
Polygeist: Affine C in MLIR
William S. Moses

MIT CSAIL
wmoses@mit.edu

Lorenzo Chelini
TU Eindhoven
l.chelini@tue.nl

Ruizhe Zhao
Imperial College London

ruizhe.zhao15@imperial.ac.uk

Oleksandr Zinenko
Google

zinenko@google.com

Abstract
We present Polygeist, a new tool that reroutes polyhedral
compilation flows to use the representation available in the
recent MLIR compilation infrastructure. It consists of two
parts: a C and C++ frontend capable of converting awide vari-
ety of existing codes into MLIR suitable for polyhedral trans-
formation, and a bi-directional conversion between MLIR’s
polyhedral representation and existing polyhedral exchange
formats. We demonstrate Polygeist’s flow by converting the
entire Polybench/C benchmark suite into MLIR, and by per-
forming an IR-to-IR optimization leveraging an existing poly-
hedral compiler (Pluto). Our flow produces results within
1.25% of the state-of-the-art Clang compiler, enabling direct
comparison of source-to-source and IR-to-binary compilers.
We believe Polygeist can improve the interoperation between
MLIR and the existing polyhedral tooling, benefiting both
the research and the production compiler communities.

1 Introduction
The polyhedral model has remained on the cutting edge of re-
search into compiler optimizations for several decades [15].
It provides deep loop analysis and restructuring capabili-
ties by transforming the input program into a mathematical
abstraction based on integer sets and binary relations, rea-
soning on this abstraction and generating the new, optimized
code. The process of transforming the program from the rep-
resentations commonly used in production compilers such
as LLVM intermediate representation (IR) [21] or syntax
tree is non-trivial [16, 29], and the inverse process is even
more complex [3, 18, 31]. This process, together with high
algorithmic complexity of the underlying transformation
mechanism, has led to the polyhedral optimization being
rather poorly adopted by compilers beyond research.

MLIR is a new compiler infrastructure proposed and devel-
oped in the scope of the LLVM project [22]. One of its design
goals is to provide a production-grade infrastructure that
simplifies the expression of advanced compiler optimization,
in particular those that require to cast the input program
into an additional, higher-level abstraction. Given the grow-
ing evidence that the polyhedral model is one of the best

IMPACT 2021, January 20, 2021, Budapest, Hungary

frameworks for efficient transformation of machine learning
programs [13, 25, 35] and is particularly well suited for exist-
ing and emerging accelerator architectures [14, 33, 37], MLIR
has always considered the polyhedral representation as a
first-class citizen in its infrastructure [12]. Its approach to
polyhedral optimization attempts to address the complexity
and comprehensibility issues by designing and implementing
all relevant algorithms from scratch, and by using a simpli-
fied representation that updates the code after each transfor-
mation instead of relying on a monolithic code generation
mechanism [10].
The design of MLIR’s affine representation [11] makes it

challenging to directly apply existing polyhedral tools, which
are often based on isl [36] or Polylib [23] and designed
for C source-to-source transformation [7, 37]. Additionally,
benchmarks used in the literature on polyhedral compilation
are commonly written in C [30] and are not benefiting from
the higher level representations available in MLIR [34]. As
a result, empirical comparisons can only be performed for
the entire end-to-end compilation flows, and it is difficult
to identify to which extent each part of the flow (high-level
representation, polyhedral transformation, post-polyhedral
downstream compiler) affects the final performance.
We address these issues in two ways. First, we create a

compilation flow that connects MLIR polyhedral represen-
tation to existing tools such as Pluto [7] and CLooG [3].
Our bi-directional conversion between the MLIR Affine di-
alect [11] representation and the OpenScop format [5] allows
developers to build flows that originate in MLIR, use existing
polyhedral tools, and return to MLIR for further transfor-
mation and executable code generation. Second, we create
a Clang-based C and C++ MLIR frontend capable of identi-
fying static control parts of the program (SCoP) to produce
the Affine dialect along with other “standard” MLIR dialects.
This enables MLIR flows to compile common polyhedral
benchmarks as well as other code bases written in C or C++
without rewriting them in a different input language.

Bringing both standard tools and benchmarks to MLIR
provides researchers with several benefits. Notably, this en-
ables ablation analysis of the benefits of a given MLIR-based
polyhedral transformation and the use of existing polyhe-
dral tools to optimize MLIR inputs (rather than C or C++

1

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

inputs). While this naturally opens up the door for creat-
ing and evaluating new transformations, in this work, we
only consider the effectiveness of our Polygeist workflow.
More specifically, we demonstrate that Polygeist is able to
process the benchmarks of interest without significant over-
head, and that MLIR transformations compose with existing
polyhedral flows.

2 Background: MLIR Framework
2.1 Overview
MLIR is an optimizing compiler infrastructure inspired by
LLVM [21] with focus on extensibility and modularity [22].
It is based on the principles of concept parsimony (the IR
has as little built-in concepts as possible), effect traceability
(the provenance of any IR construct can be traced back to
some location in the input program) and transformation
progressivity (optimizations are performed in incremental,
verifiable steps that maintain the validity of the IR).

Practically, MLIR defines an SSA-based [8] IR and pro-
vides algorithms and tools to analyze and transform it. Like
many SSA representations, MLIR uses values as a unit of
data processed by the represented program. MLIR values
cannot be redefined. The actions of a program are described
using operations, which can be seen as a generalization of
(machine) instructions or high-abstraction operations such
as matmul, that use values and define new values. Operations
are the main mechanism for defining the semantics of the
program. Values in MLIR have a type, which contains the
information known about the value at compile time. Simi-
larly, operation attributes contain the additional information
about the operation known at compile time. Operations are
organized into linear sequences of (basic) blocks that are
executed sequentially. Blocks may accept values as argu-
ments, following the functional SSA form [1] as opposed
to the 𝜙-node form. Groups of blocks are in turn collected
into regions. MLIR supports regions with classical control
flow graph (CFG) structure where the control can flow from
one block to one of its successors as well as arbitrary graph
regions that can have custom semantics such as TensorFlow
graphs. We only consider CFG regions throughout this paper.
Regions can be attached to an operation, which defines how
the control flows into and from these regions, allowing the
IR to be arbitrarily nested at multiple levels. MLIR supports
polyhedral analysis by providing attributes for integer sets
and affine maps, described in more detail in Section 2.2. The
generic syntax, accepted by all operations, is illustrated in
Figure 1. Additionally, MLIR allows attributes, operations,
and types to define custom syntax.
The key power of MLIR resides in its extensibility: its

only built-in concepts are attributes, types, operations and
regions described above. For example, modules and func-
tions need not be a first-class concept in MLIR and are in-
stead defined as operations with specific semantics, “symbol

%result = "dialect.operation"(%operand, %operand)

{attribute = #dialect <"value">} ({

^basic_block(%block_argument: !dialect.type):

"another.operation"() : () -> ()

}) : (!dialect.type) -> !dialect.result_type

Figure 1. Generic MLIR syntax for an operation with two
operands, one result, one attribute and a single-block region.

name” attributes, and a region to represent their body. In the
same spirit, MLIR allows one to define operations ranging
from high-level constructs such as “for” loops or functional
“map/reduce” to low-level hardware instructions, and even
hardware itself [9].
Attributes, operations and types that are expected to be

used together are organized in dialects, which can be thought
of as modular dynamic libraries. MLIR provides a handful
of dialects that define common operations such as modules,
functions, loops, memory or arithmetic instructions as well
as ubiquitous types such as integers, floats, and tuples.

