycle,
the achieved II in this simple example is equal to 1.

Up to now, we did not consider resource availability. Our
example loop cannot be pipelined if there are not enough
memory elements available to run two operations (one load
and one store) simultaneously: this is why we need to per-
form scheduling before transforming the loop into its pipelined
version. If we tell the scheduler that one load and one store
unit are available, and that all functional units have a delay
of one cycle, it will correctly schedule our example loop as
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Figure 2. Creation of a pipelined loop.
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Figure 3. Pipelined loop schedule.

shown in Figure 3, providing the necessary information to
produce a pipelined loop with II=1. For the sake of simplicity,
in the rest of the discussion we will always assume that the
scheduler has an infinite number of resources available for
each type of operation, and that they all execute in one clock
cycle.

In our optimization flow, scheduling is performed by Hat-
Schet, and code generation is implemented as a set of trans-
formations in MLIR; the pipelined loop is then passed to
Bambu to obtain an HDL implementation. It represents an
alternative to other loop pipelining approaches that delegate
scheduling and pipelining to the HLS tool itself: this is the
case of Vitis HLS, where optimizations can be controlled
through pragmas in the input code, but even in absence of
user-specified directives the tool tries to transform the code
in order to achieve the lowest possible II [21]. Bringing loop
pipelining (and possibly other optimizations) outside the
scope of the HLS tool has significant advantages: for exam-
ple, the developer is more in control of the applied techniques,
as their effects are visible in the transformed IR. Moreover,
applying transformations on a specialized, higher-level ab-
straction increases flexibility, portability, and requires less
time than implementing and exploring different techniques

within the HLS tool. Finally, MLIR is built to allow easy in-
tegration between different optimizations: this means that
loop pipelining may be combined with other techniques to
create inputs to the HLS tool that are more appropriate to
generate efficient hardware accelerators.

4 Implementation

We implemented two MLIR passes to support the proposed
design flow: the first one extracts a data flow graph from
the MLIR loop body, the second one generates the pipelined
loop code according to the schedule produced by HatSchet.
We also implemented an if-conversion pass following [19]
that allows to pipeline loops that contain if and else blocks,
which we will not describe in detail as it is less relevant to
the main focus of the paper. In the following, we will keep
referring to the example loop described in Section 3; Figure
4a shows its description in MLIR.

4.1 Data Flow Graph Extraction Pass

This MLIR pass visits all the operations in the loop and ex-
tracts their dependencies to build a data flow graph that
HatSchet will be able to schedule. Nodes of this graph rep-
resent operations; edges represent dependencies between
operations. There are two kinds of dependencies: precedence
and data. Precedence dependency refers to a simple result
usage in the code; data dependencies exist between two
memory operations accessing the same memory location. A
data dependency can occur between two memory operations
only if at least one of them is a store operation (two loads
are always independent of each other). Data dependencies
have a distance attribute to express the distance between the
loop iterations that contain the two operations. Precedence
dependencies do not have a distance attribute: the result of
an operation in an iteration cannot be used in a different
iteration without passing through memory.
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1 func @example(%arg0: memref<1000xi32>) {
2 affine.for %argl =0 to 1000 {
3 %0 = affine.load %arg0[%arg1]
4 %1 = muli %0, %0

5 affine.store %1, %arg0[%argl]

6 }

7 return
8}

(a) Original loop in MLIR.
#11
# vertex; cycle; functional_unit
affine.load_1; 0; load0
muli_2; 1; mul0
affine.store_3; 2: storeQ

(b) HatSchet schedule.

1 #map = affine_map<(d0) -> (d0 - 2)>
2 func @example(%arg0: memref<1000xi32>,
%arg1: memref<1000xi32>) {

3 %c0 = constant 0 : index
4 %0 = affine.load %arg0[%c0] : memref<1000xi32>
5 %c1 = constant 1 : index
6 %1 = affine.load %arg0[%c1] : memref<1000xi32>
7 %2 = muli %0, %0 :i32
8  %3:2 = affine.for %arg2 = 2 to 1000

iter_args(%arg3 = %1, %arg4 = %2) -> (i32, i32) {
9 %5 = affine.load %arg0[%arg2] : memref<1000xi32>
10 %6 = muli %arg3, %arg3 :i32
11 %7 = affine.apply #map(%arg2)
12 affine.store %arg4, %arg1([%7] : memref<1000xi32>
13 affine.yield %5, %6 : i32, i32

1
15 %4 = muli %3#0, %3#0 : i32
16 %c998 = constant 998 : index
17  store %3#1, %arg1[%c998] : memref<1000xi32>
18  %c999 = constant 999 : index
19 store %4, %arg1[%c999] : memref<1000xi32>
20 return

(c) Scheduled loop in MLIR.

