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Abstract

Unlike cache-based load-store architectures, Explicit De-
coupled Data Orchestration (EDDO) architectures are pro-
grammed using decoupled but synchronized programs run-
ning at various units on the hardware, moving data between
storage units and/or performing computations. As such, they
present a unique programming challenge.

In this paper, we propose a set of hardware abstractions to
represent EDDO architectures, enabling them to be targeted
with the polyhedral model for statically analyzable work-
loads. The abstractions are rich enough to support EDDO ar-
chitectures with arbitrarily deep storage hierarchies, hierar-
chical parallelism and support for temporal and spatial reuse
exploitation via multicast, peer-to-peer communications, and
spatial reduction. We also frame the abstractions within the
context of an in-progress project called PolyEDDO, which
is a mapping analysis and code-generation framework for
EDDO architectures.

1 Introduction

The energy and performance costs of moving data across
and within chips are becoming increasingly problematic [24].
Explicit Decoupled Data Orchestration (EDDO) architectures
alleviate some of these costs by provisioning a chip with a
distributed set of efficient state machines that stage and move
data between memory and compute units across the chip [5,
6,9, 10, 13, 14, 18, 20, 25]. EDDO architectures can achieve
superior efficiency to traditional cache-based (or Implicit-
Coupled) architectures on a range of valuable algorithm
domains [23]. Efficiency is achieved due to several factors:

e Dedicated (and often statically programmed) state ma-
chines for memory management, address generation,
network transfers and computation are more efficient
at their respective tasks than more general homoge-
neous engines.

e Pipelined, decoupled address generation leads to de-
creased load-to-use latencies, reducing buffer land-
ing zone requirements, contracting register file/buffer
sizes, and thereby reducing their energy profile.

o Stylized storage idioms such as buffets [23] are more
efficient than either caches or double-buffered scratch-
pad memories.
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e The architectures are built with data reuse in mind,
with deep memory hierarchies and widgets to exploit
various forms of spatial reuse such as peer forwarding,
multicast, and spatial reduction [17].

Many of these features draw inspiration from desirable at-
tributes of fixed-function ASICs, which are distilled and gen-
eralized into more flexible forms in EDDO architectures to
service the needs of a larger domain of applications. However,
these capabilities come with a price—the added complexity
of programming an EDDO architecture, both for human
programmers as well as for automated mapping tools. The
challenge arises due to the following reasons:

e Unlike traditional architectures, there is no single pro-
gram, not even a homogeneous set of programs. In-
stead, a set of distributed, heterogeneous programs
must be written to perform computations and to copy,
distribute and collect/merge data between multiple
sources and destinations. These programs must syn-
chronize and work in concert to execute the algorithm
and its mapping. This complexity is exacerbated by
the fact that EDDO architectures have deep, intercon-
nected storage hierarchies with varying degrees of
parallelism.

e Reuse analysis (accounting for local temporal reuse,
peer forwarding, parent multicast, spatial reductions)
is a critical component of compilation flow.

e Estimating execution time and energy efficiency is
critical for cost modeling. Simplistic cost models such
as the number of DRAM accesses do not work [8, 22];
on-chip buffer access and network transfer costs must
be accounted for as well.

An even broader challenge is that there is no single EDDO
architecture. There are various architectures with different
hardware topologies, varied composition of hardware ele-
ments, and varying degrees of programmability. Further-
more, they are rapidly evolving, making it unappealing to
build a single toolchain targeted at a specific architecture.

To address these challenges, we present a flexible hard-
ware abstraction for EDDO architectures. This abstraction,
which we call Hardware Space-Time (or HST), can describe
the topologies of a variety of EDDO architectures with user-
specifiable, arbitrarily deep memory hierarchies and nested
physical parallelism, along with non-hierarchical units if
they exist, using the power of the polyhedral model. Given an
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algorithm mapping, this abstraction symbolically captures
the runtime behavior of hardware units in the architecture
across space and time.

Although there exist prior efforts that use the polyhedral
model [2, 12, 27] to infer the runtime behavior of memory
units from program execution order/schedules or compute
units from space-time mapping of iteration points [7], HST
explicitly models the runtime behavior of all memory and
compute units, allowing for more straightforward analy-
sis and code generation for EDDO architectures. Our ap-
proach is complementary to existing abstractions for cap-
turing program execution orders such as multi-dimensional
timestamps [11, 15] and schedule trees [28] because HST
requires a mapping (program execution order) as an input
to model the hardware runtime behavior. To the best of our
knowledge, none of the prior works explicitly model and
analyze the behavior of all hardware units across space and
time using the polyhedral model in a way that HST does.

The HST abstraction enables a range of EDDO architec-
tures to be targeted with a universal analysis/code-generation
framework. We have been working on a framework called
PolyEDDO, which leverages the polyhedral model’s power
for precise reasoning at compile-time. Given an HST rep-
resentation of an EDDO architecture, a workload specifi-
cation, and a mapping of the workload onto the hardware,
PolyEDDO analyzes the behavior of the mapping over the
space of hardware units across the architecture and the time
of execution of the algorithm. This analysis is used to (a) gen-
erate activity counts that can be fed into a performance/en-
ergy cost model and (b) generate decoupled, distributed code-
blocks representing data transfer and computation activities
that cooperatively execute the logic of the workload. Our
longer-term objective is to integrate PolyEDDO with an op-
timizer (or mapper) for EDDO architectures. The mapper
would take a user-provided unmapped algorithm specifi-
cation and a description of the architecture and generate
optimized mapped program binaries for that architecture.

