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Abstract
Reductions combine multiple input values with an associative
operator to produce (a single or multiple) result(s). When
the same input value contributes to multiple outputs, there
is an opportunity to reuse partial results, enabling reduc-
tion simplification. Gautam and Rajopadhye [6] showed how
reductions in the polyhedral model could be simplified au-
tomatically and optimally. In this paper, we tackle the case
when (some) input values depend on (some) outputs. This
couples simplification with the classic scheduling problem.
We show how to extend the Gautam-Rajopadhye algorithm
to optimally simplify such dependent reductions.
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1 Introduction
Reductions, i.e., computational patterns that combine multi-
ple input values with an associative operator to produce (a
single or multiple) result(s) are ubiquitous, and important.
A commutative reduction is one where the operator is also
commutative. Mathematical equations involving reductions
serve as clean succinct specifications of most dense linear
algebra computations, of algorithms for signal/image pro-
cessing, and of dynamic programming solutions to many
optimization problems. Furthermore, the recent explosion
of AI/ML, deep learning, and data science has highlighted
higher order tensors as an important data structure. Tensor
algorithms, notably tensor contractions are also naturally
expressed using reductions.
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Polyhedral reductions are those where the input and output
data collections are (dense) multidimensional arrays (i.e.,
tensors), accessed with linear/affine functions of the indices.
When the same input value contributes to multiple out-

puts of a reduction, there is an opportunity for reusing partial
results, thereby reducing (pun intended) the asymptotic com-
plexity. This is called simplification.
Consider the following equation.

P[i] =


i = 0 : 0

i > 0 :
i−1∑
j=0

Q[j]
(1)

The equation specifies that each element of a one dimen-
sional array P is obtained by reducing (using addition as
the operator) a subset of values of an input array Q . The
arrays have size O(N ), and N is viewed as a parameter of
the program/equation. We seek to optimize the asymptotic
execution time of our program as a function of N .

Since the i-th element of the output involves the reduction
of i values, the nominal complexity of each equation isO(N 2).
However, this can be improved if we can recognize that the
summation is a prefix-sum: all the values (except the last
one) contributing to the i-th output also contribute to the
(i − 1)-th output. Simplification exploits this fact to compute
each result with a single operation (in O(1) time), thereby
reducing the asymptotic complexity to O(N ) as shown in
the equation below.

P[i] =

{
i = 0 : Q[i]
i > 0 : P[i − 1] +Q[i − 1] (2)

Eqn. 2 is not the only possible simplification. We could
choose to compute the i-th output from the (i + 1)-th one,
and get

P[i] =


i = N :

i−1∑
j=0

Q[j]

i > 0 : P[i + 1] −Q[i]

(3)

Although the first branch of this equation still performs a
reduction operation takingO(N ) time, it is evaluated for only
one point of the result (at i = N ) and the other branch speci-
fies that each of the remaining Θ(N ) points take O(1) time,
so the overall complexity is O(N ), albeit two-fold slower
that the first solution.
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Gautam and Rajopadhye [6] showed how polyhedral re-
ductions could be simplified automatically (through com-
pile time analysis) and optimally (the resulting program had
minimum asymptotic complexity). They assume, as in the
example above, that the reductions are independent in the
sense that the variable(s) read in the reduction are distinct
from the variable written or accumulated by the equation.
This paper addresses the case when this last assumption

does not hold, i.e., dependent reductions. Consider a variation
of the above example, whereX is both an input and an output
(appears on both the left and right hand side) of the reduction
equation as in the example below.

P[i] =


i = 0 : foo(0)

i > 0 : foo

(
i−1∑
j=0

P[j]

)
(4)

This equation is equivalent to a system with Eqn. 1 com-
puting just the reduction, and Eqn. 5 below applying the
function foo to its result.