2.2 Affine Dialect
The Affine dialect is one of the first dialects created in the
MLIR project [11]. It is intended for representing SCoP’s with
explicit polyhedral-friendly loop and conditional constructs.
The core of its representation is the following classification
of value categories:

• Symbols—integer values that are known to be loop-
invariant but unknown at compile time, also referred
to as program parameters in polyhedral literature, typi-
cally array dimensions or function arguments. InMLIR,
symbols are values defined in the top-level region of an
operation with “affine scope” semantics, e.g. functions;
or array dimensions, constants and results of affine
map application regardless of their definition point.

• Dimensions—are an extension of symbols that also ac-
cepts induction variables of affine loops.

• Non-affine—any other values.
Symbols and dimensions have index type, which is a platform-
specific integer that fits a pointer (i.e., intptr_t in C).

Affine maps are multi-dimensional (quasi-)linear functions
of a list of dimension and symbol arguments. For example,
(𝑑0, 𝑑1, 𝑑2, 𝑠0) → (𝑑0 + 𝑑1, 𝑠0 · 𝑑2) is a two-dimensional quasi-
affine map from three dimensions and one symbol. The same
map in MLIR syntax is affine_map<(d0, d1, d2)[s0] ->
(d0 + d1, s0 * d2)>. The affine map construct does not
require its arguments to have the symbol and dimension cat-
egory, only some operations in the affine dialect do. Instead,
the separation between dimensions and symbols allows for
quasi-linear expressions: symbols are treated as constants
and can therefore be multiplied with dimensions whereas a
product of two dimensions is invalid.
Integer sets are collections of integer tuples that are con-

strained by a conjunction of (quasi-)linear expressions. For
2

Polygeist: Affine C in MLIR IMPACT 2021, January 20, 2021, Budapest, Hungary

%c0 = constant 0 : index

%0 = dim %A, %c0 : memref <?xf32>

%1 = dim %B, %c0 : memref <?xf32>

affine.for %i = 0 to affine_map <()[s0] -> (s0) >()[%0] {

affine.for %j = 0 to affine_map <()[s0] -> (s0) >()[%1] {

%2 = affine.load %A[%i] : memref <?xf32>

%3 = affine.load %B[%j] : memref <?xf32>

%4 = mulf %2, %3 : f32

%5 = affine.load %C[%i + %j] : memref <?xf32>

%6 = addf %4, %5 : f32

affine.store %6, %C[%i + %j] : memref <?xf32>

}

}

Figure 2. Polynomial multiplication in MLIR using Affine
and Standard dialects.

Figure 3.MLIR supports multi-dimensional memory refer-
ences indexed with affine maps.

example, a “triangular” set {(𝑑0, 𝑑1) : 0 ≤ 𝑑0 < 𝑠0 ∧ 0 ≤ 𝑑1 ≤
𝑑0} can be expressed as affine_set<(d0, d1)[s0] : (d0
>= 0, s0 - d0 - 1 >= 0, d1 >= 0, d0 - d1 >= 0)>.

The Affine dialect makes use of the concepts above to
define a set of operations. An affine.for is a “for” loop with
lower and upper bounds expressed as affine maps of symbol
and dimension values, and a constant step. The bounds are
computed when the loop is about to be executed and are
loop-invariant. If the affine maps are multidimensional, a
max (min) of the results defines the lower (upper) bound.
The region is a single block that corresponds to the body of
the loop and takes the induction variable as loop argument.
An affine.parallel is a “multifor” loop nest, iterations
of which can be executed concurrently. An affine.if is a
conditional construct, with an optional else region, and a
condition defined as inclusion of the given dimension and
symbol values into an integer set. Finally, affine.load and
affine.store are used to express memory accesses where
the address computation is expressed as an affine map of
dimensions and symbols.

Figure 2 illustrates the Affine dialect by using it to define a
polynomial multiplication, C[i+j] += A[i] * B[j]. Opera-
tions not prefixed with affine. are defined in the Standard
dialect and correspond to common instructions. Even such a
simple example highlights the fact that MLIR supports, and
encourages, IRs from different dialects to be used together.

2.3 Memory References
Figure 2 also makes use of a core MLIR type—memref, which
stands for memory reference. It is a structured multi-index
pointer into memory that does not allow internal aliasing,
i.e., different indices always point to different addresses. This
effectively defines away the delinearization problem that hin-
ders the application of polyhedral techniques at the LLVM IR
level [17]. By default, memrefs are expected to have a strided
format similar to the one used for tensors in machine learn-
ing framework. A strided memref is described by its rank,
offset from the base pointer, a list of sizes and a list of strides.
The latter indicates the number of elements one needs to skip
to obtain the next element along a dimension. Strides can
thus express various layouts. For example, an𝑀 ×𝑁 memref
with strides 𝑁, 1 is row-major, with strides 1, 𝑀 is column-
major, while the strides 2𝑁 and 2 combined with offset = 1
define a layout accessing odd columns in even lines as illus-
trated in Figure 3. In general, the list of indices is transformed
into the linear address as𝐴 = base+offset+∑𝑖 stride𝑖 ·index𝑖 .
One can observe that, for a fixed rank, this can be expressed
using an affine map by treating offset and strides as symbols:
affine_map<(i0,i1)[A,off,s0,s1] -> (A + off +
s0*i0 + s1*i1)>. This is intentional and makes memrefs
compatible with affine transformations.

2.4 Other Relevant Core Dialects
MLIR provides several dozen dialects. Out of those, only a
handful are relevant for our discussion. The Structured Con-
trol Flow (scf) dialect defines the control flow operations
such as loops and conditionals that are not constrained by
affine categorization rules. For example, a scf.for loop ac-
cepts any integer value as lower bound, upper bound or step
and does not support any affine maps. The Standard (std)
dialect contains common operations such as integer and
float arithmetic, (non-affine) memory accesses or branching
control flow. It is used as a common lowering point from
higher-level dialects before fanning out into multiple target
dialects and can be seen as an extreme generalization of
LLVM IR [21]. At the same time, the LLVM dialect provides
a direct mapping of LLVM IR instructions and types into
MLIR. It is primarily used to simplify the translation process
between the two representations if further processing by
LLVM is necessary. Finally, the OpenMP dialect provides a
dialect- and platform-agnostic representation of OpenMP
directives such as “parallel” and “workshare loop”. It can be
used to emit LLVM IR interacting with an OpenMP runtime.

3 An (Affine) C or C++ Frontend for MLIR
Figure 4 shows an overview of Polygeist. Starting from a code
fragment expressed using C or C++, Polygeist traverses the
Clang AST and for each visited node emits the correspond-
ing MLIR SCF or Standard dialect construct. In contrast to
LLVM-based tools like Polly [16], Polygeist takes advantage

3

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

C code MLIR-SCF MLIR-SCF LLVM-IR Binary

Polyhedral Model

Clang AST

Clang -O3

-lower-affine-raise-affine

-emit-llvm

Figure 4. Polygeist flow. MLIR’s SCF constructs are generated by traversing the Clang AST after the emission Polygeist raising
passes enables emission of affine constructs.

of MLIR’s ability to express control flow constructs such
as loops directly, eliminating the need to discover loops in
CFG.1 At SCF level, Polygeist exposes a raising pass which
allows lifting Standard load, store, as well as SCF “for” loops
and “if” conditions to the Affine dialect. At the Affine level,
code is optimized and lowered back to SCF, which in turn,
gets lowered to LLVM IR for code generation. Finally, Clang
takes LLVM IR and emits binary code, to be executed on the
target platform.

3.1 Converting Clang AST to MLIR
Polygeist leverages Clang infrastructure to perform syntactic
and semantic analysis of the input code. Provided with C or
C++ files and the name of the entry function, Polygeist lazily
emits IR for each function transitively called from the entry
point. Polygeist achieves this by traversing the AST and
converting each node (“if”, “for”, a binary operator, etc.) to an
equivalent construct in MLIR’s SCF or Standard dialect. This
approach enables handling multi-versioned functions and
allows users to, e.g., only produce IR for specific functions.
C or C++ types in the AST are first lowered to LLVM,

as is done in Clang’s normal compilation process, and then
converted to an equivalent MLIR type in the Standard di-
alect (see Table 1). Doing so allows Polygeist to generate
code with a compatible Application Binary Interface (ABI)
as existing compilers without re-implementing significant
pieces of infrastructure. Standard library calls such as pow
are emitted as operations of the Standard dialect or declared
as external functions.