The primary focus of this paper is the HST abstraction
itself. We complement this with a high-level overview of our
work-in-progress PolyEDDO framework to concretize the
value of the abstraction.

2 Background

This section gives a brief overview of the background mate-
rial on EDDO architectures and workload domains that suit
them. We expect readers to have a fair background on the
polyhedral model, especially affine sets and maps.

2.1 EDDO architectures

Explicit Decoupled Data Orchestration (or EDDO) archi-
tectures represent a class of domain-specific architectures.

Many recent domain-specific accelerators, such as Eyeriss [5,
6], NVDLA [20], Rapid AI [9], SIMBA [25], Morph [13],
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Figure 1. Example EDDO architecture. Programmable units
include MACC units, address and command generators at
each memory level, multicast and reduction NoC connecting
hardware units in different levels, and peer-to-peer NoC
connecting hardware units in the same level.

MAERI [18], and Extensor [14], are examples of EDDO ar-
chitectures. Early instances started out being fairly fixed-
function, but the general trend has been an evolution towards
increasing programmability while retaining some of the
goodness of fixed-function ASICs. Unlike traditional general-
purpose architectures (CPUs and GPUs), EDDO architectures
specialize in a particular domain and use explicit, decoupled
data orchestration to optimize the data movement and syn-
chronization between parallel and spatially-distributed hard-
ware units. Figure 1 shows an example 3-level EDDO archi-
tecture for dense tensor algebra. In this example, L1 denotes
compute units (multiply-and-accumulate units, MACCs),
while L2 and L3 are buffers and main memory (DRAM). There
are also dedicated and statically-programmed state machines
for storage/memory management (command generation), ad-
dress generation, and network transfers (NoCs).

Explicit, decoupled data movement. Programmers ex-
plicitly and precisely control when and where data is used via
programming distributed state machines. Data is explicitly
moved between source and destination locations, which in-
clude main memory, on-chip buffers and compute elements.
When data reuse patterns are statically known, explicit data
movement is always more efficient as it avoids hardware
overheads such as cache lookups in implicit data orchestra-
tion, as demonstrated by many current DNN accelerators.

EDDO architectures also perform decoupled data move-
ment: at each hardware level, the pipelined, decoupled ad-
dress and command generators independently push data to
other levels. This decoupled but synchronized data move-
ment leads to decreased load-to-use latencies, reducing buffer
landing zone requirements, contracting register file/buffer
sizes, and thereby reducing their energy profile.

Programming (configuring) these distributed state ma-
chines is the code generation for EDDO hardware.



Hardware Abstractions for targeting EDDO Architectures with the Polyhedral Model

Fill data in

Parent Level

JNIYHS
INVY

) Addr Gen |_
T Childlevel VRead  |Update
dataout datain

Figure 2. Buffet storage idiom (adopted from [23]).

Synchronization. Timing and synchronization of data
transfers is critical for functional correctness, as an early
transfer could overwrite live data, and a late transfer results
in efficiency loss. Moreover, delivering data in incorrect or-
der or skipping can potentially lead to a deadlock between
distributed units.

To address these issues, our target EDDO architectures
leverage buffets [23], a recently proposed storage idiom, to
provide the data-staging and synchronization primitives.
Buffets allow efficient and decoupled data fills, reads,
and updates with fine-grained synchronization. Buffets are
more efficient than either caches or double-buffered scratch-
pads [23], and with random-access/update support, they are
also more flexible than simple hardware FIFOs.

Figure 2 shows the operations supported by buffets. Hard-
ware units at a parent level (e.g., main memory) can fill
fresh data into a buffet. Hardware units at a child level (e.g., a
datapath or an inner-level buffet) can read or update any live
data elements in the buffet. The buffet is addressed relative to
the base of the live window. ! When data is determined dead
(not useful anymore), a client can invoke a shrink operation
to advance the live window (and also clear space for future
fills). The control logic inside the buffet manages transla-
tions from the user-visible address space to the local RAM
addresses, and also performs synchronization between the
various operations. For example, it stalls a read operation if
the data is not yet filled.

Data reuse. EDDO architectures include deep memory hi-
erarchies and various network structures such as multi-cast,
broadcast, and forwarding to exploit various reuse forms
to optimize data movement. In particular, there are three
major forms of data reuse: 1) Temporal reuse: reusing data
present in a hardware unit by the same consumer multi-
ple times, 2) Spatial reuse: reusing data present in a hard-
ware unit by multiple consumers at the same time using

1EDDO architectures often use decoupled address-generator state machines
to generate these addresses.
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multi-cast/broadcast, 3) Spatial-temporal reuse: reusing data
present in a hardware unit by a peer using forwarding links.

2.2 Workload domain

Although we expect our contributions presented in this pa-
per to support a broader class of algorithm domains, our
present PolyEDDO implementation focuses on EDDO archi-
tectures that are designed and specialized for the perfectly
nested affine loops in dense tensor algebra space, such as
GEMM, convolutions, and tensor contractions. These per-
fectly nested affine loops further lend our framework to
using a polyhedral model to analyze, optimize, and generate
code for the EDDO architecture.

