WILHELMS-UNIVERSITAT I
————————————— TR

md_poly: A Performance-Portable Polyhedral Compiler
based on Multi-Dimensional Homomorphisms

Ari Rasch, Richard Schulze, Sergei Gorlatch

University of MuUnster, Germany

Our Background

We are the developers of the MDH code generation approach:

Generic Executable Different architectures
program code program cgde and input sizes

High-level parallel
programming abstractions T i ﬂ \ T
- & ‘@ t

md hom(f, (®1,...,®%)) —» — Q“/

A
NVIDIA 4\

(1) 2)

Generation Optimization| Executlon 4 A,
[PACT’19, IJPP’18] [CCPE’18, HPCC’17] [JOS’19, ICPADS’18] ‘ \

* Multi-Dimensional Homomorphisms (MDHs) are a formally defined class of functions that cover
important data-parallel computations, €.g.: linear algebra routines (BLAS), stencils computations, ...

* We enable conveniently implementing MDHs by providing a high-level DSL for them.

 We provide a DSL compiler that automatically generates OpenCL code — the standard for uniformly
programming different parallel architectures (e.g., CPU and GPU).

e Our OpenCL code is fully automatically optimizable (auto-tunable) — for each combination of a
target architecture, and input size — by being generated as targeted to OpenCL’s abstract device
models and as parametrized in these models’ performance-critical parameters. 2

Experimental Results

Stencils
CPU Gaussian (2D)| Jacobi (3D) Data Mlnlng
RW | PC | RW | PC ool Probabilistic Record Linkage
[ufe2) |[4.90]5.96 [1.94] 2.9 2 | oz [2n | 2¢ [22 | 2
MIKLDNN |[6.99 [14.31] N/A | N/A | exris1|[187 | 206 | 498 | 138 | 2834 | 3936
Gaussian (2D)] Jacobi (3D) [5] Forchhammer et al. “Duplicate Detection on GPUs.”, HFSL’13.
o RW | PC | RW | PC
Lift[21 || 2.33 | 1.09 | 1.14 | 1.02
cuDNN || 3.78 [19.11| N/A | N/A LS Lp S
2] Hagedorn et al 'Hign § Qur MDH approach achieves
Performance Stencil Code :
Generation with LIFT.”, CGO’18 '
(Best Paper Award). | often better performance than ;
i well-performing competitors [1] —
= " "i|Linear Algebra
[1] Rasch, Schulze, Gorlatch. "Generating Portable High-Performance Code via Multi- GEMM GEMV
Dimensional Homomorphisms.”, PACT’19 U lRw [pc | rw | e
Lift [1] || fails | 3.04 | 1.51 [1.99
. MKL || 4.22 | 0.74 | 1.05 | 0.87
Tensor Contractions
GPU Tensor Contractions GPU GEMM GEMV
RW1 | Rw2 | Rw3 | Rw4 | RW5 | RW6 | RW7 | RWS | RW Y RW | Pc | RW | PC
[cocent(3l|[1.26 | 1.16 | 2.12 | 1.24 | 1.18 | 1.36 | 1.48 | 1.44 | 1.85 | Lift (1] || s e
| Frcia] || 119] 200 | 143 | 2.89 | 135 | 154 | 1.25 | 2.02 | 1.49 | cuBLAS || 2.91 | 0.83 | 1.03 | 1.00

[38] Kim et. al. "A Code Generator for High-Performance Tensor
Contractions on GPUs.”, CGO’19.

[4] Vasilache et al. "The Next 700 Accelerated Layers: From
Mathematical Expressions of Network Computation Graphs to
Accelerated GPU Kernels, Automatically.”, TACO, 2019.

[1] Steuwer et. al, "Lift: A
Functional Data-Parallel IR for
High-Performance GPU Code
Generation”, CGO’17. 3

Observation

Comparison: MDH Approach vs. Polyhedral Approaches (e.g. PPCGQG)

* Polyhedral approaches often provide better productivity
— automatically parallelize sequential program code (rather
than relying on a DSL).

« The MDH approach achieves often higher performance

than polyhedral compilers; its generated code is portable
over different architectures (e.g., GPU and CPU).

Goal of this work:

Combining the advantages of both
approaches

L

Idea

Using a polyhedral front end for the MDH code generator:

E :] A CPU-Optimized dOCAL [5’6]> CPU E
: : ' ﬂ' OpenCL Code
| Sequential | Pet] | Polyhedral | > MDH MDH-CG [2]> Auto-Tunable (==~ :
' Model | 1R tati L .
. C Code @ ode ! @ epresentation @ OpenCL Code % JOCAL [5.6] |
: @ OpenCL Code '
1 1 1 @

Polyhedral Front End MDH Code Generation

1. Transforming sequential C program to polyhedral model via PET.
Transtorming polyhedral model to MDH representation.

Generating auto-tunable OpenCL code from MDH representation.

