
Simplifying Dependent
Reductions

1

Sanjay Rajopadhye
Colorado State University

Overview

2

Problem Algorithm Program
O

ptim
izing

C
om

piler

Improved
Program

Sim
plifying

R
eductions

Improved
algorithm

Reductions

ªA reduction is an associative and commutative
operator applied to collections of values to
produce a single or collections of results

3

Reductions

ªA reduction is an associative and commutative
operator applied to collections of values to
produce a collection of results

ªOur collections are polyhedral sets

j

k
i

Y

F

Domain of Y

Domain of F

4

Simple Example (scan)

for i = 0 to n {
Y[i] = 0;
for j = 0 to i

Y[i] += X[j]
}

Y[0] = X[0];
for i = 1 to n {
Y[i] = Y[i-1]+X[i]

5

ªCompute an array Y given by the equation

!" = $
%&'

"
()

Outline

ª Introduction and Problem Definition
ª Sharing
ª Simplification

ªMultidimensional Simplification

ªGautam Rajopadhye algorithm
ªDependent Reductions, what’s the problem?
ªCoupling Scheduling and Simplification
ªRelated Work & Conclusions

6

Representation

ªThree equivalent forms of representation
ªGeometric
ªLoops (bounds define the polyhedron)
for i = 1 to n {
Y[i] = 0;
for j = 1 to i-1
for k = 1 to i-j
Y[i] += F[i,j,k]; }

ªEquations

j

k
i

Y

F

7

Sharing

ªIf
ªAll index points on planes parallel

to the {i,j} plane have the same value
ª{i,j} is called the share space

ªDenoted by green

ªAim to replace this polyhedron
by one of lesser dimensions

j

k
i

Y

F

Share space
8

Simplification

j

k
i

Y

F

Y

F

9

Simplification

Y

Fj

k
i

Y

F

10

Simplification

Y

Fj

k
i

Y

F

11

Simplification

Y
F

j

k
i

Y

F

12

Multidimensional
Simplification

F
j

k
i

Y

F

Z
Y

13

Multidimensional
Simplification

j

k
i

F
Z
Y

F
Z
Y

14

Multidimensional
Simplification

j

k
i

F
Z
Y

F
Z
Y

15

Multidimensional
Simplification

j

k
i

F
Z
Y

Z
Y

F

16

Infinite Space

Y
F

j

k
i

Y

F

17

Another Option

Y

Fj

k
i

Y

F

18

ª Preprocessing:
ª Determine the share/reuse space
ª Construct the face lattice

ª Pick a reuse vector !
ª Translate domain along !
ª Delete the intersection, retain residual

computation on the differences (facets)
ª Label each facet as:

ª Boundary
ª Inward/outward/invariant (function of !)

ª Ignore outward boundary & invariant facets
ª Accumulate inward boundary (initialize)
ª Add inward facets
ª Subtract outward facets
ª Recurse on each facet

GR 2006 Algorithm

j

i

19

"# = %
&'#

()*(,#-./0,2./0)

4&

Infinitely many choices
ªOnly finitely many labels
ªAll choices of ! that yield the same facet labels are

equivalent for complexity reduction
ªOnly finitely many choices at each level

ªMay need to backtrack
ªAll roads lead to Rome: if reduction operator

admits an inverse,
ªAll available dimensions can be fully exploited
ªAll choices of reuse vectors to exploit are equivalent

GR 2006 Algorithm

20

Dependent Reductions

ªWhat if X depends on Y?

ªNot all reuse vectors are legal
ªCyclic dependences

ªCouple simplification with scheduling
ªPolyhedral scheduling is well known

when dependences are given
ªBut reuse vectors are unknown (chosen as the algorithm

recurses down the face lattice)
21

!" = $(&'())

&" = +
',"

-./(0"12(),42())

!'

Solution

ªKey insight: The feasible space of legal schedules is a
finitely generated (w generators θ1 … θm)
blunt (i.e., does not contain the origin)

cone
ªStart with the feasible space of all schedules of the

original program
ªWhen choosing the reuse vector ! at each face, make

sure that the cone does not become empty
ªAt least one of the generators satisfies that θi ! is non-

negative
ªLeads to m disjunctions, but only finitely many choices
ªRetains optimality of GR 2006

22

Related Work

ªRoychowdhury 1988
ªDelosme Ipsen 1985
ªYang Atkinson and Carbin [POPL 2021]

ªFirst to formulate the problem
ªMany practical use cases from probabilistic

programming
ªFormulated solution as bilinear programming plus

simple heuristic that works in practice.

23

Conclusions

ªSimplifying reductions has practical benefits
ªDependences add a new twist (whole program

analysis, not just one equation)
ªWe can have optimal simplification even with

dependences

24