In future we expect our framework to support imperfectly
nested loops and a sequence of affine loop nests as input
workloads. Furthermore, while we expect PolyEDDO can
also adopt recent work [1, 26] on using the polyhedral model
for sparse matrices, we leave such analysis and code genera-
tion for EDDO architectures for future work.

2.3 Polyhedral model

The polyhedral model is a powerful algebraic framework
that has enabled significant advances to the analysis and
transformation of affine programs by precisely capturing
the program’s dynamic execution order at compile-time.
This program execution order can be used to reason about
certain aspects of the dynamic behavior of a hardware’s
compute and memory units. However, conventional archi-
tectures such as CPUs, GPUs involve memory units that
are non-deterministic concerning loads and stores, for, e.g.,
cache-based memory systems. Although there are a few prior
efforts [2, 12, 27] to reason about their behavior with assump-
tions, the non-deterministic nature makes it challenging to
precisely reason about the dynamic behavior, and this chal-
lenge gets exacerbated with multiple memory units and mul-
tiple levels. However, all the hardware units in the EDDO
architectures are (mostly) statically programmed. This al-
lows a compiler framework to reason about the dynamic
execution behavior of both the compute and memory units
for an affine program and its mapping at compile-time, which
is extremely important to generate high-performance and
energy-efficient binaries for all of the programmable units
of the EDDO architectures.

3 Hardware Space-Time Abstraction (HST)

In this section, we introduce our abstraction—Hardware Space-
Time (HST)—to capture runtime behavior of hardware com-
ponents of EDDO architectures.

From a programming standpoint, we view an EDDO ar-
chitecture as a collection of buffets and engines. For instance,
consider the architecture in Figure 4(b). With its deep mem-
ory hierarchy and criss-crossing data delivery networks, the
topology is reminiscent of neural-network accelerators such
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as NVDLA [20] and Eyeriss [5]. Every state element (a rec-
tangle in the figure) is a buffet [23]. The DRAM, on-chip
buffers, and even the operand/result registers at the MACC
units are assumed to provide buffet semantics. The arrows
and the MACC units (x) are transfer and compute engines,
respectively. Our job is to program each engine, with the buf-
fets serving as source, drain and synchronization endpoints.
Henceforth, we use the terms buffer and buffet interchange-
ably in this paper.

We tame the complexity of programming this intercon-
nected distributed system by recognizing that in executing
a workload, the engines typically execute in a systematic,
hierarchical cadence that can be captured in a space-time
structure. We now describe this structure by starting with
simple examples and gradually growing in complexity until
we can describe the architecture in Figure 4.

3.1 Symbolic Hierarchical Space-Time (SHST)

The Symbolic Hierarchical Space-Time (SHST) is a hierar-
chical space symbolically representing the existence of all
hardware units over a period of time steps. Intuitively, this
space-time can be thought of as a set of “holes” over space
and time into which workload operations can be placed. Be-
cause we are dealing with EDDO architectures, a program-
mer/mapper must reason about the workload mapping at
each level of the architecture’s hierarchy. To support this,
the SHST has the same depth (i.e., number of levels) as the
hardware hierarchy.

An example: Figure 3(a) shows an example 3-level hardware
architecture with a DRAM (L3) serving as backing store for
two L2 buffers (level-2 of the hardware). Each buffer services
a set of four L1 MAC units (level-1 of the hardware). Fig-
ure 3(b) shows a visual depiction of the space-time hierarchy
(for a small number of time steps). Observe that:

e The L3 DRAM only has one space and time coordinate.
The single space coordinate simply means that there
is only one DRAM instance. The single time coordi-
nate means that the entire workload is resident at this
DRAM instance throughout its execution.

e The L2 level has two space-coordinate values (s, = 0, 1)
corresponding to the two buffer instances, and two
time-coordinate values (t; = 0,1) in this example.
These time coordinates do not represent wall-clock
time instances; they represent logical time steps. Sev-
eral t; time steps may occur within each t, time step.

e Each of the 4 L1 MACs exists in exactly the same num-
ber of time coordinates (3 in this example) within each
L2 time coordinate. However, this does not mean they
are physically lock-stepped in terms of hardware clock
cycles — they can slip with respect to each other at a
microarchitectural level.
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Time coordinates represent logical time steps and are not
necessarily tied to hardware clock cycles. The presence of
a time step provides a slot for mapping a set of workload’s
iteration-space points. Thus, the passage of time at a hard-
ware unit allows it to hold a different set of iteration-space
coordinates from the workload at each time step. If the space-
time space at a hardware unit only has one time coordinate
t = 0 (as in Figure 3), it means that the set of iteration-space
points mapped to that unit never changes. This is usually
true of the last-level storage unit in a hardware architecture,
since it is the source and sink of the entire workload’s input
and output data sets.

SHST abstraction: The abstraction is a linear chain of (space,
time) nodes starting from the last level to the first level of the
hardware with an intent to symbolically capture the entire
space-time hierarchy using the Presburger relations. Each
(space, time) node corresponds to a level in the hardware, for
example, there are three symbolic nodes (SpaceTime; (s1,t1),
SpaceTime;(sy, ty), SpaceTimes(ss3, t3)) corresponding to the
3-levels in the hardware shown in Figure 3. Both the space
and time components of a node are multi-dimensional vec-
tors, and the values of a space component don’t have an
ordering, however, the values of a time component have an
ordering and adhere to the classical lexicographic ordering
to realize relative ordering among the timestamps.