Q[i] = foo(P[i]) (5)

But now, Eqn. 3 while still a legal simplification does not
yield a legal program, because of a cyclic dependence: P[N ]

depends on the entire prefix 0 . . .N − 1 of elements ofQ , but
Q[i] depends on its successor. The new system of equations
is not computable, i.e., does not admit a legal schedule.
This is the problem we tackle. We modify the Gautam-

Rajopadhye algorithm to simplify dependent reductionswhile
ensuring that the new system remains computable, while
retaining optimality of the Gautam-Rajopadhye algorithm.

2 Background
Polyhedra:Apolyhedron (polytope)D is the intersection of
a number of half-spaces or inequalities of the form cz+γ ≥ 0
called constraints. Some constraints may either be equalities
(i.e., the intersection of both cz + γ ≥ 0 and cz + γ ≤ 0), or
“thick equalities,” (the intersection of cz + γ ≥ 0 ≥ cz + γ ′).
When D has such thick equalities, we say that it effectively
saturates the constraint ⟨c,γ ⟩, or, by abuse of notation, simply
saturates c . Along any vector, ρ such that cρ , 0, D has
only a bounded number of points. The intersection of all
such saturating constraints is denoted by L(D), and is the
smallest (thick) linear subspace that contains D.
Parameters, volume and complexity: A polyhedron

may have one or more designated indices, like N above,
called its size parameter(s).1 There is no upper bound on pa-
rameters, and they allow us to define an unbounded family of

1Although not explicitly stated, Gautam and Rajopadhye [6] assumed a
single size parameter.

polytopes, one for each value of the parameter.2 The volume,
cardinality, or the number of integer points, in such a para-
metric polytope is known to be a polynomial function of the
parameter, and this polynomial is the asymptotic complexity
of a program that performs a contant time operation at every
point in the polyhedron. The degree of this polynomial, also
called the number of (free) dimensions of the polyhedron,
is the number of indices in D, less the number of linearly
independent thick equalities.
A facet, F of a polyhedron D is its intersection with the

equality az + α = 0 associated with exactly one constraint.
We say that the facet saturates the constraint ⟨a,α⟩. More
than one constraint may be saturated, and this yields faces.
The concept of “thickness” can be extended to faces too: a
thick face is the set of points in the polyhedron burt within
a constant distance of the face. Gautam and Rajopadhye [6]
define the thick face lattice of D which is a critical data
structure during simplification. Zero-dimensional faces are
called vertices, 1-dimensional faces are edges, and D itself
is the topmost face (it’s children are the facets). Faces are
arranged level by level, and each face saturates exactly one
constraint in addition to those saturated by its “parent.”3

Equations, reductions, reuse and share space: For the
scope of this paper, we seek to simplify equations of the form

∀z ∈ D : Y [Bz] =
⊕

e(z)

=
⊕

X [Az] (6)

Here, e is some expression, called the reduction body, and
there is no loss of generality in assuming that it simply reads
an input array X . A and B are linear access functions match-
ing the number of dimensions of D, X and Y , as appropriate.
Reductions combine multiple values to produce multiple
answers, and this is accomplished by a many-to-one (i.e.,
rank-deficient) linear write access, B, called the projection of
the reduction. We say that the value of e(z) contributes to the
answer at Y [Bz]. The image of D by B, is the set of results
produced by the reduction, and is the domain of Y , denoted
by DY = B(D).
Simplification is possible only if the same input value is

read at multiple points in D. It is well known [5, 17, 19] that
such reuse occurs when A is rank-deficient: z and z ′ access
the same value of X , iff Az = Az ′, or z − z ′ is a linear combi-
nation of the basis vectors of the null space of A. The reuse
space of our expression e , which we denote as R(e) is just
the null-space of A, When an expression is to be evaluated

2We can also simplify parameterized programs/equations where each in-
stance has an unbounded computation.
3Admittedly, the notion of a parent is ambiguous in a lattice, but since
the faces will be visited recursively in a top down manner, the call tree of
this recursion will provide the necessary context to uniquely identify the
constraint being saturated.
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only at points in some domain D, its share space S(D, e), is
defined to be L(D) ∩ R(e). This is a linear space.4