3.2 Memory References
Most of MLIR’s high-level constructs and transformations
involve operations on memref (see Section 2.3), that contain
standard integer or float types. C or C++ has no language con-
struct that represents the equivalent of a memref (structured
tensor object), nor does MLIR have a pointer type usable in
high-level constructs. To best fit these incompatible abstrac-
tions we extend MLIR to permit a memref to contain other
memrefs, and use 1-dimensional memrefs of unknown size
to represent pointers. This allows allocations of values to be

1Polly is still useful to discover loop constructs in code that was not origi-
nally written as explicit C or C++ loops.

C type LLVM IR type MLIR type

int i32 (on machine X) i32 (on machine X)
intNN_t iNN iNN
uintNN_t iNN uiNN
float float f32
double double f64
ty * ty * memref<? x ty>
ty ** ty ** memref<memref<? x ty>>
ty[N][M] ty[N][M] memref<N x M x ty>

Table 1. Type correspondence between C, LLVM IR and
MLIR Standard types.

represented by a memref to the corresponding type, which
can be then optimized by MLIR.
Extra care needs to be taken in the emission of memref

operations to successfully represent all of the desired behav-
ior of pointers. As a consequence we create an internal state
within the MLIR generation process (ValueWithOffsets).
This state contains a value representing a memref and a cur-
rent list of indices looking into that memref. This allows
pointer operations to index into a memref without necessar-
ily creating a load or store, thus generating code that better
represents the intent of the program.

Finally, for code that uses or creates a memref (such as in
allocation functions), simply allocating a number of bytes of
an array with malloc then casting to a memref will not re-
sult in legal code (as memref’s underlying implementation or
ABI may not be a raw pointer). As a consequence, Polygeist
replaces calls to allocation and dellocation functions with
legal equivalents for memref. With rare exceptions, other
functions that previously had a pointer argument are now
declared to have a memref argument. So as long as all code
with such an argument is generated by Polygeist, the ABI
remains consistent and the calls legal. But, there exist cer-
tain functions (such as main or strcmp) for which it is not
desirable to modify the ABI to accept a memref. These func-
tions will have pointers from the LLVM dialect as arguments
with their uses modified with an appropriate conversion (or
emit a compile-time error if not possible). Figure 5 shows an
example demonstrating Polygeist ABI.

4

Polygeist: Affine C in MLIR IMPACT 2021, January 20, 2021, Budapest, Hungary

void setArray(int N, double val , double* array) {...}

int main(int argc , char** argv) {

...

cmp = strcmp(str1 , str2)

...

double array [10];

set_array (10, array)

}

func @setArray(%N: i32, %val: f64

%array: memref <?xf64 >) {

%0 = index_cast %N : i32 to index

affine.for %i = 0 to %0 {

affine.store %val, %array[%i] : memref <?xf64>

}

return

}

func @main(%argc: i32,

%argv: !llvm.ptr <ptr <i8 >>) -> i32 {

...

%cmp = llvm.call @strcmp(%str1, %str2) :

(!llvm.ptr <i8>, !llvm.ptr <i8 >) -> !llvm.i32

...

%array = alloca () : memref <10xf64>

%arraycst = memref_cast %array : memref <10xf64> to

memref <?xf64>

call @setArray(%N, %val, %arraycst) :

(i32, f64, memref <?xf64 >) -> ()

}

Figure 5. Example demonstrating Polygeist ABI. For func-
tions expected to be compiled with Polygeist such as
setArray, pointer arguments are replaced with memref’s.
For functions that require external calling conventions (such
as main/strcmp), we fall back to using llvm.ptr and gener-
ating conversion code where appropriate.

3.3 Local Variables
Local variables are handled by allocating a memref at the top
of a function, and loading or storing to said memref when
it is used. This permits the desired semantics of C or C++
to be implemented with relative ease. However, as many
local variables and arguments contain memref types, this
immediately results in a memref of a memref — a hindrance
for most MLIR optimizations as it is illegal outside of our
MLIR patch to have a memref of a memref.
As a remedy, we implement a heavyweight memory-to-

register (mem2reg) transformation pass that eliminates un-
necessary loads, stores and allocations within MLIR con-
structs. Empirically this eliminates all memrefs of memref in
the Polybench suite.

3.4 Generating Affine Code
When within a SCoP — defined as the code between #pragma
scop and #pragma endscop — Polygeist will explicitly emit
an affine.for for loops rather than scf.for. Bounds for
the loop are set to the value of the corresponding expres-
sion, relying on the identity affine map (affine_map<()
[s0]->(s0)>[%bound]) for both. The bound arguments are

not necessarily symbols as per affine categorization (see Sec-
tion 2.2), they can be, e.g., results of integer arithmetic oper-
ations. However, the expressions that produce these values
are guaranteed to affine by the semantics of #pragma scop
and can be raised to affine expressions as described below.
The Affine dialect does not support loops with negative steps,
so Polygeist rewrites such loops to have a positive step.
Polygeist makes the IR valid by running an “affine fixup”

pass that folds standard scalar operations (add, sub, mul) that
produce the loop bounds into the affine maps present in the
loops. For example, affine_map<()[s0]->(s0)>[%bound]
with %bound = addi %N, %i is folded into affine_map<()
[s0, s1]->(s0 + s1)>[%N, %i]. Polygeist also promotes
any “symbol” representing an induction variable to its proper
description as a parameter (becoming affine_map<(d0)[s0]
->(s0 + d0)>(%i)[%N]). Since the original bound expres-
sion is guaranteed to be affine, this canonicalization process
will fold all operations into the affine map until all symbols
and parameters are valid.

If statements. We introduce an additional scf.if trans-
formation that ensures all “if” statements are transformed
into their affine counterparts. This is done by descending
into the condition and ensuring it is composed of and, add,
sub, and mul operations on legal affine arguments. Conjunc-
tions are then separated into separate conditional expres-
sions, which are then converted to their equivalent “canoni-
cal affine comparison” (being either equal to zero or greater
than or equal to zero).
It is legal to have a short-circuiting boolean operator

within #pragma scop. This will result in an scf.if with
the first expression of the condition and the remaining ex-
pressions evaluated in the body of scf.if. The result of this
scf.if representing the boolean operator can then be used
as the conditional for a C or C++ “if” statement. A value
generated from an scf.if is certainly non-affine, prevent-
ing the transformation of the C or C++ if statement into an
affine.if. To remedy this we introduce an optimization
that identifies the legality and utility of moving the instruc-
tions within an scf.if outside, replacing the “if” with either
a boolean operation or a select. Upon simplification, this will
result in a valid affine condition for all short-circuiting oper-
ations within a #pragma scop.

Not all scf.ifs generatedwithin an affine.for are trans-
formed into an affine.if. This is because polyhedral pro-
grams (at least in Polybench) use C ternary operators within
#pragma scop. The default semantics of C ternaries is to
lazily evaluate the true and false operands only if required
by the condition. This may require special handling by poly-
hedral tools (Section 4.1). To ease the burden on polyhe-
dral tools, we create and run an additional mem2reg pass
that replaces loads to equivalent earlier loads when possible.
For the operations inside Polybench, this is sufficient to re-
move remaining scf.ifs, but is not necessarily sufficient in

5

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

general. Finally, we also introduce simplifications that fold
affine.apply into affine.if.