We define our SHST abstraction for a n-level hardware,
ie., @ﬁHST (S_,:,T,:) recursively as follows:

@fHST(?i),Ti)) = SpaceTimei(?i),Ti)), i=1,

- — .
SpaceTime; (5], 1) — [@fﬁST S b)), i> 1

where ?,),7,) denote space and time components of the
Level-i hardware unit. Our SHST abstraction for a single-
level hardware is simply a set. For a non-single-level hard-
ware, we represent our SHST abstraction as a map with the
domain or input set symbolically denoting the space-time
vectors of the last level unit in the hardware, and the range
or output set recursively encloses the SHST abstraction for
the remaining levels in the hardware using a zipped notation
available in the ISL framework. For example, the SHST ab-
straction for the entire 3-level hardware (shown in Figure 3)
excluding the Presburger constraints is SpaceTimes [s3, t3] —
[SpaceTimey[ss, t2] — SpaceTime; [s1,t1]], where Space
Times|ss, t3] corresponds to the space-time vectors of the
DRAM and [SpaceTime; [sz, t2] — SpaceTime[sy, t1]] cor-
responds to the SHST abstraction for the remaining L2 and
L1 levels of the hardware. Presburger constraints for space
are derived from the hardware specification, and those for
time are derived from the mapping. Although the hardware
examples are uniform and all sub-trees are isomorphic at
each level, our abstraction allows users to represent non-
uniform hardware topologies if desired (e.g., two L2 buffers
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Figure 3. Example showing: (a) 3-level hardware architecture with a DRAM (L3) and a buffer (L2) servicing an array of four
MACC units (L1). (b) Hardware space-time space representing this architecture (for a small number of time steps). Space
coordinates representing the hardware units are shown along the X-axis of the figure. Time coordinates representing time
steps are shown along the Z-axis (into the plane of this document). Bounds for #; and ¢, are shown purely for illustration;
actual time bounds are derived from the mapping (Section 4). (c) Symbolically capturing the hardware space-time using the
Presburger relations, i.e., Symbolic Hardware Space-Time (SHST).

each with a different number of L1s), as long as the hierarchy
can be described in a piece-wise quasi-affine manner.

We could have alternatively represented the SHST ab-
straction as a single (space, time) node enclosing space and
time vectors of all hardware levels. However, this approach
would have required a separate bookkeeping mechanism to
delineate between multiple hardware levels. We avoid this
bookkeeping by using zipped relations in ISL to explicitly
separate the space and time vectors of different hardware
levels.

Global space-time vectors: The values of the space and
time vectors corresponding to a particular level in the hard-
ware are not global in the overall dynamic execution but
relative to its parent nodes. However, global vectors/coor-
dinates are required for the entire mapping analysis and
code generation. As a result, we consider the space and time
vectors of all ancestor nodes, including the node itself, to
construct a global space and time vector for a node. We for-
mally represent the global coordinates for a given level k of

ﬁ
a n-level hardware as @gST(s_k) s b )-

3.2 Physical Hardware Space-Time (PHST)

The SHST abstraction provides a convenient substrate to
project a mapping of the workload onto the strictly hierarchi-
cal EDDO architectures and reason about runtime behavior

of the hardware components. This strictly hierarchical struc-
ture constrains the complexity of mapping problem, while
capturing a rich set of interesting hardware topologies.

There is however one critical architectural motif that is
commonly used in EDDO architectures, but breaks the strict
hierarchy: hard-partitioned buffers. Figure 4(a) shows an
example architecture (a slight modification of the architec-
ture in Figure 3(a)) in which each L2 Buffer instance has split
into 3 partitions. Also, the operand and result registers at the
MACC unit have been exposed. The BufA, BufB and BufZ
partitions are connected to the OperandA, OperandB and
Result registers, respectively.

A more complex example is shown in Figure 4(b). This
style of architecture is useful for performing sliding-window
filter operations, as seen in convolutional neural networks [5].
In this example, the DRAM is connected to a set of Row, Col-
umn and Diagonal buffers, each with a different number of
instances. Each Row and Diagonal buffer is attached to a
Broadcaster that broadcasts a tensor element along a row
or diagonal of the MACC array. Each Column buffer is con-
nected to a hardware reduction unit that collects partial sums
from the MACC array and reduction-sums them before plac-
ing them in the Column buffer. In this example, the hierarchy
underneath each partition at the L2 level diverges into non-
isomorphic shapes before re-converging into a common set
of arithmetic units.
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(d)

Figure 4. (a) Example architecture with partitioned L2 buffers and partitioned operand/result registers at the MACC. (b) Example
architecture with diverging subtrees underneath partitioned buffers. (c) Symbolic-to-Physical projections for architecture (a).
(d) Symbolic-to-Physical projections for architecture (b). The word "Operand" is sometimes shortened to "Opnd" to fit within
the page layout.
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As with most problems in Computer Science, we solve this
problem by introducing an additional level of abstraction:
physical hardware units live in distinct flat space-time spaces
(one space per level per partition). We represent runtime be-
havior of each physical hardware unit with a single (space,
time) node, and we represent this collection of nodes for
all the units as Physical Hardware Space-Time abstraction
(PHST) for the architecture. For example, the PHST abstrac-
tion for the hardware unit shown in Figure 4(c) includes the
space vector (5 = s;) and time vector (f = t,) for the Buf fA
unit, i.e., OPHST (BuffA (s, 7)).

