
A Templated C++ Interface for isl
Sven Verdoolaege

Cerebras Systems

sven@cerebras.net

Oleksandr Zinenko

Google

zinenko@google.com

Manjunath Kudlur

Cerebras Systems

manjunath@cerebras.net

Ron Estrin

Cerebras Systems

ron.estrin@cerebras.net

Tianjiao Sun

Cerebras Systems

tianjiao.sun@cerebras.net

Harinath Kamepalli

Cerebras Systems

harinath@cerebras.net

Abstract
Polyhedral libraries typically support only a very limited

collection of types for representing objects, corresponding

to broad mathematical classes such as sets, binary relations

and functions. Software built on top of these libraries, on

the other hand, needs to deal with a plethora of different

kinds of objects such as instance sets, access relations and

dependence relations. Conceptually, these different kinds of

objects can only be combined in very specific ways, but they

are all mapped to the same limited collection of types, so

that inconsistent combinations can only be detected at run

time, if at all. This paper introduces a new templated C++

interface for isl that offers more fine-grained and application-

specific types of objects, allowing inconsistencies in use to

be detected at compile time, including some that cannot be

detected at run time. This makes it easier to understand and

correctly write polyhedral code.

1 Introduction
Any sufficiently advanced polyhedral compilation tool needs

to deal with a multitude of different types of polyhedral

objects such as instance sets, access relations, dependence

relations, placements, schedules and memory mappings, as

well as different variations and combinations of such objects.

Strongly typed programming languages such as C++ (to

some extent) allow the compiler to check whether certain

operations are valid (at compile time, in the case of C++).

However, most polyhedral libraries provide only a limited

collection of types, restricting the scope for such compile-

time consistency checks.

For example, in PolyLib (Wilde 1993) (practically) ev-

erything is a Polyhedron, to the extent that some authors

even talk about “dependence polyhedra” instead of depen-

dence relations. This affords only very limited type-checking,

even at run time. Binary operations on Polyhedrons can
at most compare the dimensionalities of the two objects.

The extension to Z-polyhedra (Nookala and Risset 2000)

essentially only replaces Polyhedron by ZPolyhedron. Sim-

ilarly, in Omega (Kelly et al. 1996) everything is a Relation,

IMPACT 2021, January 20, 2021, Virtual event

although a distinction is made between sets and binary re-

lations, such that some additional inconsistencies can be

detected at run time. In isl (Verdoolaege 2010), sets and

relations can live in named and nested spaces (Verdoolaege
2011), enabling additional consistency checks, but again only

at run time. Furthermore, some types of isl objects can

contain elements from different spaces and then no such ad-

ditional checks can be performed. Instead, an inappropriate

operation usually simply results in an empty set or relation.

This paper introduces a templated C++ interface to isl,
allowing for a more fine-grained and application-specific

typing of polyhedral objects. For example, instead of simply

using the "binary relation" type, a type can be used that rep-

resents a binary relation between statement instances and

array (or tensor) elements, i.e., an access relation. The range

of such a relation could then only be intersected with a set

representing array elements. The concrete types are defined

by the user. The templated interface only provides the in-

frastructure for defining these types. Since these types are

defined at the C++ level, inconsistencies can be detected at

compile time. Furthermore, the more elaborate types serve as

documentation of the kind of objects accepted and returned

by a function.

2 Background on isl
This section provides some background information on isl
that will be needed to describe the templated C++ interface.

Even though some of the details have not been described in

any prior publication, they do not form part of the contri-

butions of the present paper, but only serve to sketch the

context in which the contributions were made. Verdoolaege

(2016) provides further information on isl.

2.1 Spaces
isl is a library for manipulating sets of integer tuples. Be-

sides a dimensionality, these tuples can also have a name.

The collection of all integer tuples with a given name and

dimensionality forms a space. For example, the integer tu-

ples representing the elements of an array would typically

live in a space with the same name and dimensionality as

the array. Objects of the isl type isl_set contain elements

that all live in the same space. Note that the constraints of

a set may also reference symbolic constants, which have a

1



IMPACT 2021, January 20, 2021, Virtual event Verdoolaege, Zinenko, Kudlur, Estrin, Sun and Kamepalli

fixed but unknown value. These symbolic constants are not

considered to be part of a tuple or space. For example, the

set

[N] -> { A[i, j] : 0 <= i, j < N }

describes a two-dimensional array called A of size N in both

dimensions, with N a symbolic constant. The name of the

tuple is A and its dimensionality is 2.

Binary relations are represented using the isl_map type
and contain elements that live in a space of a pair of named

tuples. For example, the access relation from a particular

statement S to a particular array A can be represented by a

binary relation such as

[N] -> { S[i,j,k] -> A[i,j] : 0<=i,j,k<N }

where the first tuple has the name and dimensionality of the

statement and the second those of the array.

Even though the dimensionality of a tuple can attain any

value, the number of tuples in a space is limited to only three

choices. As already explained, single-tuple objects are rep-

resented by an isl_set, while two-tuple objects are repre-
sented by an isl_map. It is also possible for an object to have

no tuples. Such objects are also represented by an isl_set
and describe constraints on symbolic constants. For example,

[N] -> { : N >= 0 }

expresses that the symbolic constant N is non-negative.