B W

Auto-tuning OpenCL code for particular device and problem size.

5. Executing auto-tuned OpenCL code.

[1] Verdoolaege, Grosser, "Polyhedral Extraction Tool.”, IMPACT’ 12

[2] Rasch, Schulze, Gorlatch, "Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms.”, PACT’19

[3] Rasch, Haidl, Gorlatch, "ATF: A Generic Auto-Tuning Framework.”, HPCC’17

[4] Rasch, Gorlatch, "ATF: A Generic, Directive-Based Auto-Tuning Framework.”, CCPE’19

[5] Rasch, Wrodarczyk, Schulze, Gorlatch, "7OCAL: An Abstraction for Host-Code Programming with OpenCL and CUDA.”, ICPADS’18
[6] Rasch, Bigge, Wrodarczyk, Schulze, Gorlatch. "dOCAL: high-level distributed programming with OpenCL and CUDA.”, JOS’19

Idea

Using a polyhedral front end for the MDH code generator:

E : ' A CPU-Optimized dOCAL [5’6]> CPU
: : ﬂy OpenCL Code

| Sequential | Pet] | Polyhedral | : MDH MDH-CG [ZL Auto-Tunable -

1 C Code @ Model | ® 1 Representation @ OpenCL Code % .

: : : GPU-Optimized [49CAL BOL [T -0 |
] 1 @ OpenCL Code ®

MDH Code Generation

Polyhedral Front End

1. Transforming sequential C program to polyhedral model via PET.
. Transforming polyhedral model to MDH representation.

Generating auto-tunable OpenCL code from MDH representation.

s W DN

Auto-tuning OpenCL code for particular device and problem size.

5. Executing auto-tuned OpenCL code.

[1] Verdoolaege, Grosser, "Polyhedral Extraction Tool.”, IMPACT’ 12

[2] Rasch, Schulze, Gorlatch, "Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms.”, PACT’19

[3] Rasch, Haidl, Gorlatch, "ATF: A Generic Auto-Tuning Framework.”, HPCC’17

[4] Rasch, Gorlatch, "ATF: A Generic, Directive-Based Auto-Tuning Framework.”, CCPE’19

[5] Rasch, Wrodarczyk, Schulze, Gorlatch, "7OCAL: An Abstraction for Host-Code Programming with OpenCL and CUDA.”, ICPADS’18
[6] Rasch, Bigge, Wrodarczyk, Schulze, Gorlatch. "dOCAL: high-level distributed programming with OpenCL and CUDA.”, JOS’19

The MDH DSL

Example: Matrix Multiplication

MatMul = md_hom(B8, (#+, ##, ¥.) o view(A,B)(i,j,K)(.ilPkljl)

for(int i = 0; i < M ;
for(int j = 0; i < N
for(int k = 0; i < K ; ++k)
1k

GEMM in C
What's happening?

1. Prepare the domain-specific input uniformly for md_hom; for this, our DSL provides pattern view.

>

here: fuse matrices A and B to 3-dimensional array of pairs consisting of the elements in A and
B to multiply: 1,j,k » (A[i,k],Blk,jl).

2. Apply multiplication (denoted as %) to each pair.

3. Combine results in dimension k by addition (+).

4. Combine results in dimensions 1 and j by concatenation (++).

Transformation

Polyhedral Model = MDH Representation:

for(int i = 0; i <M ; ++i)

! Polyhedral Model is a “structured : for(int j = 0; i <N ; ++j)

. representation of the sequential code for(int k = 0; i < K ; ++k)

B SRR e R L L L LR L L L L L L LLEELEEREEEEREED o CLil[j] += A[il[k] * BIKk][j];
""" GEMM in C

isl[1]

i i R i

rmmmmm-= A oo -- . : means: Unknown Combine Operator (UCO) :

E md_hom(£, (++,++,@))p > — NO parallelization, BUT tiling, caching, ... :

----------------------- 1 o m m e EmEEEEEEEEE S S S BB BB B BN BN BN & BE BN NN NN NN NN EEEE
:I{- fFOT ALk, TBkJ, TCij) ‘e Variables with read or read-write access are set as arguments of f.
C1) +=A1KxBKk.y]J; +e Variables with write access are declared and zero initialized in f.
return C_1_j; +» Variables with write or read-write access are returned by f.

A .