Figure 4. Creation of a pipelined loop through HatSchet and
MLIR.

Extracting nodes and precedence edges from MLIR code
is trivial; a simple loop operations visit is sufficient. Data
dependence analysis represents a more significant challenge:
we solve it by using an existing MLIR affine method named
checkMemRefAccessDependence. This method anal-
yses a pair of memory operations and decides if a dependency
exists (the distance can also be easily deduced from its out-
put). The implementation of the data flow graph extraction
pass was greatly simplified by existing affine constructs, con-
firming that the MLIR dialect-based approach provides a

IMPACT 22, June 20, 2022, Budapest, Hungary

Algorithm 1 Prologue extraction

1: function EXTRACT_PROLOGUE(schedule, I1,
originallterationSize)

2 repeat

3 iteration = new_empty_iteration()

4 start_cycle = 0

5: current_prologue_iteration = prologue.size

6 while (current_prologue_iteration >=0) do

7 cycles « schedule.get_cycles(

8 start: start_cycle, end: start_cycle + II)

9 iteration.schedule_cycles(cycles)

10: current_prologue_iteration =

11: current_prologue_iteration - 1

12: start_cycle = start_cycle + II

13: end while

14: if iteration.size < originallterationSize then
15: prologue.add(iteration)

16: end if

17: until iteration.size == originallterationSize

18: end function

convenient system for the quick introduction of new opti-
mizations.

4.2 Loop Transformation Pass

This pass loads the HatSchet schedule format (Figure 4b) into
a convenient data structure and uses it to generate code for
the pipelined loop. The following paragraphs will highlight
all the steps that are needed to transform the original loop
of Figure 4a into the scheduled loop of Figure 4c.

Prologue and epilogue extraction. HatSchet provides
only the new loop iteration schedule, without prologue and
epilogue, so the MLIR loop transformation pass needs to ex-
tract operations and generate code for prologue and epilogue.
Prologue and epilogue are not loops, but it is useful to reason
in terms of prologue and epilogue iterations to identify the
blocks of operations that are issued together (for example,
columns I1 and 12 in Figure 2b).

The algorithm for prologue extraction (Algorithm 1) starts
iterations from the original loop sequentially until it arrives
at the first iteration of the new loop: the exit condition is
satisfied once it generates an iteration containing all opera-
tions that are in the schedule (this iteration is not included
in the prologue). The first prologue iteration will contain
operations with an overall latency of II, extracted from the
first original loop iteration. Then, each following prologue
iteration will start a new original loop iteration and con-
tinue previously started original iterations with blocks of
operations that cover II cycles.

Looking at Figure 2b, we have a loop with II=1 and three
operations in each iteration: this means that the prologue
extraction algorithm will schedule a single load operation in
I1, then schedule the load operation from the next iteration
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Algorithm 2 Prologue generation

1: function GENERATE_PROLOGUE(prologue_iterations, operand_maps)
2 for iteration : prologue_iterations do
3 for cycle : iteration do
4 for operation, original_iteration : cycle do
5: for operand : operation.operands do
6 if operand == original_index_variable then
7 constant_operation = generate_constant_operation(value: original_iteration)
8 operand_maps|[original_iteration].insert(operand, constant_operation.result)
9 end if
10: new_operation = operation.clone(maps([original_iteration])
11 maps[original_iteration].insert(operation.results, new_operation.results)
12 end for
13: end for
14: end for
15: end for

16: end function

and the multiplication to continue the previous iteration in
I2. The algorithm stops when it generates I3 and sees that it
has the same operations of the scheduled iteration, so it will
be discarded.

The epilogue can be extracted similarly. However, in this
case we are not starting new iterations but instead finishing
the ones started in the loop iterations: the exit condition is
satisfied when the size of the generated iteration equals zero.

Operations mapping. Subsequent code generation stages
consist of cloning original loop operations and updating their
operands to reference new operation results. MLIR offers
a mechanism to create a deep copy of an operation while
assigning new values to its operands using a map: keys in the
map represent the initial results of each operation, while val-
ues contain the results of the new cloned operations. We use
separate maps for each original iteration to ensure we keep
the correct operation dependencies; we record a mapping
each time we generate a new operation.

In the example code of Figure 4c the MLIR pass creates five
maps: two for the original iterations starting in the prologue,
one for all original iterations starting in the new loop, and
two for the original iterations finishing in the epilogue. In
fact, the original iterations fully executed within the new
loop body can use a single map because there is no need to
distinguish them from each other.