Other operations. After the “affine fixup” pass and the
mem2reg described, Polygeist runs a transformation pass
that will attempt to raise all loads, stores, and ifs to their
affine counterparts within affine loops. This is done by check-
ing if a construct is within an affine loop and if its arguments
can be transformed by the “affine fixup” procedure to satisfy
the categorization requirements.

4 Connecting MLIR to Polyhedral Tools
The compilation flow described above allows one to obtain a
representation of the input as MLIR Affine dialect, which is
suitable for transformation within MLIR, but cannot be con-
sumed by existing external polyhedral tools such as Pluto. To
establish the connection, Polygeist transforms MLIR Affine
operations into an existing polyhedral exchange format, runs
the polyhedral tools, and regeneratesMLIR.We choose Open-
Scop [5] as the main export format since it (or its predecessor
— ScopLib) is supported by a variety of existing polyhedral
tools, namely CLooG [3], Pluto [7] and isl [36]. A major chal-
lenge of this process stems from OpenScop’s design being
oriented towards C or Fortran statements, which does not
match exactly the structure of MLIR. Therefore, we propose a
mechanism for deriving polyhedral “statements” from MLIR
that are usable in external tools, and suitable for MLIR code
generation after polyhedral transformation.

4.1 Statement Formation
Polyhedral tools expect statements to have read and/or write
specific memory accesses, be enclosed within affine loops,
and be “instantiated” by loop induction variables. A polyhe-
dral statement is noted as S0(i0,i1), in which the statement
S0 is instantiated at loop induction variables i0 and i1. Each
statement has a body that represents exactly one statement
in a C-like language. For example, the expression C[i][j]
+= A[i][k] * B[k][j] would be a valid body for the state-
ment S1(i,j,k). This evidences the representational gap
between MLIR and polyhedral tools: MLIR operations — the
closest construct to a polyhedral statement — can only define
values but not update them. Therefore a polyhedral state-
ment should be formed from several MLIR operations. Our
objective is to find a mechanism for aggregating MLIR op-
erations into statements, which can precisely capture the
behavior of the original program, be friendly to polyhedral
transformation, and permit regeneration into MLIR.
To match C-like statement structures, which typically

write into a single memory address, we create one state-
ment per affine.store operation. We then traverse the
SSA use-def chains upwards and aggregate the operations
we visit into the statement, until an affine.load, loop in-
duction variable, or affine symbol is reached. This allows our

func @S1(%i: index, %j: index, %alpha: f32,

%C: memref <?x?xf32 >) {

%0 = affine.load %C [%i, %j] : memref <?x?xf32>

%1 = mulf %0, %alpha : f32

affine.store %1, %C[%i, %j] : memref <?x?xf32>

return

}

func @S2(%i: index, %j: index, %k: index, %beta: f32,

%A: memref <?x?xf32>, %B: memref <?x?xf32>,

%C: memref <?x?xf32 >) {

%0 = affine.load %C[%i, %j] : memref <?x?xf32>

%1 = affine.load %A[%i, %k] : memref <?x?xf32>

%2 = affine.load %B[%k, %j] : memref <?x?xf32>

%3 = mulf %1, %2 : f32

%4 = mulf %beta, %3 : f32

%5 = addf %0, %4 : f32

affine.store %C[%i, %j] : memref <?x?xf32>

return

}

func @gemm(%alpha: f32, %beta: f32, %A: memref <?x?xf32>,

%B: memref <?x?xf32>, %C: memref <?x?xf32 >) {

%c0 = constant 0 : index

%c1 = constant 1 : index

%0 = dim %A, %c0 : memref <?x?xf32>

%1 = dim %B, %c1 : memref <?x?xf32>

%2 = dim %A, %c1 : memref <?x?xf32>

affine.for %i = 0 to %0 {

affine.for %j = 0 to %1 {

call @S1(%i, %j, %alpha, %C)

affine.for %k = 0 to %2 {

call @S2(%i, %j, %k, %beta, %A, %B, %C)

}

}

}

return

}

Figure 6. GEMM kernel in MLIR after outlining that makes
polyhedral statement visible as functions.

statements to resemble those obtained from C input, close
to what the existing tools usually process.

Some operations may end up in multiple statements if the
value is reused. For side effect-free operations, it is safe to
just have a copy in each statement. Polygeist performs addi-
tional analysis for values produced by operations with side
effects. In particular, if a value produced by an affine.load
is still used after the memory location it was loaded from
is overwritten, it is illegal to copy the load. In such cases,
Polygeist immediately stores the value into a stack-allocated
dedicated scratchpad memref and loads it from there instead.

Inmany cases, a statementmay consist ofMLIR operations
across different (nested) loops, e.g., a load from memory into
an SSA register happens in an outer loop while it is used in
inner loops. The location of such a statement in the loop hier-
archy is unclear. More importantly, it may not be possible to
generate it back after the polyhedral scheduler reconstructs
the loop hierarchy entirely since the scheduler is not aware
of a statement potentially spanning multiple loops. We ad-
dress this region-spanning problem by implementing a
register-to-memory (reg2mem) pass that detects any def-use

6

Polygeist: Affine C in MLIR IMPACT 2021, January 20, 2021, Budapest, Hungary

pair crossing a region boundary, such as loops and/or condi-
tionals, and uses stack-allocated single-element scratchpad
memrefs to hold the value. The allocation operation will be
immediately followed by a store of the desired value, en-
suring that all uses of the scratchpad are valid. reg2mem
effectively creates a new polyhedral statement in the outer
loop and makes all use-def chains local to a region, e.g., a
loop body. Thus all statements are given a definite position
in the loop hierarchy, and may be connected through data de-
pendencies produced by the respective affine.load/store.
In addition to the basic reg2mem algorithm, we perform a
simplified value analysis to conservatively avoid creating
scratchpad for values that will be stored to an existing mem-
ory buffer, which can be loaded from in the any region that
needs the value. This helps decrease the number of depen-
dencies in the input as well as the memory footprint.

There is a trade-off between sinking load operations into
inner loops by applying the inverse of Loop-Invariant Code
Motion (LICM) in standard MLIR transformations, reducing
the frequency of mem2reg in the Polygeist frontend, and us-
ing reg2mem in the Polygeist polyhedral flow. We argue that
it is necessary to do reg2mem systematically, mainly because
affine.loads cannot always be sunk into the inner loop:
potentially, there can be affine.stores following them and
write to the same address, and sinking them will violate
the write-after-read dependencies. And not doing mem2reg
in the frontend will produce write-once variables that can
consequently complicate polyhedral analysis.

4.2 SCoP Formation
To define a SCoP, we outline individual statements into func-
tions so that they can be represented as opaque calls with
known memory footprints, similarly to Pencil [2]. This pro-
cess also makes the inter-statement SSA dependencies clear.
These dependencies exists between calls that use the same
SSA value since all use-def chains (except for induction vari-
ables that are processed separately) had been encapsulated
into statements. We also lift all local stack allocations and
place them at the entry block of the surrounding function in
order to keep them visible after loop restructuring.
The remaining components of the polyhedral represen-

tation are derived as follows. The domain of the statement
is defined to be the iteration space of its enclosing loops,
constrained by their respective lower and upper bounds, and
intersected with any “if” conditions. This process leverages
the fact that MLIR expresses bounds and conditions directly
as affine constructs. The access relations for each statement
are obtained as unions of affine maps of the affine.load
(read) and affine.store (must-write) operations, with RHS
of the relation annotated by an “array” that corresponds to
the SSA value of the accessed memref. Initial schedules are
assigned using the (2𝑑 + 1) formalism, with odd dimensions
representing the lexical order of loops in the input program
and even dimensions being equal to loop induction variables.