Note that while the SHST abstraction is a linear chain of
space-time vectors of each level of the hardware, the PHST
abstraction is a flat collection of space-time vectors of each
physical unit in the hardware.

3.3 HST: Connecting SHST with PHST

Our Hardware Space Time (HST) abstraction projects the
SHST abstraction onto the PHST abstraction to represent a
complete picture of the runtime behavior of all units in a hier-
archical hardware along with non-hierarchical components
(e.g., hard-partitioned buffers). Additionally, the projection
changes the implicit relation between levels of the SHST and
physical units to an explicit relationship.

Representation: The major purpose of our HST abstrac-
tion is to symbolically capture the runtime behavior of all
the physical units in the hardware. Hence, our abstraction
includes a projection/map to PHST abstraction of each phys-
ical unit from their corresponding level in the SHST abstrac-
tion with global space-time vectors. This is mathematically
represented as G)SST(?,T,z) — OPHST(py (57, 1)), which
denotes the projection onto the PHST for the unit U at the
level-k in the hardware from its corresponding SHST with
global space-time vectors.

Consider the architecture in Figure 4(a). The SHST ab-
straction for this architecture is identical to that in Figure 3.
The projections from the SHST onto the PHST is shown
in 4(c). Given a global space-time coordinates of a level of
the hardware and a string identifying the physical unit name,
these projections return a specific hardware unit’s physical
space-time coordinate. The SHST and PHST separation and
their projection elegantly capture the more complex archi-
tecture in 4(b) as well. The HST abstraction, i.e., projection
for this architecture is shown in Figure 4(d) (we omit a vi-
sual depiction of the SHST for this example for brevity).
Observe the y + x projection in the ©5T (DiagBuf fer) and
@gST (DiagBroadcaster). y + x is a hyperplane along the
diagonal of the 2D array, and the DiagBuffer and DiagBroad-
casters sit along this diagonal hyperplane. This hardware is
carefully designed to cater to the specific algorithmic shape
of a sliding-window convolution.
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The SHST abstraction provides a fabric onto which an
algorithm’s execution order can be mapped. For a given map-
ping, the symbolic-to-physical relations via the HST abstrac-
tion and the workload’s tensor-access relations together can
precisely identify what set of tensor coordinates must be
present at each space-time coordinate in each hardware unit
to honor the mapping.

4 PolyEDDO: a Mapping Analysis and
Code-Generation Framework

In this section we describe our work-in-progress on imple-
menting a mapping analysis and code-generation framework
for EDDO architectures based on the hardware abstraction
(HST) presented in Section 3. An overview of our frame-
work is summarized in Figure 5, which takes architecture
description in HST abstraction, workload and its mapping,
and outputs the decoupled programs for each of the hard-
ware units, along with the data movement and computation
activity counts for performance analysis. An in-depth cov-
erage of the flow is outside of the scope of this submission.
However, we provide a high-level overview of the process
in this section supported with some examples. Our objective
is to help the reader build an intuition on how our hardware
abstraction can help navigate the challenges of targeting
EDDO architectures.

Note that PolyEDDO is a code generator but not an opti-
mizer (or mapper). However, its data-movement analysis can
serve as a critical step in guiding an optimizer.

Inputs to PolyEDDO
EDDO Architecture Descriptions

PolyEDDO
Framework

[ 1) Creating T-relations ]

(e.g., Eyeriss, NVDLA)

1. Hierarchical space-time
abstraction

2. Hardware connectivity graph 2) Decoupling into
X-relations

Workload Descriptions
(e.5., GEMM, CONV2D) |
[3) Data reuse analysis ]

1. Iterationdomain
2. Tensor access and 1

dependence relation [ 4) Schedule creation ]
3. Computationstatement

Programmer-specified Mapping

Outputs from PolyEDDO

\ [ 5) AST generation ]

Mapping Analysis Output

Code Generation Output

Data movement and
computation activity counts
for performance analysis

Decoupled data movement
and compute programs for
the EDDO architecture

Figure 5. Overview of our PolyEDDO framework.
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4.1 PolyEDDO Inputs

1) Architecture description: An EDDO architecture is
completely specified by:

(1)—its Hierarchical space-time abstraction?. The input in-
cludes the Presburger relations only on the space vectors, and
the time vectors will be constructed with a given mapping
and workload. For example, the architecture in Figure 4(b)
can be described using the @57 relations in Figure 4(d), but
without any of the  vectors.

(2)—a relation H representing the hardware’s connectivity
graph. This relation includes entries of the form Ps[5] —

-

Pp[d] if the physical hardware unit S at space vector 5 is
allowed to send a message to the unit D at space vector d.

2) Workload description A workload is described using
the standard components of the polyhedral model, i.e., it-
eration domain (9), a set of tensor access read and write
relations (A", AY), and a set of dependence relations. These
can be parsed in from a reference (or unmapped) code block,
or entered directly in the form of sets and relations.

for(int k = 0; k < K; k++)
for(int p = @; p < P; p++)
for(int r = @; r < R; r++)
Outputs[kl[p]l = Outputs[kl[p]l + \
Inputs[p+r] * Weights[k][rl; //s

Figure 6. Running example — 1D convolution workload with
multiple weights (k-1oop).