There is currently no way to represent an object in isl
with more than two tuples (at the top level). It is, however,

possible for a tuple to have a pair of nested tuples. The dimen-

sionality of the outer tuple is the sum of the dimensionalities

of the nested tuples, which may in turn have further nested

tuples. For example, it can be useful to make a distinction

between different array references in a statement. To achieve

this, a zero-dimensional tuple with a unique name can be

used as a reference identifier. Each reference can then be rep-

resented by a tagged access relation, constructed by mapping

a pair of a statement instance and a reference identifier, to an

array element. This is done for example by pet (Verdoolaege
and Grosser 2012). In isl, the outer tuple can also have a

name, but this is rarely used since the tuple is already identi-

fied by the names of the leaf tuples. For simplicity, this paper

will assume that all tuples with nested tuples are nameless.

For example,

{ [S[i,j] -> R1[]] -> A[j,i] }

maps a pair consisting of an S-statement instance and an

R1 reference identifier to an A-array element. The nested

tuples S[i,j] and R1[] are named, but the containing tuple

[S[i,j] -> R1[]] has no name.

It is often useful to consider objects containing elements

from different spaces, e.g., the set of all statement instances or

the binary relation containing all accesses. Such objects can

be represented by an isl_union_set or an isl_union_map.
For example,

[N] -> { S[i,j,k] : 0 <= i,j,k < N;

T[i,j] : 0 <= i,j < N }

describes the instances of two statements. Note that while

these objects contain elements living in different spaces, they

are typically all of the same kind. For example, the set of all

statement instances has elements in different spaces, each

representing a particular statement, but they all represent a

statement. This observation is crucial for the usefulness of

the templated C++ interface as the purpose of the template

arguments is to specify these kinds of tuples. Such a specifi-

cation will be referred to as a “tuple kind” in the remainder

of this paper.

2.2 Type Hierarchy
Besides sets and binary relations, isl also has several types

representing explicit functions. The two basic types are the

(total) quasi-affine function isl_aff and the (total) quasi-

affine polynomial isl_qpolynomial. The domains of these

functions are fixed and can have zero or one tuple, while

the range is always a nameless single-dimensional tuple.

Several type constructors can then be applied to these two

types to obtain other types. In particular, the following type

constructors are defined.

• multi takes a single-dimensional function type and

turns it into a multi-dimensional function type, with a

possibly named tuple of arbitrary dimensionality.

• pw takes a total function type on a domain in a fixed

space and turns it into a partial function type, support-

ing a subdivision of the domain, each with a different

expression.

• union takes a partial function type with a fixed space

and turns it into a partial function type supporting

multiple spaces.

For example, the total single-dimensional function

{ S[i,j] -> [j] }

can be represented by an isl_aff. The total multi-dimensional

function

{ S[i,j] -> A[j,i] }

can be represented by an isl_multi_aff, but not by an

isl_aff. The partial multi-dimensional function

{ S[i,j] -> A[j,i] : 0 <= i,j <= 10 }

can be represented by an isl_pw_multi_aff, but not by an

isl_multi_aff. The multi-space partial multi-dimensional

function

{ S[i,j] -> A[j,i] : 0 <= i,j <= 10;

S[i,j] -> B[i] : 0 <= i,j <= 10 }

can be represented by an isl_union_pw_multi_aff, but
not by an isl_pw_multi_aff.
The type constructors can be applied in different orders,

but not all possible combinations are currently available

2



A Templated C++ Interface for isl IMPACT 2021, January 20, 2021, Virtual event

in isl or even make sense. Note that there is a difference

between an isl_pw_multi_aff and an isl_multi_pw_aff.
The former has a single subdivision of the domain, mean-

ing that in each point of the domain, the function is either

completely defined or undefined. The latter has a subdivi-

sion of the domain for each single-dimensional function

inside the multi-dimensional function, meaning that on a

given point in the domain some of these single-dimensional

functions may be defined while some others may not. An

isl_pw_multi_aff can therefore always be converted to an

isl_multi_pw_aff without losing information (but not the

other way around), since the subdivision of the domain can

simply be pushed down to all single-dimensional functions

in the target object.

Actually, there is a minor complication in the case of zero-

dimensional functions, since a zero-dimensional function of

type isl_pw_multi_aff could be defined on only a subset

of the domain, while a zero-dimensional isl_multi_pw_aff
has no single-dimensional function to which to attach this

definition domain. For this reason, zero-dimensional ob-

jects of type isl_multi_pw_aff keep track of an explicit

domain. The same applies to zero-dimensional objects of

type isl_multi_union_pw_aff.
Every one of the above type constructors constructs a

type that contains the input type. That is, every object of the

input type is in theory also an object of the result type. In

the C interface of isl, no such relationship can be expressed.

Instead, the C interface provides conversion functions that

convert an object of the more specific type to the more gen-

eral type without loss of information. The only possible

exception is the space of the object. In particular, an object

of a union type does not have a specific (domain) space

since the elements can live in multiple spaces. The space

of an isl_union_pw_aff or an isl_union_pw_multi_aff
therefore always has a single, one-dimensional tuple.

If, after applying some type constructor to a type, some

other type constructor is applied to both the input and the re-

sult type, then the result of applying both type constructors

also contains the result of only applying the second type con-

structor. Togetherwith the special case of isl_multi_pw_aff
generalizing isl_pw_multi_aff, this results in the type hi-

erarchy shown in Figure 1. These subtype relationships are

marked explicitly in the code using __isl_subclass anno-

tations. These annotations are only used during the gen-

eration of the Python and the C++ bindings. Note that an

isl_union_pw_multi_aff cannot necessarily be converted

to an isl_multi_union_pw_aff because the former can

have function values in different tuples (or no tuple), while

the latter can only have function values in a single tuple.