CPU Clock rate OS RAM (GB) L1/L2/L3 (MB)

Intel Xeon Platinum 8275CL 3.0 GHz Ubuntu 20.04 189 1.5, 48, 71.5

Table 2. Hardware setup.

This format is required by the OpenScop specification, and
we only use it when exporting MLIR to OpenScop. Affine
constructs in OpenScop are represented as lists of affine
function coefficients interpreted as either equalities (= 0)
or inequalities (≥ 0). Internally, MLIR affine constructs use
a similar representation so the bi-directional conversion is
straightforward.

4.3 Code Generation Back to MLIR
The OpenScop representation can be directly consumed by
various tools, including the Pluto optimizer [7], producing
a new OpenScop program as a result. Converting this rep-
resentation back to a form with loops and conditionals is
a challenging problem, so we rely on CLooG [3] to gener-
ate the initial loop-level AST. Polygeist then traverses the
AST and creates the affine constructs that correspond to
loops and conditionals. The conversion process is simplified
mainly by MLIR using affine expressions directly in loop
constructs, so only the general control flow structure needs
to be generated.
Individual statements are introduced back as calls to the

previously outlined functions that correspond to statements,
sparing the need to clone SSA subgraphs at this point. These
calls will be later inlined by Polygeist. We use an in-memory
symbol table of MLIR values in the original code, which will
be alive before and after Pluto optimization. All the symbols
appeared in the OpenScop representation, and its CLooG
AST will be mapped to an MLIR value.

5 Evaluation
Our goal is twofold: First, we want to demonstrate that the
code generated by Polygeist is on-par with the code gener-
ated by a state-of-the-art compiler like Clang (Section 5.2).
Second, we wish to demonstrate the feasibility of utilizing ex-
isting polyhedral flows, especially research compilers, to pro-
cess MLIR (Section 5.3). We are not interested in using MLIR
to produce better-optimized code than polyhedral flows.

5.1 Experimental Setup
We ran our experiments on an AWS c5.metal instance with
hyper-threading and Turbo Boost disabled (see Table 2). We
ran all 30 benchmarks from PolyBench [30], using the “EX-
TRALARGE” dataset. For each benchmark, we ran a total of
5 trials, taking the geometric mean and standard deviation
of the execution time reported by PolyBench. Every mea-
surement or result reported in the following sections refers
to double-precision data processed in a single thread.

7

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

Benchmark Clang ± 𝜎 Polygeist ± 𝜎 %-diff

2mm 63.191 ± 0.139 62.117 ± 0.169 1.73%
3mm 106.955 ± 0.261 104.705 ± 0.087 2.15%
adi 111.024 ± 0.215 121.765 ± 0.203 -8.82%
atax 0.007 ± <0.001 0.007 ± <0.001 EXCL
bicg 0.012 ± <0.001 0.006 ± <0.001 EXCL
cholesky 15.591 ± 0.017 15.578 ± 0.007 0.09%
correlation 95.262 ± 0.020 94.764 ± 0.065 0.52%
covariance 95.283 ± 0.016 94.769 ± 0.068 0.54%
deriche 1.686 ± 0.003 1.669 ± 0.001 1.03%
doitgen 5.123 ± 0.012 4.920 ± 0.005 4.12%
durbin 0.017 ± 0.005 0.015 ± <0.001 EXCL
fdtd-2d 25.803 ± 0.039 25.879 ± 0.060 -0.30%
floyd-wars. 146.009 ± 0.061 146.015 ± 0.052 0.00%
gemm 8.467 ± 0.013 8.626 ± 0.011 -1.83%
gemver 0.160 ± <0.001 0.158 ± <0.001 1.27%
gesummv 0.024 ± <0.001 0.014 ± <0.001 EXCL
gramschmidt 152.444 ± 0.086 152.254 ± 0.067 -0.12%
heat-3d 33.022 ± 0.127 32.964 ± 0.028 0.17%
jacobi-1d 0.005 ± 0.002 0.006 ± 0.002 EXCL
jacobi-2d 24.149 ± 0.050 24.952 ± 0.019 -3.22%
lu 101.382 ± 0.386 101.495 ± 0.388 -0.11%
ludcmp 99.538 ± 0.546 99.155 ± 0.671 0.39%
mvt 0.146 ± <0.001 0.144 ± <0.001 1.27%
nussinov 133.654 ± 0.288 133.811 ± 0.094 -0.12%
seidel-2d 202.318 ± 0.015 202.289 ± 0.001 0.01%
symm 55.253 ± 0.071 54.214 ± 0.030 1.92%
syr2k 70.523 ± 0.200 70.359 ± 0.053 0.23%
syrk 25.982 ± 0.265 25.993 ± 0.177 -0.04%
trisolv 0.012 ± <0.001 0.012 ± <0.001 EXCL
trmm 47.946 ± 0.211 47.941 ± 0.369 0.01%

Table 3. Geometric mean and standard deviation execution
time of programs produced by Polygeist and Clang on Poly-
bench EXTRALARGE double-precision single-thread. The
rightmost column shows percent difference between Clang
and Polygeist runtimes, with EXCL showing where a bench-
mark ran in below 0.05s.

5.2 Frontend
Polygeist intends to provide a fair comparison baseline and
therefore should produce code with runtime as close as pos-
sible to that of existing compilation flows. In other words,
Polygeist should not introduce overhead nor speedup unless
explicitly instructed otherwise. We evaluate this by compar-
ing the runtime of programs produced by Polygeist with
those produced by Clang at the same commit (Dec 2020)2.
We run Polygeist flow to produce LLVM IR, which is then
compiled to a binary using Clang with -O3. We also run
Clang with the same flags on the input C code to produce
baseline binaries. Table 3 refers to the former as Polygeist
and to the latter as Clang.

To evaluate the similarity of Polygeist and Clang, we com-
pute the percent difference of all benchmarks with a runtime

2LLVM commit f019362329734ddc7d17fc76bcb7f2a4b3ea50a7.

Benchmark Pluto ± 𝜎 Polygeist ± 𝜎 %-diff

2mm 4.471 ± 0.017 4.258 ± 0.018 4.765%
3mm 8.757 ± 0.026 7.731 ± 0.003 11.724%
adi Pluto fails to compile
atax 0.011 ± 0.002 0.011 ± 0.001 EXCL
bicg 0.010 ± 0.001 0.006 ± <0.001 EXCL
cholesky 10.775 ± 0.056 11.285 ± 0.097 -4.731%
correlation 4.153 ± 0.019 4.228 ± 0.003 -1.822%
covariance 4.111 ± 0.018 4.253 ± 0.004 -3.452%
deriche 1.771 ± 0.001 1.762 ± 0.001 0.571%
doitgen 1.869 ± 0.021 1.417 ± 0.010 24.192%
durbin 0.017 ± 0.005 0.015 ± <0.001 EXCL
fdtd-2d 21.717 ± 0.205 15.930 ± 0.073 26.627%
floyd-w. 380.402 ± 0.694 345.460 ± 0.569 9.186%
gemm 4.591 ± 0.036 5.110 ± 0.006 -11.306%
gemver 0.099 ± 0.001 0.097 ± <0.001 2.356%
gesummv 0.035 ± 0.001 0.014 ± <0.001 EXCL
gramschmidt 14.647 ± 0.172 14.730 ± 0.171 -0.569%
heat-3d 28.723 ± 0.037 29.752 ± 0.033 -3.581%
jacobi-1d 0.008 ± 0.003 0.010 ± 0.002 EXCL
jacobi-2d 17.322 ± 0.077 22.616 ± 0.217 -30.561%
lu 10.667 ± 0.034 10.274 ± 0.049 3.689%
ludcmp 98.916 ± 0.249 98.803 ± 0.716 0.114%
mvt 0.084 ± 0.001 0.083 ± <0.001 0.196%
nussinov 124.424 ± 0.122 124.062 ± 0.147 0.291%
seidel-2d 237.186 ± 0.028 164.344 ± 0.003 30.711%
symm 53.952 ± 0.037 53.921 ± 0.086 0.058%
syr2k 9.946 ± 0.008 10.006 ± 0.008 -0.605%
syrk 5.374 ± 0.005 5.328 ± 0.003 0.855%
trisolv 0.024 ± <0.001 0.024 ± <0.001 EXCL
trmm 2.079 ± 0.025 2.215 ± 0.001 -6.550%

Table 4. Geometric mean and standard deviation execution
time of programs produced by Polygeist and Pluto on Poly-
bench EXTRALARGE double-precision single-thread. The
rightmost column shows the percent difference between
Polygeist and Pluto runtimes with same exclusion rule as
Table 3. Pluto cannot compile the adi benchmark.

greater than 0.05. The mean absolute-value percent differ-
ence is only 1.25%, indicating that Polygeist indeed closely
matches the performance of Clang.