Prologue generation. Prologue generation traverses the
prologue extracted from the schedule and creates operations
by cloning the original ones and populating the correct maps
(Algorithm 2). As we create new operations in order, the
cloning map always contains the new values needed to sub-
stitute old operands. Other operands that need to be replaced
are the ones that depend on the loop index variable: in this
case, we calculate a new variable summing the lower bound
of the loop index with the number of the original iteration.

In simple cases where the lower bound is a constant, the new
expression is also a constant.

In our example, prologue generation needs to generate
three operations - two loads and one multiply. The first load
is cloned from the original operation within the loop and
moved in front of the loop. Since the load address depends
on the loop index variable, we also need to replace it with an
additional constant: we get its value by summing the original
iteration number (zero) with the loop lower bound (zero).
The second load is cloned and moved in the same way; its
constant will have a value of one since the operation comes
from original iteration one. When the multiply operation is
cloned and moved, it correctly uses the result of the first load:
in fact, as soon as the load operation is generated, its result
is correctly allocated in the map so that all operations that
used it in the original loop are redirected to its new value.

New loop generation. Similarly to what happens during
prologue generation, each operation in the new loop is cre-
ated by cloning the original loop operation and mapping its
operands. If an operand requires the result of an operation
from inside the loop body, this is handled by the default
mapping mechanism,; if an operand requires a result from
an iteration started in the prologue, the loop index variable
will be adjusted by a map to refer to the correct value. For
example, line 11 in Figure 4c produces the correct index by
subtracting 2 from %arg2.

Inter-iteration argument passing. Loop pipelining re-
quires the loop to pass results from one iteration to the next
one, and this is usually solved in hardware by using dedi-
cated registers. As we work on a higher level of abstraction,
we need to pass these results explicitly in the MLIR code.
MLIR offers a mechanism to pass arguments to each new
iteration of the loop: operands that need to be passed to a
following iteration of the loop can yield their result, which
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Table 1. Performance of selected Polybench kernels with Vitis HLS pipelining and MLIR pipelining. Two different measures of
speedup are provided: pipelined over baseline, and MLIR high-level optimization over traditional HLS.

Benchmark Number of clock cycles Speedup
C + Vitis MLIR opt + Bambu Pipelining MLIR opt
baseline pipelined baseline  pipelined Vitis  Bambu baseline pipelined

2mm 261186 107908 214914 76482 242x  2.81x 1.22x 1.41x
3mm 347775 166457 304576 117 428 2.09x  2.59x 1.14x 1.42x
atax 52826 13915 41911 16 869 3.80x  2.48x 1.26x 0.82x
bicg 27298 11 842 41887 8749 231x  4.79x 0.65x 1.35x
doitgen 188 421 95282 130742 69222 1.98x 1.89x 1.44x 1.38x
gemm 266061 121082 244622 83002 2.20x  2.95x 1.09x 1.46x
gemver 112764 25836 90122 25845 4.36x  3.49x 1.25x 1.00x
mvt 51442 23522 43362 16722 2.19x  2.59% 1.19x 1.41x
syrz2k 294 841 76066 227582 70910 3.88x 3.21x 1.30x 1.07x
syrk 168 841 75766 153182 57 490 2.23x  2.66x 1.10x 1.32x
trmm 103 541 94502 74362 37392 1.10x  1.99x 1.39x 2.53x

8  %3:3 = affine.for %arg2 = 2 to 1000
iter_args|[%ar93 = %1, %arg4 = %2, %arg5 = %3)
(132,132,132
9 %5 = affine.load %arg0[%arg2] : memref<1000xi32>
10 %6 = muli %arg3, %arg3 :i32
11 %7 = affine.apply #map(%arg2)
12 affine.store %arg4, %arg1[%7] : memref<1000xi32>
13 affine.yield %5, %arg5, %6 :|i32, i32
14 1

Figure 5. Inter-iteration argument passing.

will be available as iteration argument at the beginning of
the next iteration.

In our example, the new loop body consists of three opera-
tions, all from different original iterations: the load operation
does not need any mapping of the operands, the multipli-
cation uses the result of the load from the prologue (first
iteration argument), the store uses the result of the multipli-
cation from the prologue (second iteration argument). After
each iteration of the new loop, load and multiply results are
yielded to serve as iteration arguments for the next iteration.

Scheduling might overlap instructions in such a way that
lifetimes of operation results span multiple iterations, intro-
ducing the risk of overwriting an old value before using it.
Rai et al. [17] suggest two different solutions to this problem:
loop unrolling and rotating register files. We decided to avoid
unrolling since it introduces further code expansion, while
rotating register files requires architectural support that we
cannot provide working on a higher level of abstraction. In-
stead, we solved this by using additional iteration arguments,
such as the third iteration argument in Figure 5.