Also note that a given type may be a subclass of more than

one other type and that the order of the superclasses (as

shown in Figure 1) is important. In particular, as will be ex-

plained in Section 2.3, for generating the Python bindings

it is important that the class hierarchy can be linearized. A

a

pa ma

upa pma mpa

upma mupa

Figure 1. The hierarchy of classes obtained from isl_aff
using zero or more applications of type constructors, with

subclasses pointing to zero or more superclasses. If there is

more than one superclass, then they are considered to be

ordered from left to right. The primitive class is abbreviated

by ‘a’. The type constructors are abbreviated by their first

letters.

similar hierarchy could be defined for isl_qpolynomial but
not all corresponding types are currently defined in isl and

this hierarchy is not currently exported to the bindings.

The isl_union_set and isl_union_map types described
above can be seen to have been derived from isl_set and
isl_map using the same union type constructor. A different

type constructor, basic, is also applied to these two types

to derive specializations. In particular, isl_basic_set and
isl_basic_map are sets and binary relations that can be

described using only projection and a conjunction of affine

constraints. Finally, isl_point is a further specialization of

isl_basic_set describing a single element.

The multi type constructor is also applied to the isl_id
and isl_val types, representing identifiers and (rational)

values, to obtain the isl_multi_id and isl_multi_val
types. These types do not currently have an __isl_subclass
annotation.

2.3 Python Interface
Historically, the Python interface provided the first foreign

language bindings for isl.1 It is only relevant here because

the Python and the C++ interface are meant to be as similar

to each other as possible and because the two interfaces are

generated using the same infrastructure. In particular, an

automated generator, written in C++, is used that parses the

(annotated) C headers and produces the foreign language

bindings.

Even though some effort was made to keep the C interface

clean, in hindsight some functions should not have been

added. Some other functions may also not be relevant for

foreign language bindings. Therefore, all types and functions

that should be exported to the foreign language bindings

1
The Python interface that comes with isl should not be confused with the

islpy library, which was introduced by Klöckner (2014) and is available

from http://documen.tician.de/islpy/.

3

http://documen.tician.de/islpy/


IMPACT 2021, January 20, 2021, Virtual event Verdoolaege, Zinenko, Kudlur, Estrin, Sun and Kamepalli

are explicitly annotated with __isl_export (if not already
annotated with __isl_subclass). Functions are exported
as methods of the Python class corresponding to the type

that appears at the start of the function name. If the first

argument of the function is not of the same type, then a

static member function is generated. This is also called a

“named constructor”. In some cases, where the functionality

of the function is clear from the remaining arguments, the

function is exported as __isl_constructor and a proper

constructor is generated instead.

In the Python interface, a type that is marked as being an

__isl_subclass of some other type is effectively created

as a subclass of that other type. For example, isl.aff is a
subclass of both isl.pw_aff and isl.multi_aff. The or-
der is important here because Python 3 needs to be able to

linearize the classes in the hierarchy. The order of the sub-

classes is based on a predefined linearization. In particular,

the type constructors are applied to previously defined types

in a specific order: pw, union and multi. This results in the

linearization

a, pa, upa, ma, pma, upma, mpa, mupa,

using the abbreviations in Figure 1.

Each Python object encapsulates a pointer to the corre-

sponding C object. Each method call is implemented using a

call to the corresponding C function. However, the Python

method can be called with objects of subclasses as arguments

(including self), while the corresponding C function needs

to be called with pointers to C objects of the exact expected

types. Each method therefore checks the __class__ of the
arguments and constructs new objects of the appropriate

types if there is amismatch. Each class then also has construc-

tors for constructing an object from an object of a subclass,

which call the corresponding C conversion functions.

2.4 C++ Interface
In theory, it would be possible to use run-time type infor-

mation to apply the same sort of dynamic type checks that

are being performed by the Python interface to support calls

on objects of subclasses. However, when the C++ interface

was contributed to isl, a choice was made to not expose the

conceptual type hierarchy of Section 2.2 in the C++ class hi-

erarchy, but instead to provide implicit conversion construc-

tors from objects of conceptual subclasses. The constructors

that take some other argument are marked explicit such
that they do not get called implicitly. The availability of im-

plicit conversion constructors means that, just like in the

Python interface, a method can be called with objects of sub-

classes since these objects will automatically get converted

to objects of the expected type. However, unlike the Python

interface, this does not apply to the implicit this argument.

That is, a method available in a superclass cannot be called

on an object of a subclass. This means there is a difference

with the Python interface and an asymmetry in the order of

the arguments. For example, if a is an isl_union_set and b
is an isl_set, then a.intersect(b) can be performed, but

b.intersect(a) cannot. Instead b would have to be explic-

itly converted to an isl_union_set first. This inconsistency
will be resolved in Section 4.2.

3 Design Goals
This section describes the main design goals of the templated

C++ interface.

3.1 Compile-time Consistency Checks
The most important design goal is to be able to detect incon-

sistencies at compile time. For example, at the function defi-

nition level, a function accepting an access relation should

not be able to get called with a dependence relation or any

other type of relation. Similarly, at the isl interface level, it

should not be possible to intersect an access relation with a

dependence relation.

3.2 Application Independent
The interface should leave it up to the user application to

define the different types of objects that the application uses.

Otherwise, isl would need to be aware of all possible appli-

cations. That is, the interface should not define the concept

of an access relation, but should instead make it possible for

the application to do so.

3.3 Compatibility with Plain C++ Interface
A function taking an object from the plain C++ interface

should also take an object from the templated C++ interface.

The other direction should not be allowed since that would

subvert the consistency checks afforded by the templated

C++ interface.