3 Reduction Simplification
For clarity of explanation, we first assume that the reduction
operator admits an inverse, ⊖. Later, we consider noninvert-
ible operators. We simplify Eqn. 6 recursively, going down
the thick face lattice, starting with D, and at each step we
simplify Eqn. 6, but restricted to F .
The key idea is that exploiting reuse along ρ ∈ S(F , e)

avoids evaluating e at most points in F . Specifically, let F ′

is the translation of F along ρ, and F ′\F and F\F ′ be
their differences. The union of these two is also the union of
the thick facets of F . Exploiting reuse along ρ converts the
original equation to a set of residual computations defined
only on (a subset of) the facets of F . All the computation in
F ∩ F ′ is avoided. To understand the details, we first define
two labels on faces (remember that in this recursive traversal,
every face F is associated with a unique constraint, ⟨c,γ ⟩).

First, a face F , is said to be a boundary face if its image by
B, B(F ) is also a face of DY , i.e., it contributes to a “bound-
ary” of the result. This happens if ker(B) ⊆ ker(c). Second,
and with respect to any reuse vector ρ, we define a face to
be inward (respectively, outward and invariant) if cρ > 0
(respectively, cρ < 0 and cρ = 0).

A preprocessing step ensures that there are no invariant
boundary faces. No residual computation is performed on
any outward boundary, and on invariant facets of F . The
other residual computations are used in the following way.

• The inward boundary faces are used to initialize the
final answer.

• The results of inward non-boundary faces are com-
bined with Y [B(z − ρ)] using the operator ⊕.

• The results of outward non-boundary faces are com-
bined with Y [B(z − ρ)] using the operator ⊖.

Optimality At each step of the recursion, the asymptotic
complexity is reduced by exactly one polynomial degree,
because facets of F have one fewer free index. Furthermore,
at each step, the faces saturated by the ancestors ensure
that the new ρ is linearly independent of the previously
chosen ones. Hence, the method is optimal—the reduction
in asymptotic complexity is by a polynomial whose degree
is the number of dimensions of the feasible reuse space of
the original domain, L(D) ∩ R(e), and all available reuse
is fully exploited. This holds regardless of the choice of ρ
at any level of the recursion (all roads lead to Rome) even
though there are infinitely many choices in general.

Handling operators without inverses and impact on op-
timality Many algorithms, particularly in dynamic pro-
gramming, perform reductions with operators like the min

4When it is more than one dimensional, there are infinitely many choices
for the basis vectors.

and the max, which do not admit an inverse. To handle
such equations, we must ensure that the residual compu-
tation whose results are combined with ⊖ must have an
empty domain, i.e., the current face F does not have any
non-boundary outward facet, i.e., ciρ ≥ 0 holds for all non-
boundary facets.
There are two implications of this. First, this means that

the feasible space of legal reuse vectors ρ is no longer the
linear subspace ∈ S(D, e), but rather, must satisfy additional
linear inequalities. Indeed, the feasible space may even be
empty, and we may not be able to exploit all available reuse.
For example, consider Eqn. 7 below.

Y [i] =
2imax
j=i

X [i] (7)

If we choose ρ = [1, 0], it makes the lower bound j ≥ i , an
outward facet, while ρ = [−1, 0], makes the upper bound
j ≤ 2i outward. Hence, this equation cannot be simplified
and its complexity will remain O(N 2).
The second consequence is that, as the above algorithm

recurses down the thick face lattice, the choice of the ρ at
an earlier level may affect the feasible space of lower levels,
and hence the recursive algorithm may have to backtrack
and try alternative values of ρ, but the feasible space of legal
reuse vectors may be infinite.
Gautam and Rajopadhye solve this by proving that the

infinite feasible space can be partitioned into equivalence
classes based on the labels they assign to the non-boundary
facets. Thus, because there are finitely many faces, and each
has finitely many possible labels, a backtracking search over
the thick face lattice leads to an optimal choice of ρ’s.
However, note that despite the optimality, it may not be

possible exploit all available dimensions of reuse when the
reduction operator does not admit an inverse, as we saw in
the example of Eqn 7.

