
Polygeist: Affine C in MLIR

William S. Moses
wmoses@mit.edu

1

Lorenzo Chelini
l.chelini@tue.nl

Alex Zinenko
zinenko@google.com

Ruizhe Zhao
rz3515@ic.ac.uk



Motivation

• The compiler research has recently been enamored by the MLIR 
framework, whose first-class polyhedral representation may provide 
benefits on a variety of codes
• We can fully leverage decades of polyhedral research by connecting 

MLIR with existing polyhedral tools first.
• Without MLIR-versions of standard polyhedral benchmarks, one 

cannot perform a fair assessment
• Goal of this work is not to use polyhedral tools to speedup MLIR, but 

to provide a fair baseline for subsequent work

2



Polygeist

3

A platform to establish baselines for polyhedral transformations within 
MLIR
• Generic C or C++ frontend that generates "standard" MLIR
• Raising transformations for transforming "standard" MLIR to 

polyhedral MLIR (Affine)
• Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
• Polyhedral benchmarks for MLIR based off of Polybench
• End-to-end evaluation on standard polyhedral benchmarks



The MLIR Framework

• A toolkit for representing and transforming 
"code"
• Modular and extensible via dialects 

(namespaces of operations/types and 
attributes)

• Non-opinionated – choose the level of 
abstraction that is right for you

• State-of-the-art SSA-based compiler technology

4



The Affine dialect

• Represent SCoP with polyhedral-
friendly loops and conditions
• Core Affine representation

• Symbols - parameters
• Dimensions - symbol extension that 

accepts induction variables
• Maps - multi-dimensional function 

of symbols and dimensions
• Sets - integer tuples constrained by 

a conjunction

5



Polygeist Frontend

6

• Built a generic C or C++ frontend for MLIR, based off of Clang
• C control flow directly lowered to MLIR for, if, etc..
• Variables and arrays represented by MLIR memref (memory 

reference) construct



Polygeist Frontend

7

void set(int *arr, int val) {
#pragma scop
for(int i=0; i<10; i++){

arr[2*i] = val;
}
#pragma endscop

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c2_i32 = constant 2 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}



Polygeist Raising

8

• Directly lowered constructs are not valid polyhedral programs
• Local variables eliminated, if possible, by new MLIR mem2reg pass
• Loads and stores are raised to affine loads, if possible

• Detect if index calculation is a valid affine expression
• Progressively fold index calculation into an affine operation

• if statements are changed to affine if their condition can be raised



Polygeist Raising

9

func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%c2_i32 = constant 2 : i32
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2] 
: memref<?xi32>

}
return

}



Connecting MLIR to Polyhedral Tools

• Polygeist can obtain polyhedral 
representation in MLIR Affine
• But it is difficult to leverage existing 

polyhedral tools
• OpenScop is the interchangeable 

format among polyhedral tools
• How to translate between MLIR 

code and OpenScop representation?

10



Polyhedral Statement

• OpenScop expects C-like statements:

• MLIR is lower level and a store 
instruction alone does not specify 
how to compute the stored operand
• 1 OpenScop statement may 

correspond to N MLIR operations
• To match C-like statements:

• Extract 1 MLIR memory write
• Traverse SSA use-def chains
• Continue until all operations are loads 

or symbols
11

C[i][j] += A[i][k] * B[k][j]



Region-Spanning Problem

• A use-def chain may span multiple 
loops (regions).
• e.g., A load op defines a register used by 

other ops in inner loops.