Switching a function from the plain to the templated C++

interface should be as easy as possible. Ideally, it should be

as easy as adding template arguments to the original types.

Unfortunately, it is not possible in C++ to use the same name

for both a regular type and a template type. This means that

either different names should be used or that the plain and

the templated C++ interface cannot be used together. The

latter would imply that an entire code base would have to

be switched over at once, which is impractical.

3.4 Ease of Use
The user should not be required to add more annotations

than strictly necessary. Clearly, when a new object is being

constructed from scratch (i.e., not as a result of applying an

operation to some other object) or when a non-templated

object is converted to a templated object, the tuple kinds

need to be specified. Also, the argument and return types

of a function should typically specify tuple kinds as well,

even if just for documentation purposes, although it can be

avoided by using template arguments and/or auto. Other
4



A Templated C++ Interface for isl IMPACT 2021, January 20, 2021, Virtual event

than these two cases, however, a user should not have to

specify any tuple kinds.

4 Changes to Plain C++ Interface
This section describes some changes to the plain C++ inter-

face that are also instrumental for the templated interface.

4.1 Subclasses Based on Type Functions
The original plain C++ interface exports some isl types

that each represents a particular type of object. There are

also some types in the C interface that represent multiple

(related) types of objects and that have a get_type function

to determine the specific subtype of an object, in particu-

lar isl_ast_expr, isl_ast_node and isl_schedule_node.
These were not originally exported by the plain C++ (or

Python) interface. The generator has been extended to ex-

port them as actual subclasses, in both the C++ and Python

interfaces, based on the return value of the get_type func-
tion. In the Python interface, the __new__ method of the

superclass is overridden to create an object of the appropri-

ate subclass. In the C++ interface, isa and as methods are

introduced in the superclass to check whether an object actu-

ally belongs to the subclass and to convert it to that subclass

if it does. Note that the types that are exported in this way do

not involve any tuple information and therefore do not need

to be handled by the templated interface. However, the name

of the as method is relevant for the renaming described in

Section 4.3 below.

4.2 Inherit Methods from Superclasses
As explained in Section 2.4, the conceptual isl type hierar-
chy is not expressed as such in the C++ interface. This means

that methods available in a superclass may not be available

on objects of a subclass. This happens in particular to meth-

ods of a superclass that take more general arguments than

a method with the same name in the subclass. For example,

the intersect method in isl::set only takes some other

isl::set, while the same method in isl::union_set can
take a more general isl::union_set. Note that this particu-
lar sort of methods would get hidden by the subclass method

anyway, so making isl::set a subclass of isl::union_set
would not help.

The solution is to copy methods from ancestors to sub-

classes. In particular, if some method is available in an an-

cestor that is not directly available in a subclass, because

it has either a different name or different arguments, then

it is also made available in the subclass. Instead of calling

the corresponding C function, the copied methods convert

this to an object of the superclass and then call the corre-

sponding C++ method on the result. If a method with the

same signature appears in more than one ancestor, then it is

copied from the “closest” ancestor, where an ancestor is con-

sidered closer if the distance in the class hierarchy is smaller

or the distance is the same and it appears more to the left in

Figure 1. This selection mechanism may not always result

in the same variant of the method getting called as in the

Python bindings, but it is a reasonable choice and it would

be difficult to mimic Python exactly.

Note that if there already was a method with the same

name but different arguments, then adding a method copied

from an ancestor may result in ambiguities that did not ex-

ist before the copying. In particular, an object that belongs

to a subclass of the original argument type would get con-

verted automatically to the required type, but if it can also be

converted to the argument type of the copied method, then

the compiler will no longer perform the conversion. In such

cases, the generator will therefore add additional variants

of the method to the subclass, one for each subclass of the

original argument type.

4.3 Renamed Exports of Constructors
In the C interface, most functions for creating an object

of a given isl type start with the name of that type. This

means they appear as (named) constructors in the C++ in-

terface. When calling such constructors, the C++ isl object

type needs to be spelled out since there is no object from

which to obtain the type. This is already a bit verbose in

the plain C++ interface, but in the templated interface, it is

even worse since there the type will also involve the tuple

kinds. Many of these functions are therefore (re-)exported

based on newly introduced names that start with the name

of the first argument type instead of that of the return type.

In most cases, the name of the result type still appears some-

where else in the new function name. For example, the

isl_set_universe function, which gets exported as the

named constructor universe in isl::set, is re-exported
through the new isl_space_universe_set name, which

gets exported as the method universe_set in isl::space.
Many conversion functions in the C interface have names

of the form new_from_old. Most of these are or could be

exported as constructors because they simply convert one

representation of a mathematical object to some other rep-

resentation. Some of these functions, however, are not ca-

pable of converting all possible input objects (in a faith-

ful way) and then an export as an (unnamed) construc-

tor would not be appropriate. For example, the function

isl_multi_pw_aff_from_pw_multi_aff can convert any

input object and is therefore exported as a constructor, but

isl_pw_multi_aff_from_multi_pw_aff returns an object

defined on the shared definition domain of the elements of

the input object, which may not be the same as the input

object. The latter function is therefore not exported as a

constructor.