4 Simplifying dependent reductions
We now describe our main result. We show how to solve the
problem of simplifying dependent reductions by extending
the Gautam-Rajopadhye backtracking search algorithm. It
relies on the early work on polyhedral scheduling [2] and
builds on a long history of scheduling [3, 4, 8, 9, 12–17].
We first define compatibility to capture the notion of the

conditions under which a new dependence (e.g., one that is
introduced by simplification) does not introduce dependence
cycles, and allows the program to admit a legal schedule.

Definition 1. Let T be the space of all legal schedules for a
program. We say that a new uniform self dependence vector
r on variable Y is compatible with T , or with the original
program, if some feasible schedule ΘY , respects the constraint
ΘY r ≻ 0, where ≻ denotes the lexicographic order, i.e., iff

∃Θ ∈ T s.t. Θr ≻ 0

Otherwise, we say that r violates T .
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We say that a reuse vector, ρ for simplifying the reduction
producing Y is legal if the uniform (self) dependence vector,
Bρ on the variable Y is compatible with the original program.

Proposition 1. The feasible space of all multidimensional
schedules for polyhedral pogram is a blunt, finitely generated,
rational cone. (see https://en.wikipedia.org/wiki/Convex_cone).

Proof. A polyhedral set P is a cone iff for any point x ∈ P,
and for a positive scalar α , the point αx , is also in P. The
causality constraint states that for all pairs of iteration points,
zX ∈ DX and zY ∈ DY such that X [zx ] depends on Y [zy ],
the time-stamp of the producer is strictly before the time
stamp of the consumer. Recall that a d-dimensional schedule
Θ satisfy causality iff the following constraint is satisfied.

ΘX


zX
p
1

 − ΘY


zY
p
1

 ≻ 0 (8)

Now, if Θ is a legal schedule vector5 then it is easy to see
that αΘ, for any positive α also satisfies 8. Indeed it is just a
α-fold slowdown of Θ. It is also easy to show that the cone is
blunt, i.e., it does not contain the origin (otherwise a schedule
that maps all the instances of all variables to the single time
step, 0 would be a legal schedule), and because the schedule
coefficients are integers, it is finitely generated. □

We now formulate the additional legality conditions for
reuse vectors used during simplification. Consider the cone
defining the feasible schedule T of a program (system of
equations) prior to simplification. Let its projection on the
dimensions representing the variable Y be C, and let C have
m generators, д1 . . .дm .

Theorem 4.1. Simplifying the equation for Y using a reuse
vector, ρ is legal iff, for some generator, дi of C , дiBρ ≥ 0.

Proof. If дiBρ < 0 for all generators, then no feasible sched-
ule ΘY ∈ C satisfies the self dependence Bρ, it satisfies the
constraint that ΘY [Bρ, 0, 0]T ⪰ 0 □

Thus, the legality conditions for reuse vectors used dur-
ing the recursion in the Gautam-Rajopadhye algorithm now
become the disjunction ofm convex constraints. There are
possiblym-fold more choices to explore (but with the possi-
bility of early termination), and once again, the optimality
argument carries over.

5 Related work and discussion
Reductions as first class constructs in programming lan-
guages have a long history, going back to Iverson’s APL [7].
In the context of the polyhedral model, Roychowdhury’s
5Note that we usually think of a d-dimensional schedule as a matrix with
d + 1 rows, but the set of all these coefficients constitute the unknown
variables in the optimal scheduling linear program, and the schedule vector
is a vector of all these coefficients, and this is this that we claim belongs to
a cone.

Ph.D. dissertation [18] used Eqn. 6 with a linear access func-
tion on the lhs as high level a specification (he called them
weakly sigle assignment codes or WSAC). His work was in
the context of systolic array synthesis, and the hot topic du
jour was uniformization/localization of broadcasts of many-
to-one read via the properties of the read matrix A. He also
showed that since a many-to-one write was the dual of a
broadcast the same techniques could be used to serialize
reductions. The dissertation is highly recommended reading
with interesting results that haven’t appeared in a journal
or conference. Le Verge [10] introduced reductions in Al-
pha, a polyhedral domain specific (pun intended) equational
language [11].
Yang, Atkinson and Carbin [20, 21] were the first to for-

mulate and tackle the problem of simplifying dependent re-
ductions, and our motivating example is due to them. Their
paper makes a number of important contributions.