In this rest of section, we use the running example shown
in Figure 6, i.e., 1D convolution workload with multiple
weights, to illustrate the various steps in our framework.
The iteration domain and access relations for the statement
s in the running example are as follows:

D(s(i) = {lkpr] | (0<k<K-1) A (0<p <
P-1) A (0LSr<R-1)}

AL (s(iy)) = {[k, p,r] — Weights[k,r]}

A (i) = {[k, p.r] — Inputs[p +r]}

AL (s(i) = {[k. p.r] — Outputs[k,p]}

AY(s(i)) = {[k.p.r] = Outputs[k,p]}

3) Mapping description: We view mapping as an assign-
ment of program’s statement instances onto the HST abstrac-
tion, i.e., an assignment of work to a physical hardware unit’s
space-time coordinates. Critically, because we are program-
ming an EDDO architecture in a hierarchical fashion, the
work assigned to each space-time coordinate is not necessar-
ily a single statement instance; each space-time coordinate
is assigned a tile’s worth of work. These tiles are constructed

ZHowever, this can be deduced even from a high-level specification of the
hardware. For now, we explicitly take this as an input to the PolyEDDO
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by hierarchically decomposing the iteration space. This is
valid for the workloads that we currently assume in the
implementation, i.e., perfectly nested affine loops without
dependencies violating multi-level tiling. Concretely, a user
provides three sets of information to specify a mapping:

(1)—A set of tiling factors for each level of the hardware
hierarchy. We assume a 3-level hardware architecture as
an example, and as result, it results in 3-levels of tiling the
original iteration space. We symbolically use K;, P; and R; to
represent user-provided tiling factors for the level-i of the
loops in the running example. Also, (k;, p;, r;) denotes the
iteration vector over the level-i tiles in the running example.

(2)—A set of projections at each level from a tiled iteration
space to a symbolic space-time coordinate/vector at that
level. For example, the following relation projects a tiled
iteration space at level 3 to a SpaceTimes node in the SHST
of the architecture in Figure 4(b)/(d).

{ [ks, ps, 3] —SpaceTimes[s3, £5] : 53 = (y,%) A 13 = (1)
/\k3=t/\p3=x/\r3=y}

Note that the loop order over a tiled iteration space is
represented in this projection using the time vector (e.g.,
t3). Certain projections may violate dependencies, but in
our present implementation correctness of projections is
the responsibility of the programmer or automated mapper
generating mappings for PolyEDDO. In future, we hope to
implement a static validation step that checks whether the
mapping is legal on the hardware and implements the in-
tended semantics of the problem. We also plan to integrate
the mapping description with schedule trees [28] to describe
program execution order of imperfectly nested affine loops
and also a broader sequence of affine loop nests onto our
HST abstraction.

(3)—A set of bindings at each level that bind each workload
tensor to a physical hardware partition. For example:

bindings(Weights) = DRAM
binding,(Inputs) = DRAM
bindings(Outputs) = DRAM
bindings(Weights) = RowBuffer
bindings(Inputs) = DiagBuffer
binding;(Outputs) = ColBuffer
Observe that all tensors are bound to the DRAM at level 4
while each tensor is bound to a distinct buffer partition at
level 3. We could have chosen a more exotic binding at level
3, with two tensors bound to (and sharing) a single partition
with the third tensor solely occupying a second partition.
Such a binding may or may not be legal, depending on the
ability of the interconnection network to route data between
hardware units.

4.2 PolyEDDO Workflow

4.2.1 Creating T-relations. Given an architecture, work-
load, and mapping specifications, PolyEDDO first constructs
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a set of tiling relations (or T-relations). Given a hierarchical
symbolic space-time global coordinate, a T-relation identifies
the set of tensor or iteration-space coordinates participat-
ing in a specific activity at that space-time coordinate. For
example, the T-relation:

TZWEights = {G)ZGST(SE, ) — Weights|k,r]}

= {(54. 14, 3. 13, 53, 1) — Weights[k,r] : (54 =0A 1y =0)
NG =) AB=0)A(G=0AE=t)
Ay=r)A0<x<a)A(t=k)}

identifies which Weights coordinates must be read at the
given level-2 hierarchical space-time global coordinate, i.e.,
GZGST(SE, t) (refer to the architecture in Figure 4(b)/(d)). Ob-
serve that (a) a distinct filter coordinate r is assigned to each
hardware row y (condition: y = r), (b) the filters k are de-
livered over time t, (condition: ¢, = k), and (c) all hardware
columns x share the same tensor coordinates, opening up
the possibility of a broadcast. T-relations are constructed for
data movement and compute activities.

4.2.2 Decoupling into X-relations. Next, each hierar-
chical T-relation is decoupled (i.e., decomposed) into a set
of parent-child data-transfer relations (or X-relations). X-
relations specify the data that must be transferred between
parents and children at a given set of space-time coordinates
in order to execute the provided mapping. Thus, they form
the basis for the explicit, decoupled data orchestration that
we are trying to describe.

