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Instead of barrier synchronization

Point-to-point synchronization:
Hide latency
More opportunities for parallelism

Task
Data

Pipeline

Scheduling is the runtime’s job
Provide functional determinism
No in-place writes:

Fewer dependencies

Memory footprint



Outline

1) OpenStream
- Overview & polyhedral subset

- Computing dependencies and schedules

2) Stream bounding
- Basic strategy & limitations

- Usage guidelines
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OpenStream: a short overview

Data-flow extension to OpenMP

created dynamically

- Tasks: units of work spawned as concurrent coroutines
at runtime

. Streams: unbounded channels for communication between tasks

Tasks access stream elements through windows:

stream s;

task pl {
write three times to s;

}
task p2 {
write two times to s;

}
task r {

three times from s;

}
task c {

read five times from s;

}
Task dependencies:

Control program Accesses on stream s . :
overlapping windows
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Polyhedral OpenStream: computing dependencies

stream s;
parameter N;

for(i = 0; i < N; ++1)
task tw { _ _ . o
write two times to s; V\/S(t i)=2i window: [2i, 2i + 1]

) 2i<4j+3A4j<2i+1
for(j = 0; j < N/2; ++3) ZJSISZJ'I'].

task tc {
read four times from s; Rs(t(:/j) = 4j window: [4], 4j + 3]
}

Polyhedral control program: Can statically count W, and R, Compute dependencies

. No nested task creation and obtain access windows: by intersecting windows

- Affine control statements + Ehrhart polynomials @ @
Brion generating functions
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Polyhedral OpenStream: scheduling

Dependencies: polynomial (in)equalities p;(x), semi-algebraic sets:

S={xeR?|p;(x) =2 0,py(x) =0, ..., pp(x) = 0}
A polynomial P(x) is strictly positive in S iff:

PO = ) bt (OPS @) () A 20 52> 0
kEN™
Cannot possibly exhaust all k in finite time:
Semi-decidable (undecidable) problem

In practice, ~ conservative ‘Farkas lemma’
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Stream bounding: back-pressure WaRs

stream s;
parameter N;

for(i = 0; i < N; ++i)
task tw {
write two times to s;

} S

for(j = @; j < N/2; ++j)
task tc {
read four times from s;

}

Stream bound: 4 elements
A <W(t,, ,) + (# writes) —bound — 1
=4+2-4-141

New back-pressure dependency:

some parallelism is lost
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stream s; sink

parameter N;

task tsink { |ndeX|ng >
read once from s; T

} <«— Filling

for(k = 1; k < N; ++k) s [}“ : & E £ 3 iin.j
task tw { -

read once from s;
write once to s;

}

task tsource {
write once to s;

¥
Stream bound: 2 elements, deadlock

(§ )

Caveat: the stream is 2-element bound



Stream bounding: global surface minimization

stream sl1l, s2;

task twl {

write two times to si;
}

task tw2 {
write three times to s2;

}
task ta {

write two times to s2;
read two times from si;

}
task tb {
write once to si;

read three times from s2;

}
task tcl {

read once from si;

}
task tc2 {

read two times from s2;

}



Stream bounding: global surface minimization

Minimum bounds:

»S,: 2 elements

stream s1, s2§ ———» 5.1 3 elements

task twl {

write two[times to s1;
}

task tw2 {
write three times to s2;

}
task ta {

write two times to s2;
read two times from si;

}
task tb {
write once to si;

read three times from s2;

}
task tcl {

read once from si;

}
task tc2 {

read two times from s2;

}



Stream bounding: global surface minimization

Minimum bounds:

»S,: 2 elements

stream s1, s2§ ——— 5.1 3 elements

task twl {

write two|times to s1; /// """""""""" -
} Sl /// ...]
task tw2 { «..4 ...........

write three times to s2; j

} \
task ta { t

write two times to s2;
read two times from si;

} ' :E
task tb { SZ(Z.. : -~]
write once tos1; = 2020~ ¥ T T eeeereseeeees

read three times from s2;

}
task tcl {

read once from si;

}
task tc2 {

read two times from s2;

}



Stream bounding: global surface minimization

Minimum bounds:

»S,: 2 elements

stream s1, s2§ ———» 5.1 3 elements

task twl {

write two|times to s1; /// """""""""" -
} Sl /// ...]
task tw2 { «..4 ...........

write three times to s2; j

} \
task ta { t

write two times to s2;

read two times from si; \\\jfil
} | E
task tb { :
write once to si;

read three times from s2;

}
task tcl {

read once from si;

}
task tc2 {

read two times from s2;

}



Stream bounding: global surface minimization

Minimum bounds:

»S,: 2 elements

stream s1, s2§ ——» 5.1 3 elements
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stream s1, s2§ ———» 5.1 3 elements

task twl {
write two[times to s1;

}
task tw2 {

write three times to s2;

} s;: 1 element

task ta {
write two times to s2;
read two times from si;

s,: 0 elements

}
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stream sl1, s2

task twl {
write two

}
task tw2 {

write three times to s2;

}
task ta {

write two times to s2;
read two times from si;

}
task tb {

write once to si;
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times to si;

read three times from s2;

}
task tcl {
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}
task tc2 {

read two times from s2;

}

s,: 0 elements
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s,: 2 elements & s,: 3 elements



Stream bounding: application guidelines

Can we run a given program on a device with memory M?

1) Select stream bounds combination s.t. 2_bound, = M

2) Add back-pressure dependencies for this combination
3) Look for schedule

4) If found: guaranteed execution
If not found: if other combinations available, 1)
if all exhausted, conservatively assume execution not possible



Summary

Back-pressure dependencies:
1) Bound streams
2) Statically, but conservatively, decide execution in limited memory
3) Limitations:
Causality-induced ‘spurious’ deadlocks
Non-independent stream minimization
Overestimation of actual memory usage

Deadlock detection undecidability



