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Our Background

We are the developers of the MDH code generation approach:
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* Multi-Dimensional Homomorphisms (MDHs) are a formally defined class of functions that cover
important data-parallel computations, €.g.: linear algebra routines (BLAS), stencils computations, ...

* We enable conveniently implementing MDHs by providing a high-level DSL for them.

 We provide a DSL compiler that automatically generates OpenCL code — the standard for uniformly
programming different parallel architectures (e.g., CPU and GPU).

e Our OpenCL code is fully automatically optimizable (auto-tunable) — for each combination of a
target architecture, and input size — by being generated as targeted to OpenCL’s abstract device
models and as parametrized in these models’ performance-critical parameters. 2



Experimental Results
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Observation

Comparison: MDH Approach vs. Polyhedral Approaches (e.g. PPCGQG)

* Polyhedral approaches often provide better productivity
— automatically parallelize sequential program code (rather
than relying on a DSL).

« The MDH approach achieves often higher performance

than polyhedral compilers; its generated code is portable
over different architectures (e.g., GPU and CPU).

Goal of this work:

Combining the advantages of both
approaches

L




Idea

Using a polyhedral front end for the MDH code generator:
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Polyhedral Front End MDH Code Generation

1. Transforming sequential C program to polyhedral model via PET.
Transtorming polyhedral model to MDH representation.

Generating auto-tunable OpenCL code from MDH representation.

B W

Auto-tuning OpenCL code for particular device and problem size.

5. Executing auto-tuned OpenCL code.
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The MDH DSL

Example: Matrix Multiplication

MatMul = md_hom( B8, (#+, ##, ¥.) o view( A,B )( i,j,K )( .ilPkljl )

for( int i = 0; i < M ;
for( int j = 0; i < N
for( int k = 0; i < K ; ++k )
1k

GEMM in C
What's happening?

1. Prepare the domain-specific input uniformly for md_hom; for this, our DSL provides pattern view.

>

here: fuse matrices A and B to 3-dimensional array of pairs consisting of the elements in A and
B to multiply: 1,j,k » (A[i,k],Blk,jl).

2. Apply multiplication (denoted as %) to each pair.

3. Combine results in dimension k by addition (+).

4. Combine results in dimensions 1 and j by concatenation (++).



Transformation

Polyhedral Model = MDH Representation:

for( int i = 0; i <M ; ++i )

! Polyhedral Model is a “structured : for( int j = 0; i <N ; ++j )

. representation of the sequential code for( int k = 0; i < K ; ++k )

B SRR e R L L L LR L L L L L L LLEELEEREEEEREED o CLil[j] += A[il[k] * BIKk][j];
""" GEMM in C

isl[1]

i i R i

rmmmmm-= A oo -- . : means: Unknown Combine Operator (UCO) :

E md_hom( £, (++,++,@))p > — NO parallelization, BUT tiling, caching, ... :

----------------------- 1 o m m e EmEEEEEEEEE S S S BB BB B BN BN BN & BE BN NN NN NN NN EEEE
:I{- fFOT ALk, TBkJ, TCij) ‘e Variables with read or read-write access are set as arguments of f.
C1) +=A1KxBKk.y]J; +e Variables with write access are declared and zero initialized in f.
return C_1_j; +» Variables with write or read-write access are returned by f.

A .

[1] Verdoolaege, "isl: An Integer Set Library for the Polyhedral Model”, ICMS’10 8



Experimental Results
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* Compared to PPCG:
* Competitive performance on GPU: 1.01x — 1.32x
* Better performance on CPU: 2.03x — 7.78X

* Compared to Intel MKL/MKL-DNN & NVIDIA cuBLAS/cuDNN:
* Competitive and sometimes better performance: 0.73x — 2.24x (19.11x) 9



Conclusion

We present md_poly:

* md_poly is based on both the polyhedral model and the MDH code
generation approach;

 md_poly combines productivity (as in polyhedral compilers) and portable
high performance (as in the MDH approach);

« md_poly achieves sometimes better performance than hand-optimized
approaches.

Future Work: Analyze and Evaluate md_po ly for all applications in PolyBench.

 We are looking for a polyhedral expert |
| as collaboration partner! |
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Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

__kernel void foo( __global intx a )

{
a = 42;

1 & a

OpenCL

“programs without loops (e.g., "a = 42;”)"



Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

for( int i =1; i < K ; ++i )
{

Al N-1 ] = A[ 1 ];
s

N = 2K - parallelizable
else - NOT parallelizable

“programs with parametric dependence distance (e.g., A[N-i] = A[i])"

12



Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

Parallel

(_

if (t % 2 == 0)
1

} for

i

intt=1; t <N; ++t )]

int t = get_global_id(@);f

if (t % 2 == 0)

{
//
}
ES S
& a
OpenCL

“if-conditionals using modulo arithmetic
(e.g., If (1 % 2 == 0) where t is a surrounding loop iterator)”
13



Reviewer Questions
Q: Unclear whether all polyhedral programs can be converted to MDH?

#pragma scop
for (int t = 0; t < tmax; ++t) {

for (int j = 0; j < ny; ++j) {
\ eyl[01[j] = __ fict__ [t];
for (int i = 1; i < nx; ++1i) {
for (int j = 0; j < ny; ++j) {
ey[i]l [j] = eyl[il [j] - 0.5 x*
, (hz[1i1[j] - hz[i - 11[j]1);
¥

for (int 1 = 0; i < nx; ++i) {

for (int j = 1; j < ny; ++j) {
ex[i] [j] = ex[i][j] - 0.5 x
) (hz[il[j] - hz[il[j - 11);
¥
for (int 1 =0; i < nx - 1; ++i) {
for (int j = 0; j < ny - 1; ++j) {
hz[i]l[j] = hz[il[j] - 0.7 x (ex[il[j + 1] -
\ ex[11[j] + eyl[i + 1]1[j]1 - eyl[il[jl);
¥

}

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”

14



Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

e Parallel

#pragma Sscop

e Sequential

}

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”
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Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

for (int t = 0; t < tmax; ++t) {
#pragma scop

e Parallel

Sequential

}

#pragma endscop

#pragma scop

e Parallel
) e Sequential

}

#pragma endscop

#pragma scop

e Parallel
e Sequential

}
by

#pragma endscop

#pragma scop

e Parallel
e Sequential

}
by

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”
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Reviewer Questions

Q: Your claim that combine operators other than concatenation cannot
be extracted looks way too strong.

PRL = md_hom( weight, (++, ®max) ) 0 view(..)

for (int 1 = @; i < NUM_NEW_RECORDS; ++i) A
match_id[i] = 0;
match_weight[i] =
id measurel[i] = 0;
for (int j = @; j < NUM_EXISTING_RECORDS; ++j)

0;

// calculate weight
double weight = calc_weight(...);
// calculate identity measure
int id measure = calc_id _measure(...);
// store result
if ((weight >= 15.0 || id_measure == 14) &&
(weight > *match_weight_res)) {
match_id[i] = i_idI[j];
match_weight[i] = weight;
id measurel[i] = id_measure;

}
}

Rasch, Schulze, Gorus, Hiller, Bartholomaus, Gorlatch. "High-Performance Probabilistic
Record Linkage via Multi-Dimensional Homomorphisms.”, SAC’19
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