5.3 External Polyhedral Flow
To evaluate the polyhedral flow in Polygeist, we compare
the Polybench MLIR code it produces with the Polybench C
programs directly optimized by the Pluto command-line pro-
gram, namely polycc3. We ensure that internally Polygeist
uses the same configurations as the default for polycc, which
in general applies polyhedral loop transformations including
tiling, fusion, interchanging, etc. Specifically, the Pluto trans-
formation function we use is pluto_auto_transform. Here,
since we are more interested in single-core performance,
we turn off the parallel and vectorization. The polyhedral-
optimized MLIR code will be emitted to LLVM IR, and then
compiled by Clang using -O3. Similarly, we first compile the
3Pluto commit 5b13ddccdaa2c125657e9333668fcedab9487271

8

Polygeist: Affine C in MLIR IMPACT 2021, January 20, 2021, Budapest, Hungary

polycc optimized C programs by Clang -O3 into LLVM IR,
which is further compiled into an executable using Clang
-O3 as well. Table 4 summarizes the results. By taking the
mean absolute-value of the performance differences of all
the benchmarks that have greater than 0.05 sec runtime, we
find Polygeist has 7.76% percentage different in runtime com-
pared with Pluto. We will discuss the performance difference
in Section 6.2 We do not compare Polygeist with Polly for
now since Polly uses a modified version of the Pluto algo-
rithm, making it difficult for an apple-to-apple comparison
between them.

6 Discussion
6.1 Benchmarking
The only benchmark with a nontrivial performance differ-
ence between Polygeist and Clang is the adi test. This gap
exists for two reasons: differences in allocation, and loop re-
versal. Specifically, compiling Polybench with Clang results
in the use of a custom allocator, whereas using Polygeist, this
results in a memref allocation which is lowered to a malloc.
This difference in allocation function accounts for 48% of the
gap. The remaining gap exists because LLVM can strength
reduce a specific load for the IR generated by Clang but not
MLIR. LLVM cannot recognize this property in a reversed
loop and consequently cannot perform the optimization. A
future version of LLVM should permit this optimization.

Throughout benchmarking, we also found various behav-
iors of note. Polygeist supports the ability to compile two
source files directly by producing a single MLIR module with
all of the necessary functions. This is distinct from Clang,
which will produce two LLVM modules that are eventually
linked together. For our current benchmarks we strive to
emulate the behavior of Clang by compiling the test file with
Polygeist (e.g., nussinov.c) and linking it with timing utility
code (polybench.c) using Clang. An earlier version of our
pipeline, however, compiled both the timing utility code and
benchmark together with Polygeist directly. For almost all
benchmarks, this did not make a difference. But for the floyd-
warshall test, we saw an 8% reduction in performance by
using a single module. An investigation into this found that
interprocedural constant propagation between the utility
and benchmark code allowed for significant optimization of
floyd-warshall.
Another crucial component of generating accurate code

was ensuring that the code emitted by Polygeist had the
same LLVM DataLayout and Target as that emitted by Clang
natively. Polygeist directly parses these and marks the MLIR
appropriately when it lowers Clang AST. This is not suffi-
cient, however, as MLIR currently will not propagate the
DataLayout to the eventual LLVM. This is problematic as
it will result in LLVM not performing vectorization in the
same way. We modified MLIR to ensure this information is
propagated successfully throughout all stages of the pipeline.

6.2 Performance Differences in Transformed Code
Three factors contribute to the performance gaps in Table 4.
As discussed in Section 6.1, code emitted by Polygeist and
Clang use different allocation functions. This can result in up
to 40% difference, largely stemming from Clang being able to
assume malloc results do not alias and propagate that.We fix
this by also using malloc in Polybench in Table 4. Even with
the same schedule, differences in code generationmay lead to
performance differences. More specifically, the exact shape
of domain relations fed to CLooG (e.g., the inclusion of con-
straints on parameters into the domain) significantly changes
the final AST. This can be addressed through a finer-grain
control over the AST generation process [18]. Furthermore,
MLIR’s index type converts to the proper machine index
type, which, in conjunction with automatic simplification
of affine forms in MLIR, enables a more aggressive bound
analysis in the downstream compiler.

Consider, for example, seidel-2d. Polygeist produces 30%
faster code. Analyzing the execution with perf, we observe
that both Pluto and Polygeist issue 143 · 109 FP instructions,
but Pluto issues 585 · 109 total instructions as opposed to
254 · 109 by Polygeist. These instructions are related to con-
trol flow and address computations. Assuming a mix of add
(throughput 1/3) and imul (throughput 2), the extra 331 · 109
instructions can comfortably explain the performance differ-
ence of 73s when running at 3GHz (219 · 109 extra cycles).
This can be attributed to the memref representation that
emits homogeneous, LLVM-friendly address computations.

6.3 Limitations
Frontend. While Polygeist could technically accept any

valid C or C++ thanks to building off Clang, it has the follow-
ing limitations. Only structs with values of the same type
are supported due to the lack of a struct-type in high-level
MLIR dialects. Loops with break or continue statements
are not supported because MLIR is missing a construct to
represent them. Moreover, adding frontend support for those
would still not allow Polygeist to raise these constructs to
Affine as they do not fit the polyhedral representation. Fi-
nally, we require all functions that allocate memory to be
compiled with Polygeist and not a C++ compiler. This en-
sures a memref is emitted rather than a pointer.

Backend. The limitations in the affine backend are in-
herited from those of the tools involved. In particular, the
value categorization of MLIR’s Affine dialect results in all-
or-nothing modeling, degrading any loop to non-affine if
it contains even one non-affine access. Running Polygeist’s
backend on code not generated by Polygeist’s frontend is lim-
ited to loops with positive indices. MLIR’s Affine dialect does
not support loops with negative steps. But, since Polygeist’s
frontend rewrites loops with negative steps to have a positive
step, this is not a problem for codes using Polygeist’s fron-
tend. Finally, MLIR does not yet provide extensive support

9

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

for non-convex sets (typically expressed as unions). Work is
ongoing within MLIR to address such issues. Affine sched-
uling in Polygeist inherits limitations of Pluto. In particular,
Polygeist has no first-class support for reduction loops and
does not model live-range reordering [38].

6.4 Opportunities
Connecting MLIR to existing polyhedral flows opens numer-
ous avenues for compiler optimization research, following
the original goal of MLIR to connect Affine and conventional
SSA-based compiler transformations. This gives polyhedral
schedulers access to important analyses such as aliasing and
useful information such as precise data layout and target
machine description. Arguably, this information is already
leveraged by Polly, but the representational mismatch be-
tween LLVM IR and affine loops makes it difficult to exploit
them efficiently. This abstraction gap requires complex anal-
yses in the polyhedral optimizer such as scalar dependence
removal [20] or array delinearization [17]. MLIR exposes
similar information at a sufficiently high level to make it
usable in affine transformations.