Epilogue generation and old loop removal. Epilogue
generation is similar to prologue generation, with an addi-
tional step that maps the results of yield operations from the

last loop iteration to epilogue operands. Finally, the old loop
is removed from the code.

5 Experimental results

In this section we present preliminary results that validate
our approach. We chose to focus our experiments on selected
kernels from the Polybench benchmark suite, and to compare
our MLIR-based optimization with the one performed by
Vitis HLS on its internal IR.

To this end, we first synthesize the standard C version of
Polybench kernels with Vitis HLS 2021.1, selecting always
the smallest kernel size (‘mini’ dataset, version 4.2.1) and
double-precision floating point operations. We obtain base-
line results by adding a specific directive that forces Vitis
HLS to never apply pipelining, then we remove the directive
to trigger the automatic pipelining behaviour and we ver-
ify from synthesis logs that only the innermost loops were
pipelined. Subsequently, we use Polygeist [15] to translate
the same kernels to MLIR. We apply our high-level optimiza-
tions to the innermost loops, translate the kernels into LLVM
IR and synthesize them with Bambu 0.9.7 as depicted in Fig-
ure 1. With both Vitis HLS and Bambu we synthesize for a
Xilinx Zyng-7000 FPGA with a target frequency of 100 MHz,
we assume that all data is stored in on-chip BRAMs, and all
results are reported post place-and-route.

Table 1 shows the execution time of the generated accel-
erators: pipelining loops provides a significant reduction
in clock cycles, as expected, and this is verified both when
pipelining is applied within the HLS tool and when it is
implemented as a high-level MLIR optimization. A more
interesting comparison can be drawn between the two ap-
proaches to HLS: moving from C code optimized by Vitis
HLS to our proposed MLIR-based flow provides a speedup
in almost every benchmark, with and without pipelining.
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Table 2. Resource consumption of selected Polybench kernels before and after MLIR pipelining. The last column represents
the speedup introduced by loop pipelining normalized by the area overhead.

Benchmark DSPs Registers LUTs Slices Slices overhead Speedup / Slices overhead
2rmm ﬁ?;j;:sd ;8 izgz i?gz 1232 1.78x 1.58x
e 10 o ks o MOV L5t
o % oo s o 2T 090%
b im0 a0 on o O L7
doigen SOl wes e i MD 126
gm0 i s o 2 15
baseline 20 3270 3727 1463
BEMIVEr ivelined 70 11265 13943 4629 3.16x 1.10x
mt e 10 s sma wm S 171x
sl a0 s s w2 0.8
W e 0 e s oo S0 087x
e 10 oz s 1 Lo

When we schedule the affine code in MLIR, all operations
in the new loop body are independent and can be executed
in parallel: this means that measuring the II actually cor-
responds to measuring the execution latency of one loop
iteration. By inspecting the Finite State Machines generated
by Bambu and the Vitis synthesis logs, we observed that
in several occasions the II reported by Vitis is higher than
the iteration latency for the loop synthesized by Bambu.
We suppose that this happened when Vitis was not able to
correctly resolve operation dependencies in its internal low-
level IR, while our approach facilitates this task by working
at a higher level of abstraction in the specialized MLIR affine
dialect.

Looking at area consumption, Table 2 reports the resource
utilization of the benchmarks we synthesized from MLIR.
Pipelining loops increases digital signal processing slices
(DSPs), registers, look-up tables (LUTs) and slices consump-
tion: however, if we divide the speedup by the area overhead
we obtain that in most cases the price we are paying in terms
of area is adequately compensated by the reduction in the
number of clock cycles. The benchmarks where this does not
happen may be too complex to benefit from innermost loop
pipelining only. For example, the innermost loops in syrk
and syr2k have an upper bound depending on the induction
variable of the outermost loop: if the iterations executed
in the pipelined loop are less than the iterations started in

the prologue, the results may be wrong. To avoid this risk,
we introduced a check at runtime to assess whether there
are enough iterations to safely execute the pipelined loop,
falling back on the original loop if this is not the case; how-
ever, having both the original and the pipelined loop in the
code caused significant area overhead.

These preliminary results are a promising starting point to
explore synthesis-oriented polyhedral optimizations in MLIR.
Introducing loop pipelining as a high-level transformation
was considerably easier than modifying the internal mecha-
nisms of Bambu, and it gives more control to the user. While
in a few experiments the MLIR-based design flow delivered
worse performance than what Vitis HLS could achieve, it is
important to notice that the experiments were relying on
automatic optimizations performed by Vitis. There might
have been many other transformations involved (e.g. loop
unrolling, memory access optimizations) that are invisible
to the user, and were not available or not triggered during
Bambu synthesis.