When (re-)exporting such functions using names that

start with the first argument type, each of which results

in a proper method, this difference needs to expressed in

a different way. In particular, the functions that could be

5



IMPACT 2021, January 20, 2021, Virtual event Verdoolaege, Zinenko, Kudlur, Estrin, Sun and Kamepalli

exported as constructors get old_to_new as a new name,

while the others get old_as_new as a new name. The as-
name is inspired by the as-method of Section 4.1. There is,

however, a specific set of functions where picking the right

name is not that obvious. In particular, a function such as

isl_union_map_from_multi_union_pw_aff can only con-

vert input objects that live in a map space, so in the plain

C++ interface, an as-name is more appropriate. However, in

the templated interface, the method would only be available

in objects with two tuples, so a to-name seems more appro-

priate. For consistency between the interfaces, the as-name

is used in such cases.

5 Templated C++ Interface
This section describes the main contribution of this paper,

the actual templated C++ interface.

5.1 Types
Each plain C++ type involving tuples gets a corresponding

template type in the templated interface, with a number of

template parameters that is equal to the number of tuples

involved. In order to ease the transition from the plain inter-

face to the templated interface, the name of the template type

is the same as that of the plain C++ type. It therefore needs

to be placed in a different namespace, namely isl::typed.
This results in rather long fully qualified type names, but, if

needed, an application can easily use a namespace alias.

Since some of the C++ types can involve different numbers

of tuples, the templated types are defined with a variable

number of template parameters and (partial) specializations

are provided for each possible number of tuples. In fact, for

ease of implementation, all templated types are defined with

a variable number of template parameters, even if only one

specific number of tuples is allowed. In particular:

• space can have 0, 1 or 2 tuples;

• set types basic_set, set and point can have 0 or 1

tuple;

• map types basic_map and map can have 2 tuples;

• the fixed_box type, which represents a rectangular

approximation of a set or of the range of a map, can

have 1 or 2 tuples;

• the aff type can have 1 or 2 tuples, but the last tuple

is always a one-dimensional unnamed tuple;

• val and id are also considered as always having a sin-

gle one-dimensional unnamed tuple, mainly because

the multi_val and multi_id types are derived from

them.

A special Anonymous tuple kind is introduced to represent

the one-dimensional unnamed tuples and all specializations

of isl::typed::aff, as well as the single specialization

of both isl::typed::val and isl::typed::id have this

tuple kind as the final (or only) template argument.

Besides the types listed above, those that are derived from

them using some combination of the type constructors also

get a corresponding templated type. The number of tuples of

each derived type is the same as that of the type from which

it is derived. The only modification is that the multi type

constructor changes the Anonymous tuple to a generic tuple.

Each of the templated type specializations has a construc-

tor that takes an object of the corresponding plain C++ type.

This constructor is marked private and a static method

called from is provided for calling the constructor indirectly.

This ensures that the template arguments always need to

be specified explicitly when constructing a templated ob-

ject from a plain object. Otherwise, an object of a plain type

could be passed to a function expecting a templated type and

template type deduction would conjure up the right template

arguments, bypassing the consistency checks. In any tem-

plate specialization with a single Anonymous tuple kind, the

constructor is not marked private to allow an automatic

construction from the corresponding plain type. In these

cases, the tuple kind is required to be Anonymous anyway

and there is no point in requiring users to spell this out.

While, in general, a plain type object should not get con-

verted automatically to an object of a template type, it should

be possible to use an object of a templated type where one

of a plain type is expected. The specializations are therefore

made to be subclasses of the corresponding plain types. An

alternative would be to provide an implicit conversion opera-

tor, but this does not have quite the same effect, especially for

functions already relying on implicit conversion operators in

the plain interface. Deriving from the plain types also allows

some methods that do not need any further modifications to

be reused directly.

For example, the specialization of isl::typed::map looks
as follows.

template <typename Domain , typename Range >

struct map <Domain , Range > : public isl::map {

map() = default;

private:

map(const isl::map &obj) : isl::map(obj) {}

public:

static map from(const isl::map &obj) {

return map(obj);

}

/* ... */

};

The user can then define (or simply use) full specializations

of this partial specialization for specific types of binary re-

lations. For example, an access relation and a dependence

relation type could be defined as follows.

struct Statement {};

struct Array {};

using access_relation =

isl::typed::map <Statement , Array >;

6



A Templated C++ Interface for isl IMPACT 2021, January 20, 2021, Virtual event

using dependence_relation =

isl::typed::map <Statement , Statement >;

Here, Statement and Array are dummy classes, whose only

purpose is to be able to differentiate between full special-

izations of isl::typed::map. No objects of these dummy

classes ever need to be created, at least not at run time. Any

attempt to pass an access_relation object to a function

expecting a dependence_relation will result in a compile-

time error, as desired.

5.2 Methods
Since each template type specialization derives from the cor-

responding plain type, all methods are inherited from the

plain type. These do not offer any consistency checks, but for

some methods, in particular those derived from unary prop-

erty functions in the C interface, resulting in methods with

no arguments, this is sufficient. For other methods, special-

ization specific versions are added that enforce relationships

between the argument types and the return type, if any.

The methods are generated based on a table describing

the behavior of each method in terms of its effect on the tu-

ples. Since the naming of isl functions is fairly systematic,

the behavior of methods with the same name is usually the

same and therefore only needs to be specified once. Methods

that have the result type in their names also have this part

removed when looking up their behavior. Each behavior is

described as a sequence of signatures, where a signature

consists of several sequences of 0, 1 or 2 abstract tuple kinds,

one such sequence for the return type and one for each argu-

ment. The abstract tuple kind sequences for the arguments

are grouped into a sequence of their own. The abstract tu-

ple kinds themselves are described by placeholders, each

of which will have a corresponding template parameter in

the generated bindings. That is, if the same placeholder ap-

pears multiple times, then the corresponding (concrete) tuple

kinds will be required to be the same. When generating a

method for a particular specialization of a template type, the

matching signature in the behavior will be used. For a regu-

lar (non-static) method, a signature matches if the abstract

tuple kind sequence for the first argument matches that of

the specialization, i.e., if the lengths are the same and if the

placeholders in the first argument can be mapped to (consis-

tent) parts in the type specialization. Different placeholders

are mapped independently and they can map to the same

part.