By allowing different abstractions to mix in a single mod-
ule, MLIR provides finer-grain control over the entire trans-
formation process. A polyhedral transformation flow built on
MLIR can, e.g., ensure that the loop is vectorized by directly
emitting the corresponding vector instructions instead of re-
lying on pragmas, which are often merely a recommendation
for the compiler. The flow can also control lower-level mech-
anisms like prefetching or emit specialized hardware instruc-
tions. Polyhedral analyses can guarantee downstream passes
that address computation never produces out-of-bounds ac-
cesses and other information.
Finally, since Polygeist fully controls the definition of

statement, it becomes possible to vary statement granular-
ity in a polyhedral flow. This allows, on one hand, to have
a combined polyhedral/syntactic flows that can easily in-
troduce and control rematerialization or temporary buffers,
split long statements, and organize software pipelining; all
without having to produce C source which is known to be
complex [41]. On the other hand, this may have an effect
on the compilation time as the number of statements is an
important factor in the complexity bound of the dependence
analysis and scheduling algorithms.

6.5 Alternatives
Instead of allowing polyhedral tools to parse and generate
MLIR, one could emit C (or C++) code from MLIR 4 and use
C-based polyhedral tools on C source, but this approach de-
creases the expressiveness of the flow. SomeMLIR constructs,
such as parallel reduction loops, can be directly expressed
in the polyhedral model whereas they would require a non-
trivial and non-guaranteed raising step in C. Some other

4https://github.com/marbre/mlir-emitc

constructs, such as prevectorized affine memory operations,
cannot be expressed in C at all. Polygeist also enables trans-
parent handling of such constructs in MLIR-to-MLIR flows,
but we leave the details of such handling for future work.
The Polygeist flow can be similarly connected to other

polyhedral formats, in particular isl. We choose OpenScop
for this work because it is supported by a wider variety of
tools, including isl that can construct its representation of
affine relations from ScopLib, a predecessor of OpenScop.
isl also uses schedule trees [40] to represent the initial
and transformed program schedule. Schedule trees are suffi-
ciently close to the nested-operation IR model making the
conversion straightforward: “for” loops correspond to band
nodes (one loop per band dimension), “if” conditionals cor-
respond to filter nodes, function-level constants can be in-
cluded into the context node. The tree structure remains the
same as that of MLIR regions. The inverse conversion can
be obtained using isl’s AST generation facility [18].

7 Related Work
Polyhedral extractors. The polyhedral model has been

on the cutting edge of compiler research for several decades,
resulting in the creation of many tools [15]. Polly [16] and
Graphite [29] enable polyhedral optimizations in LLVM and
GCC, respectively, by raising from the low-level IR to higher
and richer polyhedral representations. Other proprietary
compilers, such as IBM XL [6] and R-Stream [24], use poly-
hedral techniques and thus rely on extractor tool, but being
proprietary few documentation is available. However, ex-
tracting the polyhedral model from low-level IR is not be
the best approach for source-to-source optimizers such as
Pluto [7] and PoCC [28], since it is difficult or even impossi-
ble to relate low-level code to input program. Source-level
parsers such as Clan [4] and PET [39] aim at providing a
convenient way to extract polyhedral representation directly
from the source code. Polygeist falls into this category and
aims to enable MLIR to leverage the decades of research in
the polyhedral model by lifting C code to the Affine dialect.
Besides, we sometimes need polyhedral optimization inMLIR
before LLVM IR is produced to adopt MLIR-specific passes,
e.g., GPU mapping, which further justifies the necessity of
Polygeist even Polly exists.

MLIR Frontends. Since the adoption of MLIR under the
LLVM umbrella, several frontends have been created for gen-
erating MLIR from domain-specific languages. Teckyl [13]
brings Tensor Comprehensions [35], a productivity-orientated
language to express computation between tensors, to MLIR’s
Linalg dialect. Flang — the LLVM’s Fortran frontend — en-
ables models Fortran specific constructs (i.e., dispatch table)
using the FIR dialect [32]. COMET, a domain-specific com-
piler, for chemistry compilation enters the MLIR lowering

10

Polygeist: Affine C in MLIR IMPACT 2021, January 20, 2021, Budapest, Hungary

pipeline using a domain-specific frontend from a tensor-
based language [26]. NPComp aims at providing the neces-
sary infrastructure to compile numerical Python programs
taking advantage of the MLIR infrastructure. Work is on
progress to provide a PyTorch frontend [27]. PET-to-MLIR
converts a subset of polyhedral C code to MLIR’s Affine
dialect by parsing PET’s internal representation. In addi-
tion to currently not handling specific constructs (ifs, sym-
bolic bounds, and external function calls), parsing PET’s
representation limits the frontend’s usability as it cannot
interface with non-polyhedral code such as initialization,
verification, or printing routines [19]. In contrast, Polygeist
generates MLIR from non-polyhedral code as well (though
not necessarily in the Affine dialect). CIRCT is a new project
under the LLVM umbrella that aims to apply MLIR devel-
opment methodology to the electronic design automation
industry [9].

8 Conclusion
We present Polygeist, a compilation workflow for importing
existing C or C++ code intoMLIR and allows polyhedral tools,
such as Pluto, to optimizeMLIR programs. This enablesMLIR
to benefit from decades of research in the polyhedral compi-
lation. We demonstrate that the code generated by Polygeist
has comparable performance with Clang, enabling unbiased
comparisons between transformations built for MLIR and
existing polyhedral frameworks. Finally, we demonstrate the
utility of our tool to perform such integration by compiling
the Polybench benchmark suite into MLIR and importing
Pluto transformations to run on MLIR programs, which may
already lead to some performance improvements over the
existing flows thanks to better integration with the LLVM
compiler infrastructure.

Acknowledgements
Thanks to Valentin Churavy and Charles Leiserson of MIT
for thoughtful discussions about transformations within
MLIR. We are also grateful for the numerous discussions
with Tobias Grosser from the University of Edinburgh. As
well as, with Albert Cohen of Google and Henk Corporaal
at TU Eindhoven.
William S. Moses was supported in part by a DOE Com-

putational Sciences Graduate Fellowship DE-SC0019323, in
part by Los Alamos National Laboratories grant 531711, in
part by the United States Air Force Research Laboratory and
was accomplished under Cooperative Agreement Number
FA8750-19-2-1000. Lorenzo Chelini is partially supported
by the European Commission Horizon 2020 programme
through the NeMeCo grant agreement, id. 676240. Ruizhe
Zhao is sponsored by UKRI (award ref 2021246) and Cor-
erain Technologies Ltd. The support of the UK EPSRC (grant
numbers EP/L016796/1, EP/N031768/1, EP/P010040/1 and
EP/L00058X/1) is also gratefully acknowledged.

The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distrib-
ute reprints for Government purposes notwithstanding any
copyright notation herein.

References
[1] Andrew W Appel. 1998. SSA is functional programming. ACM SIG-

PLAN Notices 33, 4 (1998), 17–20.
[2] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,

Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F Donaldson, Jeroen Ketema, et al. 2015. Pencil: A platform-
neutral compute intermediate language for accelerator programming.
In 2015 International Conference on Parallel Architecture and Compila-
tion (PACT). IEEE, 138–149.

[3] Cedric Bastoul. 2004. Code generation in the polyhedral model is
easier than you think. In Proceedings. 13th International Conference
on Parallel Architecture and Compilation Techniques, 2004. PACT 2004.
IEEE, 7–16.

[4] Cédric Bastoul. 2008. Clan-a polyhedral representation extractor for
high level programs.

[5] Cédric Bastoul. 2011. Openscop: A specification and a library for data
exchange in polyhedral compilation tools. Technical Report. Paris-Sud
University.