• They formulate the problem of simplifying dependent
reductions as a bilinear programming problem.

• They also present a simple heuristic that works when
(i) provided a sequential schedule, and (ii) the reduction
operator admits an inverse.

• Fifteen years after Gautam and Rajopadhyes’ work,
they provide many pragmatic instances, drawn from
probabilistic programming and Bayesian inference,
where simplifying reductions is an important opti-
mization. In the thirteen benchmarks they studied, it
yielded at least one degree reduction of the asymptotic
complexity.

Like us, they combine simplification with scheduling, but
they do it more directly. We explain their approach and dis-
cuss its limitations. They first use the state of the art sched-
uler by Pouchet et al. [13–15] to formulate multidimensional
scheduling as a single linear optimization problem. For each
variable/equation Xi defined over a di -dimensional domain,
there is anm × (1 + di ) matrix of schedule coefficients6 Θi .
The causality constraints are translated to linear inequalities
defining a feasible space. Many objective functions are used
in the literature, the most common being one that simulta-
neously optimizes for locality and parallelism [1].
However, there are two difficulties in directly extending

these schedule constraints to incorporate simplification. The
first is that, in the Gautam-Rajopadhye recursive algorithm,
the ρ vectors are chosen one by one as the algorithm tra-
verses the face lattice. Each face introduces Bρ as a new
dependence, not present in the original program, and sched-
uling constraints must now be augmented.
Yang et al. resolve this by first formulating the Gautam-

Rajopadhye algorithm as a single linear programming prob-
lem, by setting up simultaneous constraints that must be

6Here, m is the number of dimensions of the schedule, and it must be
specified in the formulation. Clearlym need not be more than 1+d ′

i , where
the maximum number of dimensions of any variable in the program is d ′

i .

https://en.wikipedia.org/wiki/Convex_cone
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satisfied for all the faces ofD, each one with a distinct reuse
vector. Next, they add new scheduling constraints to include
these (self) dependence ρ vectors in the causality constraints
of the form,ΘY [Bρ, 0, 0]T ≻ 0. They couple this with a linear
objective function to minimize the asymptotic complexity.

However, since the schedule coefficients ΘY and the reuse
vectors ρ are both unknowns, the formulation becomes a
bilinear programming problem. Furthermore, because the
bilinear program has an independent reuse vector ρ for each
face of the face lattice, and the number of faces is usually
exponential in the size of the input program,7 their bilinear
program is most likely intractable. The authors concede this
and indeed, state that they consider it, “only as a specification
instead of a complete solution.”
Rather, they propose a simple heuristic that works really

well for many (indeed, all) examples they encounter in statis-
tical machine learning. They start with a sequential schedule
that may be chosen by any standard algorithm. Next, they
choose an arbitrary ρ for each face. If it violates the given
schedule, then they replace it by its negation −ρ. This works
if the operator admits an inverse since in this case, the share
space S(D, e) is a linear space. Moreover, they state that the
initial sequential schedule is obtained from a “PLUTO-like
scheduler built into ISL.” To the best of our knowledge the ISL
implementation of the PLUTO scheduler is parallel, which
can be made sequential, but it is not easy to formulate the
feasible space of all sequential schedules.

6 Conclusion
We tackled the problem of simplifying dependent polyhedral
reductions, a strict generalization of the problem previously
addressed by Gautam and Rajopadhye [6]. We show how
the Gautam-Rajopadhye algorithm can be extended to re-
solve this new problem, while retaining the optimality of the
complexity reduction. Our algorithm works for all reduction
operators, not just those that admit an inverse, such as max,
and min that occur in dynamic programming algorithms. We
are still on the lookout for programs and algorithms that
may benefit from reduction simplification.
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