For example, for a simple binary operation such as the

method intersect, the bindings generator has the following
entry.

{ "intersect",

{ bin_params , bin_set , bin_map } },

The signatures that appear in this behavior are defined as

follows, where the abstract tuple kinds of the return type

appear before those of the list of arguments.

Signature bin_params = { { }, { { }, { } } };

Signature bin_set =

{ { Domain }, { { Domain }, { Domain } } };

Signature bin_map =

{ { Domain , Range },

{ { Domain , Range }, { Domain , Range } } };

That is, both the second argument type and the return type

are equal to the first argument type. While generating the

isl::typed::map<Domain, Range> specialization, only the
bin_map signature matches and the following method decla-

ration is generated.

inline typed::map <Domain , Range > intersect(

const typed::map <Domain , Range > &m2) const;

The methods intersect_domain and intersect_range in-

tersect the domain or the range of a binary relation. They

have signatures

{ { Domain , Range },

{ { Domain , Range }, { Domain } } };

and

{ { Domain , Range },

{ { Domain , Range }, { Range } } };

respectively.

Some methods require extra template parameters for their

arguments and/or return types. For example, apply_range
applies some (other) binary relation to the range of a binary

relation and has the following signature.

{ { Domain , Range2 },

{ { Domain , Range }, { Range , Range2 } } };

For isl::typed::map<Domain, Range>, the method below

is generated.

template <typename Range2 >

inline typed::map <Domain , Range2 > apply_range(

const typed::map <Range , Range2 > &m2) const;

Themethod set_range_tuple changes the range tuple iden-
tifier of a binary relation or function. For objects with two

tuples, it has the following signature.

{ { Domain , Range },

{ { Domain , Leaf }, { Anonymous } } };

Here, Leaf is a special placeholder that can only be matched

with a template parameter. In particular, no method will be

generated in some of the further specializations described

below where the range has a nested pair of tuples. This

corresponds to the current restriction of not having names

on tuples containing nested tuples. For the specialization

isl::typed::map<Domain, Range>, the signature above

results in the generation of the following method.

template <typename Range >

inline typed::map <Domain , Range >

set_range_tuple(

7



IMPACT 2021, January 20, 2021, Virtual event Verdoolaege, Zinenko, Kudlur, Estrin, Sun and Kamepalli

const typed::id<Anonymous > &id) const;

Notice that the template parameter Range only appears in

the return type and can therefore not be deduced automat-

ically, but must instead be specified explicitly. This makes

sense since a change in tuple identifier may result in a change

in tuple kind and the new tuple kind needs to be specified ex-

plicitly. The id argument has type typed::id<Anonymous>,
but this can be constructed automatically from an isl::id
of the plain interface.

In some rare cases, the behavior of a method depends

on the type on which it is invoked. For example, on a set

or binary relation, gist has the same tuple behavior as

intersect, but on any type derived from aff, the second
argument refers to the domain of the function. It therefore

has one of the following two signatures, one for 1-tuple func-

tions, i.e., those that only depend on symbolic constants,

and one for 2-tuple functions, i.e., those that have a proper

domain.

{ { Range }, { { Range }, { } } }

{ { Domain , Range },

{ { Domain , Range }, { Domain } } }

The unary space method is another example. This method

usually returns an object with the same tuple configuration

as the object on which it is invoked, but for any type obtained

using the union type constructor, the result has 0 tuples. A
further exception is that if the multi type constructor was
applied on top (i.e., the type is multi_union_pw_aff), then
the result has 1 tuple, corresponding to the single or last

tuple of the input.

5.3 Example Use
As a first trivial example, suppose the user application has de-

fined a type ST representing statement instances and a type

AR representing array elements. Given an access relation

called access of type isl::typed::union_map<ST, AR>
and a description of the statement instances called instances
of type isl::typed::union_set<ST>, the statement

access.intersect_domain(instances );

will compile, while the statement

access.intersect_range(instances );

will not. Note that because these are objects (potentially)

containing elements in multiple spaces, without the compile-

time error, the problem would not even be detected at run

time. Instead, the result would simply be empty.

The code fragment below is another small illustration of

the use of the templated C++ interface. It defines a generic

function for constructing a rectangular box based on lower

and upper bounds in each dimension. The bounds can be

either fixed values (multi_val<Domain>) or symbolic con-

stants (multi_aff<Domain>), but they need to live in the

same kind of space and this is enforced by the compiler.

For example, trying to construct a box where the lower

bound refers to statement instances and the upper bound

refers to array elements will result in a compile-time er-

ror. Note that in this example, the bounds should also live

in exactly the same space, but this is not enforced at com-

pile time (see also Section 5.6). The body is written in a

templated interface friendly way, calling the universe_set
method on a space rather than calling the named construc-

tor isl::typed::set<Domain>::universe, but the exact

same code also works for the plain interface.

template <template <typename ...> class T,

template <typename ...> class U,

typename Domain >

auto construct_box(const T<Domain > &lower ,

const U<Domain > &upper)

{

auto res = lower.space (). universe_set ();

res = res.lower_bound(lower);

res = res.upper_bound(upper);

return res;

}

5.4 Further Specializations
If some behavior is described for a method, but no match-

ing signature can be found, then the method is explicitly

delete’d from the templated type to hide the method in-

herited from the corresponding plain type. This can happen

in particular for methods involving nested tuples. Take, for

example, the method domain_factor_domain. This method

is applied to an object with nested tuples in its domain and

projects out the second of these nested tuples, promoting the

first of the nested tuples to the top level. For example, apply-

ing this method to a tagged access relation projects out the

tags and results in a regular access relation. The signature is

as follows.

