Representing Non-Affine Parallel Algorithms
by means of Recursive Polyhedral Equations

Patrice Quinton® and Tomofumi Yuki?

LENS Rennes
2INRIA Rennes

Impact 2021, January 20, 2021

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 1/30

© Introduction

© Example : recursive minimum

© Recursive ALpHA

@ Scheduling recursive ALPHA programs
© Discussion

@ Conclusion

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 2 /30

Outline

@ Introduction

Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 3 /30

Introduction

Introduction

Polyhedral model : a powerful representation of computations for
parallelism expression and extraction

Limited by the expressivity of affine recurrence equations

Extensions of the model have been proposed

Divide-and-conquer programs difficult to represent, in a direct
fashion

Typical (and famous) limitation : FFT cannot be described

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 4 /30

Content of this (on going) work

o Express divide-and-conquer algorithms using a polyhedral
equational language

@ Context : the ALPHA language

@ How : extending the language with conditions on size
parameter values

@ What : show how affine scheduling can be extended by means of
solving recursive equations to compute the parameter
dependent part

@ Basic idea : try to "confine" the problems to the parameter
side.

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 5 /30

Outline

© Example : recursive minimum

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 6 /30

Example : recursive minimum

Divide-and-conquer algorithm for computing the minimum

of N numbers

minRec(A[N]) = {
if (N==1) return A[0];
left = minRec(A[0 :N/2]);
right = minRec(A[N/2 :N]);
return min(left, right);

P. Quinton and T. Yuki Recursive Polyhedral Equations

Impact 2021

7/ 30

Example : recursive minimum

Call structure of recursive min when N =8

minRec N=8
=2 (min)
minRe€N=4 minl'\TeC N=4
t=1 (min)
-_-— _-—

minRec N=2 minRec N=2 minRec N=2 minRec N=2
t=0 | (min (min) (min) (min)

A[0] ALl A2l AIBI A4l |AISI A6l Al7]

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021

8 /30

Example : recursive minimum

ALPHA sequential program to compute the minimum of N
numbers

affine minValue[N] — {: 1 < N}
" array : {[1] : 1 < i< N};
out
minimum : {};
local
X {[1:0< i< N;
let (1)
X[i] = case {
{:7=0}:0[J;
, {0 <} : min (X[i — 1], array[]]);

minimum = X[N];

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 9 /30

Syntax of ALPHA

@ Parameters: [N] — {: 1 < N}
@ Domains: array : {[]: 1 <i< N}

@ Equations:

X[i] =
case
{ =0} : 0[];
{:0 <i}: min (X[i-1], array[i]);
esac;

Remark : ALPHA expressions are functional, allowing formal
transformations to be clearly defined (See [Mauras, 1989])

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021

10 / 30

Outline

© Recursive ALPHA

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 11 /30

Recursive ALPHA

Calls to subsystems

(Y1, Ys, ..., Ym) = < name >[f|(X1, Xa, ..., Xn)

name is the name of the subsystem called
X; are the inputs
Y; are the outputs

fis an affine function of the parameters. f= (p — f(p) = q)

When clauses

A when clause governs a set of equations (or system calls) that apply
when some condition on the parameter is met

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 12 / 30

Recursive ALPHA

Recursive minRec (1/2)

Base case

affine minRec[N] — {: 1 < N}

in
array : {[1]: 1 < i< N}
out
minimum : {}
when {: N=1}
let

minimum = array/[1];

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 13 /30

Recursive ALPHA

Recursive minRec (2/2)

Recursive part

when {: N > 2}
local

let

minl : {}
min2 : {}
arrayl : {[1]: 1 <iand 2/ < N}
array2 : {[{] : 1 < iand 2i < N}

arrayl[i] = array][i];

array2[i] = array[i + N/2J;
(minl) = minRec|[N/2](arrayl);
(min2) = minRec[N/2](array2);
minimum = min (minl, min2);

P. Quinton and T. Yuki

Recursive Polyhedral Equations Impact 2021

14 / 30

Outline

@ Scheduling recursive ALPHA programs

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 15 / 30

Scheduling standard ALPHA (1/3)

V, variable, V(z) value of V at point z

ty(z) denotes the schedule of V

tv(z) > tw(Z) whenever V(z) depends on W(Z)
In a standard ALPHA program with parameter p,
tv(z) = 1v.z+ ay+oy.p

@ Schedule found by enforcing causality in each point of the
domain of V using either :

o the Farkas method (Feautrier)
o the vertex method (Quinton et al.)

@ In both cases, ILP of a few tens of inequalities

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 16 / 30

Scheduling standard ALPHA : calls to subsystems (2/3)

X
t=0 ‘ t=ai+b
SYS
Y
t=d | t=ai+b+d
Call 1 to SYS
A
t=e | t=ai+b+e
Call 2 to SYS

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 17 / 30

Scheduling standard ALPHA (2/3)

To schedule systems including subsystem calls :
@ Assume subsystem is already scheduled

@ Gather schedule of inputs and outputs and add the same unknown
expression (possibly depending on the parameter) to the schedule of
the call

@ Enforce the dependencies between |/O of system and their actual
value in the calling system

@ Remark : other, more sophisticated, methods exist.