[1] Verdoolaege, "isl: An Integer Set Library for the Polyhedral Model”, ICMS’10 8

Experimental Results

B RW PP /intel) M@ RW PP B RW PP /intel) M RwW PP
@ L./ ~ NVIDIA ” NVIDIA
15 2 20 - 5 nt 2.0 ~
©
4
5 S 15 . 15
o 10 o o o o - O
O ,\- O O 3 < O e <
c c c L N c - < ©
(@) o © 10 (@) o~ N © 10 ~N
o) 4 o o Q o
> <: > > 2 =)
© © © ©
S O o o ® o
g g 5 ° §o o2 B A S &0
0 . ,_me = 0 - 0.0 _
PPCG MKL-DNN PPCG cuDNN PPCG MKL PPCG cuBLAS
Gaussian Convolution Matrix Multiplication
e T BT rr e e i e T e Ce g
i» CPU: Intel Xeon E5 P RW: 1x512x7x7x512 i+ RW: M,N,K = 10,500,64
i» GPU: NVIDIA V100 i+ PP: 1x1x4096x4096x1 i» PP: M,N,K = 1024

* Compared to PPCG:
* Competitive performance on GPU: 1.01x — 1.32x
* Better performance on CPU: 2.03x — 7.78X

* Compared to Intel MKL/MKL-DNN & NVIDIA cuBLAS/cuDNN:
* Competitive and sometimes better performance: 0.73x — 2.24x (19.11x) 9

Conclusion

We present md_poly:

* md_poly is based on both the polyhedral model and the MDH code
generation approach;

 md_poly combines productivity (as in polyhedral compilers) and portable
high performance (as in the MDH approach);

« md_poly achieves sometimes better performance than hand-optimized
approaches.

Future Work: Analyze and Evaluate md_po ly for all applications in PolyBench.

 We are looking for a polyhedral expert |
| as collaboration partner! |

10

Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

__kernel void foo(__global intx a)

{
a = 42;

1 & a

OpenCL

“programs without loops (e.g., "a = 42;”)"

Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

for(int i =1; i < K ; ++i)
{

Al N-1] = A[1];
s

N = 2K - parallelizable
else - NOT parallelizable

“programs with parametric dependence distance (e.g., A[N-i] = A[i])"

12

Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

Parallel

(_

if (t % 2 == 0)
1

} for

i

intt=1; t <N; ++t)]

int t = get_global_id(@);f

if (t % 2 == 0)

{
//
}
ES S
& a
OpenCL

“if-conditionals using modulo arithmetic
(e.g., If (1 % 2 == 0) where t is a surrounding loop iterator)”
13

Reviewer Questions
Q: Unclear whether all polyhedral programs can be converted to MDH?

#pragma scop
for (int t = 0; t < tmax; ++t) {

for (int j = 0; j < ny; ++j) {
\ eyl[01[j] = __ fict__ [t];
for (int i = 1; i < nx; ++1i) {
for (int j = 0; j < ny; ++j) {
ey[i]l [j] = eyl[il [j] - 0.5 x*
, (hz[1i1[j] - hz[i - 11[j]1);
¥

for (int 1 = 0; i < nx; ++i) {

for (int j = 1; j < ny; ++j) {
ex[i] [j] = ex[i][j] - 0.5 x
) (hz[il[j] - hz[il[j - 11);
¥
for (int 1 =0; i < nx - 1; ++i) {
for (int j = 0; j < ny - 1; ++j) {
hz[i]l[j] = hz[il[j] - 0.7 x (ex[il[j + 1] -
\ ex[11[j] + eyl[i + 1]1[j]1 - eyl[il[jl);
¥

}

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”

14

Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

e Parallel

#pragma Sscop

e Sequential

}

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”

15

Reviewer Questions

Q: Unclear whether all polyhedral programs can be converted to MDH?

for (int t = 0; t < tmax; ++t) {
#pragma scop

e Parallel

Sequential

}

#pragma endscop

#pragma scop

e Parallel
) e Sequential

}

#pragma endscop

#pragma scop

e Parallel
e Sequential

}
by

#pragma endscop

#pragma scop

e Parallel
e Sequential

}
by

#pragma endscop

“imperfectly nested loops (e.g., FDTD-2D in polybench)”

16

Reviewer Questions

Q: Your claim that combine operators other than concatenation cannot
be extracted looks way too strong.

PRL = md_hom(weight, (++, ®max)) 0 view(..)

for (int 1 = @; i < NUM_NEW_RECORDS; ++i) A
match_id[i] = 0;
match_weight[i] =
id measurel[i] = 0;
for (int j = @; j < NUM_EXISTING_RECORDS; ++j)

0;

// calculate weight
double weight = calc_weight(...);
// calculate identity measure
int id measure = calc_id _measure(...);
// store result
if ((weight >= 15.0 || id_measure == 14) &&
(weight > *match_weight_res)) {
match_id[i] = i_idI[j];
match_weight[i] = weight;
id measurel[i] = id_measure;

}
}

Rasch, Schulze, Gorus, Hiller, Bartholomaus, Gorlatch. "High-Performance Probabilistic
Record Linkage via Multi-Dimensional Homomorphisms.”, SAC’19

17