[6] U. Bondhugula, S. Dash, O. Gunluk, and L. Renganarayanan. 2010.
A model for fusion and code motion in an automatic parallelizing
compiler. In 2010 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT). 343–352.

[7] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A Practical Automatic Polyhedral
Parallelizer and Locality Optimizer. ACM SIGPLAN Notices 43, 6 (2008),
101–113.

[8] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. 1991. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 4 (1991), 451–490.

[9] CIRCT Developers. 2020. CIRCT Charter. https://github.com/llvm/
circt/blob/master/docs/Charter.md

[10] MLIR Developers. 2020. MLIR: A Case for a Simplified
Polyhedral Form. https://mlir.llvm.org/docs/Rationale/
RationaleSimplifiedPolyhedralForm/

[11] MLIR Developers. 2020. MLIR Affine dialect. https://mlir.llvm.org/
docs/Dialects/Affine/

[12] MLIR Developers. 2020. MLIR Rationale. https://mlir.llvm.org/docs/
Rationale/Rationale/

[13] Andi Drebes. 2020. Teckyl: An MLIR frontend for Tensor Operations.
https://github.com/andidr/teckyl

[14] Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk
Corporaal, Tobias Grosser, Kanishkan Vadivel, and Nicolas Vasilache.
2020. TC-CIM: Empowering Tensor Comprehensions for Computing-
In-Memory. In IMPACT 2020-10th International Workshop on Polyhedral
Compilation Techniques.

[15] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. En-
cyclopedia of parallel computing 3 (2011), 1581–1591.

[16] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.
Polly—performing polyhedral optimizations on a low-level intermedi-
ate representation. Parallel Processing Letters 22, 04 (2012), 1250010.

[17] Tobias Grosser, Jagannathan Ramanujam, Louis-Noel Pouchet, Pon-
nuswamy Sadayappan, and Sebastian Pop. 2015. Optimistic delin-
earization of parametrically sized arrays. In Proceedings of the 29th

11

https://github.com/llvm/circt/blob/master/docs/Charter.md
https://github.com/llvm/circt/blob/master/docs/Charter.md
https://mlir.llvm.org/docs/Rationale/RationaleSimplifiedPolyhedralForm/
https://mlir.llvm.org/docs/Rationale/RationaleSimplifiedPolyhedralForm/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Rationale/Rationale/
https://mlir.llvm.org/docs/Rationale/Rationale/
https://github.com/andidr/teckyl

IMPACT 2021, January 20, 2021, Budapest, Hungary William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko

ACM on International Conference on Supercomputing. 351–360.
[18] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhedral

AST generation is more than scanning polyhedra. ACM Transactions
on Programming Languages and Systems (TOPLAS) 37, 4 (2015), 1–50.

[19] Konrad Komisarczyk, Lorenzo Chelini, Kanishkan Vadivel, Roel Jor-
dans, and Henk Corporaal. 2020. PET-to-MLIR: A polyhedral front-end
for MLIR. In 2020 23rd Euromicro Conference on Digital System Design
(DSD). IEEE, 551–556.

[20] Michael Kruse and Tobias Grosser. 2018. DeLICM: scalar dependence
removal at zero memory cost. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization. 241–253.

[21] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 75–86.

[22] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. arXiv:2002.11054 [cs.PL]

[23] Vincent Loechner. 1999. PolyLib: A library for manipulating parame-
terized polyhedra.

[24] Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Manikan-
dan Baskaran, Allen Leung, and Richard Lethin. 2011. R-Stream Com-
piler. Springer US, Boston, MA, 1756–1765. https://doi.org/10.1007/
978-0-387-09766-4_515

[25] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
mage: Automatic optimization for image processing pipelines. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 429–443.

[26] Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto
Gioiosa, Jacques Pienaar, and Gokcen Kestor. 2020. COMET: ADomain-
Specific Compilation of High-Performance Computational Chemistry.
In The 33rd Workshop on Languages and Compilers for Parallel Com-
puting.

[27] npcomp developers. 2020.MLIR npcomp. https://github.com/llvm/mlir-
npcomp

[28] PoCC. 2020. The Polyhedral Compiler Collection. https://sourceforge.
net/projects/pocc/ Online; accessed on December 2020.

[29] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-
André Silber, and Nicolas Vasilache. 2006. GRAPHITE: Polyhedral
analyses and optimizations for GCC. In Proceedings of the 2006 GCC
Developers Summit. 2006.

[30] Louis-Noël Pouchet and Tomofumi Yuki. [n.d.]. PolyBench/C 4.2.1.
https://sourceforge.net/projects/polybench/files/

[31] Harenome Razanajato, Vincent Loechner, and Cédric Bastoul. 2017.
Splitting Polyhedra to Generate More Efficient Code. In International
Workshop on Polyhedral Compilation Techniques (IMPACT), 2017.

[32] Eric Schweitz. 2019. An MLIR dialect for high-level optimization of
Fortran. In 2019 LLVM Developers Meeting.

[33] Verdoolaege Sven, Manjunath Kudlur, Harinath Kamepalli, and Rob
Schreiber. 2020. Generating SIMD Instructions for Cerebras CS-1 using
Polyhedral Compilation Techniques. In IMPACT 2020-10th International
Workshop on Polyhedral Compilation Techniques.

[34] Nicolas Vasilache, Oleksandr Zinenko, and Albert Cohen. 2020. Linalg
Dialect Rationale: The Case For Compiler-Friendly Custom Operations.
https://mlir.llvm.org/docs/Rationale/RationaleLinalgDialect/

[35] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary Devito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2019. The next 700 accelerated layers: From
mathematical expressions of network computation graphs to acceler-
ated GPU kernels, automatically. ACM Transactions on Architecture
and Code Optimization (TACO) 16, 4 (2019), 1–26.

[36] Sven Verdoolaege. 2010. isl: An integer set library for the polyhedral
model. In International Congress on Mathematical Software. Springer,
299–302.

[37] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Igna-
cio Gomez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
parallel code generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 1–23.

[38] Sven Verdoolaege and Albert Cohen. 2016. Live-range reordering. In
International Workshop on Polyhedral Compilation Techniques.

[39] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral extraction tool.
In Second International Workshop on Polyhedral Compilation Techniques
(IMPACT’12), Paris, France, Vol. 141.

[40] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
2014. Schedule trees. In International Workshop on Polyhedral Compi-
lation Techniques.

[41] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and imple-
mentation. 283–294.

12

https://arxiv.org/abs/2002.11054
https://doi.org/10.1007/978-0-387-09766-4_515
https://doi.org/10.1007/978-0-387-09766-4_515
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/mlir-npcomp
https://sourceforge.net/projects/pocc/
https://sourceforge.net/projects/pocc/
https://sourceforge.net/projects/polybench/files/
https://mlir.llvm.org/docs/Rationale/RationaleLinalgDialect/

	Abstract
	1 Introduction
	2 Background: MLIR Framework
	2.1 Overview
	2.2 Affine Dialect
	2.3 Memory References
	2.4 Other Relevant Core Dialects

	3 An (Affine) C or C++ Frontend for MLIR
	3.1 Converting Clang AST to MLIR
	3.2 Memory References
	3.3 Local Variables
	3.4 Generating Affine Code

	4 Connecting MLIR to Polyhedral Tools
	4.1 Statement Formation
	4.2 SCoP Formation
	4.3 Code Generation Back to MLIR

	5 Evaluation
	5.1 Experimental Setup
	5.2 Frontend
	5.3 External Polyhedral Flow

	6 Discussion
	6.1 Benchmarking
	6.2 Performance Differences in Transformed Code
	6.3 Limitations
	6.4 Opportunities
	6.5 Alternatives

	7 Related Work
	8 Conclusion
	References