{ { Domain , Range },

{ { { Domain , Domain2 }, Range } } };

While generating isl::typed::map<Domain, Range>, the
abstract tuple kind sequence of the first (and single) argu-

ment cannot be matched against that of the specialization,

because the Domain in the specialization is a template pa-

rameter that does not provide access to any nested tuples.

The method is therefore delete’d. However, it should still

be possible to call such methods and therefore the partial

specialization is further specialized as follows to provide a

matching for Domain and Domain2 in the above signature.

isl::typed::map <pair <Domain , Domain2 >, Range >

While generating this specialization, the need for a further

specialization will become apparent for methods applied

to objects with nested tuples in the range. Since there are

currently no functions in isl that specifically operate on

8



A Templated C++ Interface for isl IMPACT 2021, January 20, 2021, Virtual event

objects with doubly nested tuples, no further specializations

of this sort will be required.

Another reason that the matching might fail is demon-

strated by methods such as deltas. This method computes

the differences between the range and the domain of an el-

ement in a map. This means the domain and range tuples

need to be the same. The tuple kinds therefore also need to

be the same. That is, the signature is as follows.

{ { Domain }, { { Domain , Domain } } };

Again, this does not match the partial type specialization

isl::typed::map<Domain, Range>. The signature has a

single Domain placeholder and it would need to map to

both Domain and Range in the type specialization. A fur-

ther isl::typed::map<Domain, Domain> therefore needs
to be generated as well, along with further specializations

of the previous sort. In total, six partial specializations of

isl::typed::map currently get generated.

5.5 Template Argument Class Hierarchy
In a user application, it can sometimes be useful to consider

some tuple kind to be a special case of some other kind. For

example, a scalar could be considered to be a special kind

of an array so that a function accepting an access to an ar-

ray can also accept an access to a scalar, but not the other

way around. In order to lift the subclass relationship to the

level of the templated isl types (at least to some extent), an

additional constructor is added to each specialization that

accepts more specific specializations as input. In particu-

lar, for each template parameter of the type specialization

a corresponding template parameter for this new construc-

tor is introduced. The new parameter is then required to

be a subclass of the original type template parameter. For

example, for isl::typed::map<Domain, Range>, this con-
structor has the following form.

template <typename Arg1 , typename Arg2 ,

typename std::enable_if <

std::is_base_of <Domain , Arg1 >{} &&

std::is_base_of <Range , Arg2 >{},

bool >:: type = true >

map(const map <Arg1 , Arg2 > &obj) :

isl::map(obj) {}

5.6 Limitations
Not all inconsistencies can be detected at compile time. For

example, the input to the isl_map_deltas function needs

to live in a space with identical tuple types. This still needs to

be checked at run time since at compile time the two tuples

can only be enforced to belong to the same kind. However,

this compile-time check is already a major improvement over

having no consistency checks at all. It would also be difficult

to impose compile-time checks on specific tuples, since these

are usually only defined at run time.

The compile-time checks can be circumvented by taking

a pointer to an object and modifying the plain type part.

This could happen accidentally in functions taking a pointer

to a plain isl object, but it is fairly rare for isl objects to

be passed by pointer. Since isl objects behave like values,
with operations performed on an object returning a different

object rather modifying the original object, they are usually

also passed to functions by value.

6 Practical Experience
The first version of the templated C++ interface was devel-

oped in the context of Tensor Comprehensions (Vasilache
et al. 2019), while a second version was developed in the

context of DTG (Verdoolaege, Kudlur, et al. 2020) and will be

made available as part of isl.2 The second version is more

mature and it is this more mature version that is described

in this paper. The differences between the two versions are

not described since the first version is unsupported and not

widely used.

Moving from the plain C++ interface to the templated in-

terface requires some changes to the code base, but this can

be done incrementally. Clearly, the argument and/or return

types of the functions where the consistency checks pro-

vided by the templated types are desired need to be adjusted

accordingly. As long as automatic type deduction is used for

local variables, i.e., they are declared auto, typically only

minor changes are needed inside the affected functions. Any

explicit type specification needs to be adjusted, but most

constructor calls can be replaced prior to the switch to tem-

plated types by exploiting the renamed exports of Section 4.3.

Occasionally, an extra variable needs to be introduced be-

cause the same variable was being used to hold two different

types of values that still have the same type in the plain

interface. In effect, the extra consistency checks provided

by the templated types uncover the original inappropriate

reuse of the same variable.

As of yet, no bugs have been uncovered in either Tensor
Comprehensions or DTG as a direct result of switching to the
templated interface. However, some bugs have been fixed in

DTG before that would have been detected by the templated

interface. Also, the main purpose is to make it easier for

a developer to write correct code, through both the extra

documentation and the compile-time consistency checks.

However, since development of Tensor Comprehensions
has ceased and since the use of the templated interface in DTG
is new, this expected outcome has yet not been evaluated.

As can be expected, the use of more templates does some-

what increase the compilation time. A make -j 10 after a

2
The first version is available from https://github.com/facebookresearch/
TensorComprehensions/pull/604. At the time of writing, the second version

is only privately available, but is scheduled for upstreaming to the public

repository before the 0.24 release.