• Statement nesting in loops is 
ambiguous
• Difficult to reconstruct when 

converting back to MLIR
• Reg2mem pass: insert a scratchpad for 

each use-def across regions

12



Avoid RAW Hazard

• The RAW hazard problem:
• A load op is duplicated for use in 

multiple statements
• Intermediate writes may clobber
• After extraction, later 

statements may load wrong values

• Simplified value analysis to detect
• Insert scratchpads

13



Outlining 

• We outline statements into 
functions
• Opaque calls with known memory 

footprints
• Lift local stack allocations and 

symbol definitions

14



Translate to OpenScop

• First pre-process MLIR Affine code by previous passes
• For each extracted polyhedral statement:

• Domain: get constraints from affine.for/if
• Initial Schedule: derive from region nesting and operation order
• Access: extract from affine load/stores

• Store symbols in OpenScop extensions

15



Translate to OpenScop

16



Regenerate MLIR Code

• Obtain a CLooG AST from an optimized OpenScop representation
• Regenerate MLIR code by traversing AST
• OpenScop symbols will be translated to MLIR values or operations 

based on a maintained symbol table.

17



Polyhedral Optimization Pipeline

18



Evaluate Polygeist

• Compare Polygeist frontend with Clang
• Compare Polygeist polyhedral optimization with native Pluto

19



Frontend Comparison with Clang

20

Polygeist faster

Clang faster

X denotes tests with runtime < 0.05s



Frontend Performance Differences

• Solved differences (removed prior to benchmarking):
• 8% performance boost on Floyd-Warshall occurs if Polygeist

generates a single MLIR module for both benchmarking and timing 
code by default
• MLIR doesn't properly generate LLVM datalayout, preventing 

vectorization for MLIR-generated code (patched in our lowering)

21



Frontend Performance Differences

• Remaining gaps:
• Different memory allocation function
• ~48% of gap in adi benchmark

• LLVM strength-reduction is fragile and sometimes misses reversed 
loop induction variable (remaining gap in adi)
• Type of induction variables (MLIR index vs C int32) make it easier 

for LLVM loop analyses to analyze code generated from MLIR.

22



Polygeist vs Pluto

23

Polygeist faster

Pluto faster

Red X denotes test incompatible with Pluto (PET failed)
Green X denotes tests with runtime < 0.05s



Polyhedral Performance Differences

Besides previously mentioned issues:
• CLooG AST generation

• We test Pluto by its CLI tool (polycc)
• Polygeist uses libpluto's pluto_schedule_prog API together with CLooG
• Pluto configure options & optimized schedules are identical between them
• Different CLooG AST, e.g., 579 (Pluto) vs 78 (Polygeist) lines for jacobi-2d
• Pluto CLI has finer-grained control over CLooG AST generation

• Induction variable types (Pluto int vs MLIR i64)
• Auto-vectorization triggered differently
More details in the paper

24



Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral 
flows with prior Polyhedral tools
• C/C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• Polygeist's polyhedral optimized code differs from Pluto by 7.76%

25



Acknowledgements

• Thanks to Valentin Churavy, Albert Cohen, Henk Corporaal, 
Tobias Grosser, and Charles Leiserson for thoughtful discussions on 
this work.
• William S. Moses was supported in part by a DOE Computational 

Sciences Graduate Fellowship, in part by Los Alamos National 
Laboratories, and in part by the United States Air Force Research 
Laboratory.
• Lorenzo Chelini is partially supported by the European Commission 

Horizon 2020
• Ruizhe Zhao is sponsored by UKRI and Corerain Technologies Ltd. The 

support of the UK EPSRC is also gratefully acknowledged.

26



Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral 
flows with prior Polyhedral tools
• C/C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• Polygeist's polyhedral optimized code differs from Pluto by 7.76%

27



Backup Slides

28

func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2] : memref<?xi32>
}
return

}



Polygeist Raising

29

• Select statements must be represented by a C ternary operator
• C ternaries have lazy-evaluation semantics which are replicated in the 

generated MLIR
• Mem2Reg and code motion attempt to remove unnecessary loads within if's 

to generate a valid select.



Conclusion

• Polygeist providing tools to fairly compare MLIR-based polyhedral 
representations with prior art in Polyhedral representations
• C/C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR (via OpenScop)
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• @Ruizhe, add a good polymer conclusion

30