The decoupling process involves three transformations:
(a) symbolic space-time is projected into physical hardware
space-time, (b) the hierarchy is collapsed into pairwise parent-
child data-transfer relations, and (c) hardware space-time
coordinates are transformed into flat/absolute coordinates.
The resulting X-relations look like the following:

XWeights

2 = [0PHST (RowBroadcaster (sga, Eg;)) —

OPHST (OperandA(sy, t4))] — Weights[k,r]

= {[RowBroadcaster|5gp, E;] —
OperandA[sh, ta]] — Weights|k,r]
: s_ﬂ;:y/\@:t/\s]:(y,x)/\f =t
Ay=rAt=kA(0<x<4)} 1)

The X-relation in this example performs buffet read oper-
ations at the parent and a buffet fill operation at the child.
Similarly, X-relations can perform buffet drain and update
operations. Computation is expressed as a transformation of
data as it flows through an X-relation. These relations form
the basis for the set of heterogeneous, distributed programs
that work in concert to execute the algorithm’s mapping.
Each X-relation represents an independent decoupled pro-
gram that synchronizes with other programs via buffets.
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4.2.3 Reuse Analysis. The X-relations do not take reuse
into account; they insist on delivering a full tensor data tile
from a parent to each child coordinate. However, data tiles
often overlap, which means parent-to-child data movement
can be elided thanks to reuse opportunities. EDDO architec-
tures support exploitation of various forms of reuse: local
temporal reuse, forwarding from peers, multicasting data
over wires from parents, and spatial reduction of partial
outputs via dedicated reduction networks.

13 @

L2

S2

m—p Local Temporal Reuse
=) Peer Forwarding

=—p Parent Multicast

Sy St

Figure 7. lllustration of different forms of reuse shown over
space-time. Spatial reduction is treated as a form of multicast
for tensor updates.

Fortunately, the space-time abstraction makes it intuitive
to reason about all these forms of reuse. This is illustrated
in Figure 7. This leads to straightforward transformations to
account for reuse. For example, consider the X-relation in
Equation 1. To exploit local temporal reuse in the OperandA
buffer, we derive a modified delta-transfer relation (or A-
relation) that takes into account the fact that data that was
already present in the buffer at time t need not be fetched
from anywhere at time ¢ + 1. We first define:

R = {[@"15T(P(5}, 1)) — 5T (C (5. 1,)]
— [T (P(s). 1)) — O (C(sL, 1)
(p=sp) AGe=s) Al <)}
= {[PI55» 5] = Clse 1] = [Plsp, ] = CIsL 1]
(p=sp) A G =5 A (f < 1))}
where P and C represent the parent and the child in X-

relations, respectively. Thus, P represents RowBroadcaster

Weight .
X, e8NS relation.

and C represents OperandA in the above
The operator < represents the closest time vector in their
lexicographic orderings.

Weight Weight —1 Weights -1
Az eig s:XZ eights (R OXZ eig s) (2)
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The above approach of computing temporal reuse ele-
ments considering the nearest time vector in the lexico-
graphic ordering is inspired from the prior work on analyzing
the cache behavior of affine programs by Wen et al. [2]. We
have similar A-relations for the other forms of reuse such
as spatial and spatio-temporal reuses. It is an interesting
problem because there is sometimes a choice in the source
for a particular piece of data: it may be available at multi-
ple peers along with a parent. The availability of multicast
capabilities makes this choice a non-trivial problem where
the globally-optimal solution cannot be arrived at with a
greedy approach. At this time, we believe that a heuristic
solution will be required. Note that this space of choices
is within the scope of a single user-provided mapping—the
mapping search is itself a distinct (and hard) optimization
problem. It is also possible to expose the reuse choices to the
programmer or mapper as part of this mapping space.

Note that the cardinality of A-relations can be used to
determine reuse factors.

4.2.4 DataTile Delivery Schedule Creation. While the
A-relations specify a schedule for moving tiles from one unit
to another (after accounting for reuse), they do not prescribe
an order to move the individual elements within a data tile
(except at the leaf levels of the space-time hierarchy where
tiles are unit-sized). Choosing the delivery order for data
elements within a data tile has no impact on reuse factors,
but can impact performance and energy efficiency due to (a)
spatial locality of accesses to blocks/lines in buffers, affecting
performance and energy efficiency, and (b) pipelining of data
delivery with consumption, affecting performance.

A schedule maps a point in an iteration space to a time-
coordinate. In a A-relation, each element is essentially a
point in a data movement iteration space that represents a
data-movement action. A schedule for a A-relation as in
Equation 2 needs to create a total order for these points by
interleaving the s;,, t;,, Se, fc and tensor coordinates. We are
effectively writing a program that a parent node will execute
to read data from its local storage and deliver to a set of
children. Here is an example schedule for a A-relation:

[[P[$p, tp] — CISe. te]] — Tensor[i]] — [$p, by te, 1, 5¢]

Informally, this schedule behaves as follows (refer to the
space-time diagram in Figure 7 as you read this text). s,
identifies a distinct parent node and is unrolled. At each
parent unit s,, the following program plays out: For each
parent time-step t:,, for each child time-coordinate ., for
each tensor coordinate 1, read the tensor value, and send it
to all children s, that need it.

In addition to determining delivery orders, we also per-
form some required program-order serialization of different
A-relations during the scheduling step. Although buffets per-
form most of the heavy-lifting for synchronizing As, there
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are some operations that need to be explicitly serialized. We
hope to elaborate on this in a future publication.

