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Reductions

e o ¢ rf_fe_dUction 1s an associative and commutative
“——eperator applied to collections of values to
produce a single or collections of results



Reductions

+A r}édUCtion 1s an associative and commutative
“——eperator applied to collections of values to
produce a collection of results

+ Our collections are polyhedral sets
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Simple Example (scan)

_ ' *Compute an array Y given by the equation

l
i = EX]'
k=0

r 1 =0 to n { Y[ ~=_X[0];
Y[i] =N0; for i = g n {
O T eQ 1 Y[1i] = Y[1i-1]+X[1]

Y[2] +={J]
}



Outline

-+ Introduction and Problem Definition
LY Shaﬁng
+ Simplification
+ Multidimensional Simplification
+ Gautam Rajopadhye algorithm
+ Dependent Reductions, what’s the problem?
+ Coupling Scheduling and Simplification
+ Related Work & Conclusions



=i GeBmettic

Representation

*‘T'hrt,ﬁé:'e”equivalent forms of representation

+ Loops (bounds define the polyhedron)
for i = 1 to M
Y[i] = 0;

forsg = 1 to 1I-1

for k = 1 to 1i-7] 41
Y[1i] += F[4i,],k]; } k
+Equations
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Sharing

*IfF,j,k = X,
=~ #Allindex points on planes parallel

to the {i,j} plane have the same value

+{i,j} is called the share space
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+ Aim to replace this polyhedron

+ Denoted by green

by one of lesser dimensions
Share space



Simplification




Simplification
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Simplification
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Simplification
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Multidimensional
Simplification




Multidimensional
Simplification




Multidimensional
Simplification




Multidimensional
Simplification




Infinite Space
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Another Option
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= Construct the face lattice

GR 2006 Algorithm

Wl min(2i+N—-1,3N—-1)

’PrepfOCCS_éing: Yl = Z X j

-4 Determine the share/reuse space

Pick a reuse vector p
Translate domain along p

Delete the intersection, retain residual
computation on the differences (facets)

TL.abel each facet as:
+ Boundaty w.

+ Inward/outward/invariant (function of p)
Ignore outward boundary & invariant facets
Accumulate inward boundary (1nitialize)
Add inward facets
Subtract outward facets
Recurse on each facet
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GR 2006 Algorithm

Inﬁ_ﬁitely .fnany choices

.+ Only finitely many labels

+ All choices of p that yield the same facet labels are
equivalent for complexity reduction

+ Only finitely many choices at each level
+ May need to backtrack

+ All roads lead to Rome: if reduction operator
admits an inverse,

+ All available dimensions can be fully exploited
+ All choices of reuse vectors to exploit are equivalent
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Dependent Reductions

min(2i+N—-1,3N—-1)

5 +\X/£1'at'ifX depends on Y? Y = Z &;

j=i

Xi = f(¥j-1)

+ Not all reuse vectors are legal
+ Cyclic dependences

+ Couple simplification with scheduling
+ Polyhedral scheduling is well known

when dependences are given

+ But reuse vectors are unknown (chosen as the algorithm
recurses down the face lattice)
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Solution

5 *Kéyinsight: The feasible space of legal schedules is a
-~ finitely generated (w generators 0, ... 0,)
~ " blunt (i.e., does not contain the origin)
cone
+ Start with the feasible space of all schedules of the
original program
+ When choosing the reuse vector p at each face, make
sure that the cone does not become empty

+ At least one of the generators satisfies that 6, p is non-
negative

+ Leads to m disjunctions, but only finitely many choices
+ Retains optimality of GR 2006
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Related Work

+ROYChOWdhury 1988
4 Delosme [psen 1985
+ Yang Atkinson and Carbin [POPL 2021]

+ First to formulate the problem
+Many practical use cases from probabilistic
programming

+ Formulated solution as bilinear programming plus
simple heuristic that works in practice.
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Conclusions

+S1mphfy1ng reductions has practical benetits

#+Dependences add a new twist (whole program
analysis, not just one equation)

+ We can have optimal simplification even with
dependences
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