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 18 / 30

Scheduling recursive ALPHA programs

Scheduling recursive ALPHA

Assumption and remarks

@ Simple recursion scheme (no mutually recursive systems)
@ Schedule function affine, uni-dimensional, except parameter term

@ Cannot assume that subsystem is scheduled

Method

@ Assume that schedule has the form ty(z) = 7.2+ ay + ¢(p) where ¢
is a function to be determined.

@ For equations, proceed as in the standard case

@ For system calls, take into account the parameter mapping function f,
and separate the computation of the 7y, ay and of ¢

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 19 / 30

Scheduling recursive ALPHA programs

Recursion equations

Let Pp, be the parameter domain of the base part, and P, that of the

recursive part.
_J poifpe Py
o0 = Do s e p @

Example of minRec

lifp=1
¢(p):{ p/2i1ifp>1 (3)

Solution : ¢(p) = logy p+1
For more general cases, see [Cormen et al.,2001] or [Benoit et al, 2013]

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 20 / 30

Outline

© Discussion

Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 21 /30

FFT (1/2)

affine FFT[N] — {: 1 < N}
in

x:{[]:1<i< N}
out

y:A{[]:1<i< N}
when {: N =1}
let

y[l =x;

when {: 2 < N}

local
left : {[]:1 < iand 2/ < N}
right: {[]:1 < iand 2/ < N}
ql: {[]:1<iand 2i< N}
q2:{[]:1<iand 2i< N}
z:{[]:1<i<N}

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 22 /30

FFT (2/2)

let
left[i] = x[2%i—1]; -- Separate left an right
right[i] = x[2 * i];
(q1) = FFT[N/2](left); -- Recursive call
(42) = FFTIN/2)(right):
—-- Sketch of butterfly computation
z[l] =
case {
{: 2i< N} :if %2 =0 then ql[]+ ql[i— 1]
else ql[i] + q1[1 + 1;
{: N<2i}:if %2 =0 then q2[i— N/2]+
q2[1+i— N/2]
else q2[i — N/2] + q2[1 + i— N/2];
};
-- Set result
yli = 2[i;

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 23 /30

Discussion

Discussion

FFT can be represented and scheduled (done using MMAIpha)
Divide-and-conquer with other ratios can be easily covered
Static analysis allows checking that program follows assumptions

Theoretical complexity is that of ILP, but in practice, not a
problem

Open: multi-dimensional schedule, mutually recursive programs

@ References to other approaches of polyhedral recursion in the paper

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 24 / 30

Outline

@ Conclusion

Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 25 / 30

Conclusion
Summary

@ Divide-and-conquer algorithms modelization for the polyhedral
model

@ Structured scheduling of affine equations extended to recursive

program
@ Representation and parallelization of FFT can be done

@ Basic properties of polyhedral equations are preserved

Future work

@ Implement change of basis, etc.

@ Extend to multi-dimensional scheduling
@ Implement VHDL code generation
°

Combine recursivity and reductions for high-level
transformations

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021

26 / 30

Conclusion

Thank you!

Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 27 / 30

Conclusion

Experiments and Numbers

@ MMAIpha : implementation of ALPHA workflow based on
Mathematica, using the Polyhedral Library

@ Scheduling based on the vertex method, using the ILP solver of
Mathematica (Interior point method)

@ Typical scheduling time : 48 equations, 1066 inequalities, 1.61 s
(MacBook Pro, 2,3GHz)

o FFT (recursive) scheduling :

e Finding out the 7's and a's : 0.18 s
e Solving the recursions : 0.18 s

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021

28 / 30

Other works

@ Extensions of the Polyhedral Model [Benabderrahamne et al, 2010],
[loss et al., 2014]

@ Use dynamic compilation to discover hidden polyhedral parts
[Kobeissi and Clauss, 2019]

e Transformation of recursive programs [Sudararajah and Kulkarni,

2015]

@ Space exploration through linear transforms (SPIRAL) [Franchetti
at al, 2018]

e Divide-and-conquer for dynamic programming [Javanmard et al,
2020]

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 29 / 30

The two branches of the Polyhedral Model

A little bit of archeology

Loop parallelization [Kuck, circa 1970]

Modelization by recurrence equations [Karp et al., circa 1970]
Systolic array modelization [Moldovan, Quinton, circa 1980]
Data-flow analysis [Feautrier, 1991]

Alpha language [Mauras, 1989]

Current situation
@ Branch 1 : analysis of loops, dependence analysis, loop rewriting
@ Branch 2 : expression of computations, program transformations

@ Sharing many methods and techniques

P. Quinton and T. Yuki Recursive Polyhedral Equations Impact 2021 30/ 30

	Introduction
	Example: recursive minimum
	Recursive Alpha
	Scheduling recursive Alpha programs
	Discussion
	Conclusion