9

https://github.com/facebookresearch/TensorComprehensions/pull/604
https://github.com/facebookresearch/TensorComprehensions/pull/604


IMPACT 2021, January 20, 2021, Virtual event Verdoolaege, Zinenko, Kudlur, Estrin, Sun and Kamepalli

make clean on DTG using gcc 9.3.0 on an 8-core i7-6700 in-

creases the wallclock time from about 3m55s to about 4m07s

after simply including the templated C++ header and to a fur-

ther 4m11s after actually using it in parts of the code. On the

same experiment, the total “user” time increases from about

22m30s to 23m40s and 24m35s. The size of the (stripped)

main executable also increases from 3.0MB to 3.2MB.

7 Conclusions
The concept of spaces allows isl to perform more consis-

tency checks of operations than other polyhedral libraries.

However, these checks are only performed at run time and

cannot be performed on “union” types. The templated C++

interface presented in this paper introduces a more fine-

grained, user-controlled type system. In particular, it makes

a distinction between spaces with zero, one or two tuples as

well as between functions with one or two tuples. Addition-

ally, it allows the user to define their own application-specific

isl types, allowingmore consistency checks to be performed

at compile time.

Acknowledgments
The original plain C++ interface was contributed by Tobias

Grosser and Michael Kruse. The linearization of the function

types was implemented by Tobias Grosser. The idea for a

templated interface was partly inspired by an unpublished

C++ library developed by Armin Größlinger that provides

operations for sets defined by formulas over polynomials and

that allows for the specification of nested spaces using tem-

plates. The first version of the design and implementation of

the templated C++ interface for isl introduced by this paper
was created while the first author was a visiting researcher

working for Facebook and the second author was a research

engineer at Inria in the context of Tensor Comprehensions.

References
Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser,

Tatiana Shpeisman, and David Wonnacott (Nov. 1996).

The Omega Library. Tech. rep. University of Maryland.

Andreas Klöckner (2014). “Loo.Py: Transformation-based

Code Generation for GPUs and CPUs.” In: Proceedings of
ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. ARRAY’14.
Edinburgh, United Kingdom: ACM, 82:82–82:87. doi: 10.
1145/2627373.2627387.

Sunder Phani Kumar Nookala and Tanguy Risset (May 2000).

A Library for Z-polyhedral Operations. Tech. rep. PI-1330.
IRISA, Rennes, France.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodor-

idis, Priya Goyal, Zachary Devito, William S. Moses, Sven

Verdoolaege, AndrewAdams, andAlbert Cohen (Oct. 2019).

“The Next 700 Accelerated Layers: From Mathematical Ex-

pressions of Network Computation Graphs to Accelerated

GPU Kernels, Automatically.” In: ACM Trans. Archit. Code
Optim. 16.4, 38:1–38:26. doi: 10.1145/3355606.

Sven Verdoolaege (2010). “isl: An Integer Set Library for the

Polyhedral Model.” In: Mathematical Software - ICMS 2010.
Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and

Nobuki Takayama. Vol. 6327. Lecture Notes in Computer

Science. Springer, pp. 299–302. doi: 10.1007/978-3-642-
15582-6_49.

Sven Verdoolaege (Apr. 2011). “Counting Affine Calculator

and Applications.” In: First International Workshop on Poly-
hedral Compilation Techniques (IMPACT’11). Chamonix,

France. doi: 10.13140/RG.2.1.2959.5601.
Sven Verdoolaege (2016). Presburger Formulas and Polyhedral

Compilation. doi: 10.13140/RG.2.1.1174.6323.
Sven Verdoolaege and Tobias Grosser (Jan. 2012). “Polyhe-

dral Extraction Tool.” In: Second International Workshop
on Polyhedral Compilation Techniques (IMPACT’12). Paris,
France. doi: 10.13140/RG.2.1.4213.4562.

Sven Verdoolaege, Manjunath Kudlur, Rob Schreiber, and

Harinath Kamepalli (Jan. 2020). “Generating SIMD Instruc-

tions for Cerebras CS-1 using Polyhedral Compilation

Techniques.” In: 10th International Workshop on Polyhedral
Compilation Techniques (IMPACT’20). Bologna, Italy. doi:
10.5281/zenodo.4295955.

Doran K. Wilde (1993). A Library for doing polyhedral opera-
tions. Tech. rep. 785. IRISA, Rennes, France, 45 p.

10

https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/3355606
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.1.2959.5601
https://doi.org/10.13140/RG.2.1.1174.6323
https://doi.org/10.13140/RG.2.1.4213.4562
https://doi.org/10.5281/zenodo.4295955

	Abstract
	1 Introduction
	2 Background on Verdoolaege2010islislVerdoolaege2010islisl
	2.1 Spaces
	2.2 Type Hierarchy
	2.3 Python Interface
	2.4 C++ Interface

	3 Design Goals
	3.1 Compile-time Consistency Checks
	3.2 Application Independent
	3.3 Compatibility with Plain C++ Interface
	3.4 Ease of Use

	4 Changes to Plain C++ Interface
	4.1 Subclasses Based on Type Functions
	4.2 Inherit Methods from Superclasses
	4.3 Renamed Exports of Constructors

	5 Templated C++ Interface
	5.1 Types
	5.2 Methods
	5.3 Example Use
	5.4 Further Specializations
	5.5 Template Argument Class Hierarchy
	5.6 Limitations

	6 Practical Experience
	7 Conclusions