Once schedules are determined, we can derive activity
counts representing the workload’s execution, which can
be fed into analytical models for performance and energy
estimation.

4.2.5 AST Generation. Abstract Syntax Trees (ASTs) for
each A schedule are automatically generated using the poly-
hedral framework. We reiterate that unlike traditional ar-
chitectures, these ASTs (of which there can be tens or even
hundreds) represent a distributed, heterogeneous collection
of synchronized programs operating in concert to execute
the workload’s dataflow.

These ASTs are the final PolyEDDO output. Generating
the actual binary program or configuration for the individual
state machines on the hardware from each AST is a highly
machine-dependent but mechanical process that is outside
of the scope of this work.

5 Related work

In this section, we restrict our attention to describing re-
lated work around our HST abstraction, and we skip the
discussion about mapping analysis and code generation for
different instances of EDDO architectures. However, we be-
lieve that our HST abstraction, mapping analysis, and code
generation techniques can be useful for targetting EDDO ar-
chitectures in popular ML frameworks leveraging MLIR [19]
or TVM [4]. In the rest of this section, we briefly contrast
our abstraction with prior work on multi-dimensional times-
tamps [11, 15], schedule trees [28], Maestro data-centric ab-
straction [17], Timeloop abstraction [22], and Hierarchical
place trees (HPTs) [30].

Multi-dimensional timestamps and Schedule trees:
Multi-dimensional timestamps abstraction (in the form of
Kelly’s notation [15] or Girbal notation [11]) is a classical
way of encoding a program execution order in the polyhe-
dral model via timestamps. Recently, schedule trees abstrac-
tion [28] is introduced to explicitly capture the program
execution order in the form of trees, and it has been shown
as a more natural, more practical, and more comfortable
abstraction to understand by programmers. Both of these
representations aim to capture the program execution order
for enabling optimizations and code generation, where as our
abstraction is introduced to explicitly capture the dynamic
behavior of EDDO-architecture components at compile-time.

Maestro data-centric abstraction: Recently, Kwon et
al. [17] introduced Maestro data-centric abstraction to explic-
itly capture data movement behavior of a workload and its
mapping on spatial DNN accelerators for compute-intensive
kernels such as CONV2D and GEMM. This abstraction en-
abled their cost model to estimate reuse factors, execution
time, and energy efficiency of a mapping relatively faster
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than inferring from the loop-nest specification of a mapping.
The followup work from Chatarasi et al. [3] characterized
the set of programs that are conformable with the Maestro
abstraction, and these set of programs are found to be a strict
subset of affine loop nests, i.e., perfectly nested loops with
affine subscripts, only reduction-dependences, and rectan-
gular iteration spaces. However, our HST abstraction lever-
aging the polyhedral model can cover a more extensive set
of programs relative to the maestro data-centric abstraction.
Furthermore, the Maestro abstraction is currently limited to
only considering hierarchical hardware, unlike our abstrac-
tion covering non-hierarchical and non-uniform hardware.

Timeloop: Timeloop [22] is a mapper/cost model frame-
work for EDDO architectures which uses a hierarchical ar-
chitectural abstraction. HST improves on Timeloop’s abstrac-
tion by providing a clear separation between symbolic and
physical hierarchies, which allows for a more natural rep-
resentation of partitioned topologies, especially those with
non-isomorphic subtrees as in Figure 4(b). Thanks to its poly-
hedral underpinnings, PolyEDDO supports a wider set of
workloads and mappings than Timeloop’s analysis module
and is likely to be easier to extend compared to Timeloop’s
custom implementation [21]. In future we hope to integrate
PolyEDDO with Timeloop and take advantage of its mapper,
analytical microarchitectural models, and integration with
the Accelergy [29] infrastructure.

Hierarchical place trees: The HPT abstraction [30] is
introduced to provide a portable abstraction for task paral-
lelism and data movement. The abstraction also supports the
co-allocation of data and computation at multiple memory/-
compute hierarchy levels. The HPT abstraction is limited to
capturing only the hierarchical units, and it lacks the sup-
port for non-hierarchical units, and the “time” dimensions
to capture hardware behavior across the time.

Recently, Kong [16] introduced an approach to explicitly
capture the complex topologies such as Manhattan connec-
tions using the Polyhedral model, and such approaches are
complementary and can enhance our abstractions.

6 Conclusions and Future Work

In this paper, we presented an abstraction called Hierarchi-
cal Space-Time (HST) that symbolically captures the runtime
behavior of all memory and compute units of an EDDO archi-
tecture, given a workload and its mapping. The abstraction is
rich enough to describe all the unique attributes of EDDO ar-
chitectures (arbitrarily deep memory hierarchies, decoupled
data movement and compute engines, nested parallelism,
non-hierarchical components), while also providing a con-
venient target for mapping analysis and automated code-
generation. Via examples, we also illustrated the use of HST
in the context of an in-progress analysis/code-generation
framework called PolyEDDO. We hope that the abstraction
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is either directly useful, or provides useful insights, to other
frameworks targeting EDDO architectures.

Although this work focused on HST, we hope to present
the entire PolyEDDO infrastructure in the future. We also
hope to extend this infrastructure to support imperfectly
nested affine loops, a sequence of affine loops, compressed-
sparse tensors and EDDO architectures with optimized struc-
tures to support their traversal, possibly leveraging recent
work on sparse polyhedral frameworks [1, 26].
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