6 Related work

There is significant interest in leveraging the polyhedral
model to perform optimizations for HLS, especially when
synthesizing for FPGAs [25, 26]. Polyhedral optimization,
in fact, provides unique opportunities for parallelization,
pipelining, and optimization of memory accesses, which are
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all fundamental aspects to exploit the spatial parallelism
provided by reconfigurable devices. Existing polyhedral ap-
proaches and frameworks for HLS are fundamentally source-
to-source translators that process C/C++ inputs and rewrite
restructured C/C++ code, possibly annotated with tool-specific
optimization directives. As a consequence, even if they show
great promise to improve performance of the synthesized
circuits, it is inherently difficult to combine their polyhedral
transformations with other types of optimizations.

As previously highlighted, loop pipelining is a key opti-
mization for HLS, and thus it has been explored from several
different perspectives. These include works like [12], which
focuses on obtaining an II close to 1 even for loops that have
non-constant dependencies, or [5], which applies specula-
tive loop pipelining to HLS. Other works exploit polyhedral
frameworks to implement dynamic loop pipelining [13, 14].
In all these approaches, polyhedral analysis enables the gen-
eration of specialized logic that decides when to safely run
all loop iterations in the pipeline and when to interrupt the
pipeline execution to resolve memory conflicts. However,
even these approaches in the end resort to re-generating
annotated C/C++ code for a specific HLS tool, limiting the
possibilities to explore further non-polyhedral optimizations.

Our paper shows how a high-level abstraction designed
for polyhedral optimization (the MLIR affine dialect) can
be leveraged to effectively implement loop pipelining for
HLS. Such a compiler-based approach, that works outside of
the HLS tool, naturally lends itself to the addition of further
optimizations. For example, Fellahi and Cohen [6] tackle
nested loop optimizations and propose merging epilogue
and prologue of adjacent iterations: this could be easily im-
plemented in the future as another MLIR pass on top of the
one we presented in this paper. Zhao and Cheng [24] have
recently proposed Phism, a workflow similar to ours that
bridges the gap between polyhedral tools and High-Level
Synthesis. They intend to use Polygeist as a frontend for
C/C++ programs, and to exploit the MLIR Affine dialect to
implement progressive lowerings where each optimization
can benefit from a different level of abstraction. Our loop
pipelining passes are theoretically compatible with any other
optimization implemented within MLIR, so in the future they
could be combined with any other polyhedral optimization
that will be proposed in Phism.

One of the main features provided by MLIR is to enable spe-
cialized abstractions (dialects) to solve different optimization
problems; dialects are meant to be reusable across compila-
tion pipelines, and they can co-exist together in the same
MLIR representation. This will allow polyhedral optimiza-
tion to be part of more complex and complete MLIR-based
HLS infrastructures that bridge the gap from high-level, do-
main specific frameworks to hardware design [16, 23]. Other
research efforts have also also started to look at MLIR as a
mean to improve the HLS process. These include ScaleHLS
[22], which proposes to use MLIR to analyze and transform
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input code to HLS, as we do, but then regenerates again a C
program containing directives targeting Vivado HLS, effec-
tively leaving a specific backend tool in charge of applying
the optimizations. The CIRCT project [3], instead, intends
to prove the adaptability of MLIR by applying it to imple-
ment interoperable hardware design tools at a lower level of
abstraction.

7 Conclusion

We believe that applying polyhedral optimizations at the
appropriate level of abstraction can be beneficial to improve
HLS results. To support this claim, we implemented loop
pipelining as a compiler pass within the MLIR framework,
which offers the affine representation specifically to enable
polyhedral optimizations. We evaluated the effect of our
high-level transformation by translating the obtained MLIR
code into LLVM IR and feeding it to Bambu, an open source
HLS tool that does not natively support loop pipelining. We
compared the performance of accelerators generated with
our MLIR-based design flow to the ones obtained by synthe-
sizing C programs with Vitis HLS (which instead automati-
cally pipelines loops), and showed how our design flow can
produce similar or better results.

These preliminary experiments open the way to further
research to explore polyhedral optimization techniques that
can benefit HLS at a higher level of abstraction than existing
solutions producing C/C++ code. A first step in this direction
will be to evaluate how our loop pipelining implementation
interacts with existing MLIR optimizations at the affine di-
alect level, and then to add other HLS-oriented compiler
passes. Finally, thanks to the modular nature of MLIR, our
loop pipelining pass could also be included into existing and
future compiler-based design flows that work with the MLIR
affine dialect.
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