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Abstract
The Cerebras CS-1 is a computing system based on a wafer-

scale processor having nearly 400,000 compute cores. It is in-

tended for training of and inference on deep neural networks.

The architecture has several features specifically designed

for this and related fields. One of these is a sophisticated

SIMD engine that can mimic a rectangular loop nest of depth

at most four. In order to achieve optimal performance, it is

crucial to use SIMD instructions as much as possible.

This paper describes a high-level polyhedral compiler that

takes a high-level algorithm description that can be writ-

ten manually or extracted from a TensorFlow computation

graph and generates input to the low-level C-based compiler.

In this intermediate code, the use of SIMD instructions is

made explicit. The main focus of the paper is the genera-

tion of these CS-1 SIMD instructions for convolution style

algorithms. What complicates the task is that the set of com-

putation instances that need to be performed may not at first

sight look like they form a rectangular loop nest. The basis

of the compilation is formed by an effective combination

of relatively well-known, but more specialized polyhedral

operations.

1 Introduction
Deep learning networks are well recognized as a prime target

for polyhedral compilation techniques (Baghdadi et al. 2019;

Lattner and Pienaar 2019; Pradelle et al. 2019; Vasilache et

al. 2019; Zerrell and Bruestle 2019). It is then no surprise

that Cerebras is also developing a polyhedral compiler called

dtg_codegen that takes a high-level description of part of

a deep learning network as input and produces low-level

C code for implementing that part on a subset of the PEs

(Processing Elements). A different part of the compilation

flow, not discussed in this paper, is responsible for breaking

up the network into these parts and for selecting the subsets

of PEs on which to implement them, thus providing the main

inputs to dtg_codegen.
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Besides a description of the algorithm, dtg_codegen also

takes information about where and in what order the input

tensor elements arrive and, similarly, where and how the out-

put tensor elements should be produced. In the current state

of development, the PE where each computation instance

needs to be executed is also given as input to dtg_codegen.
The tool is then responsible for routing the data to the PEs

that need them and for generating the code for processing

the data on each PE.

One of the challenges in this code generation process is

detecting opportunities for generating SIMD (Single Instruc-

tion Multiple Data) instructions. Note that the process of

generating SIMD instructions for Cerebras CS-1 is quite dif-

ferent from that for CPUs (Feld et al. 2013; Henretty et al.

2013; Kong et al. 2013; Sharma et al. 2015; Hallou et al. 2017),

as there is no need to ensure stride-0 or stride-1 accesses, to

compute tile sizes or to perform data layout transformations.

Instead, a CS-1 SIMD instruction can mimic a rectangular

loop nest performing arbitrary affine accesses. It is therefore

important to try and represent the set of computation in-

stances as a rectangular domain. As will be explained below,

the description of the input algorithm only allows rectangu-

lar domains, so this may seem like a trivial task. However,

the instances that need to be executed when a piece of data

arrives at a PE form a slice of the total set of instances and

the orientation of this slice is not necessarily in an orthog-

onal direction, especially for convolution style algorithms.

The way the instances are mapped to the PEs may be a fur-

ther cause of complications. Since these SIMD instructions

replace a rectangular loop nest, their detection conceptually

bears some similarities with the replacement of part of the

code by library calls (Alias and Barthou 2005; Lu et al. 2012;

Iooss 2016; Vasilache et al. 2019), but the way the detection

is performed is quite different.

2 Polyhedral Compilation Background
For its core polyhedral compilation operations, dtg_codegen
relies on isl (Verdoolaege 2010), a library for manipulating
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sets of integer tuples described by Presburger formulas. Re-

call that a Presburger formula is a first order logic formula in-

volving affine expressions, equality (=) and the less-than-or-

equal relation (≤). An affine expression is a linear expression

plus a constant term. In the case of isl, the affine expressions

may involve the tuple variables, existentially quantified vari-

ables, as well as symbolic constants. Such symbolic constants

have a fixed but unknown value. For example,

{ S[i, j] : ∃α : i, j ≥ 0 ∧ i = 2α + 1 ∧ i + j ≤ N } (1)

describes elements in a two-dimensional S-space where both

coordinates are non-negative, the first coordinate is odd and

the sum is less than or equal to some symbolic constant

N. Besides sets, isl also supports binary relations on inte-

ger tuples and explicit functions on sets. These functions

may be piecewise quasi-affine. Quasi-affine means that the

affine expressions may involve integer divisions of other

(quasi-)affine expressions. Piecewise means that the domain

may be subdivided into disjoint pieces each with its own

associated (quasi-)affine expression. An example of a binary

relation is

{ [x] → [y] : 0 ≤ y < x ≤ 10 }, (2)

relating elements from an interval between 0 and 10 to ele-

ments in the same interval that are smaller. An example of a

piecewise quasi-affine function is

{ [i] → [i] : i ≥ 0 } ∪ { [i] → [−i] : i < 0 }, (3)

representing the absolute value. Note that → is used to sep-

arate the domain of a function from its value (3), but also to

separate the tuples in a binary relation (2).

Verdoolaege (2016) provides a detailed description of the

isl notations used in this paper and of operations that can

be performed on isl objects. There are two notations that

are not yet covered by this tutorial:

• Inside a tuple, the value of a variable can be described

as lower :upper , meaning that this variable has a value

between lower and upper (inclusive). For example,

{ [x = 0:10] } is equivalent to { [x] : 0 ≤ x ≤ 10 } This

notation is borrowed from Omega (Kelly et al. 1996). In

the isl implementation, however, the lower and/or

upper bound may be omitted.

• The // operator represents integer division. For exam-

ple, x // 10means ⌊x/10⌋. This notation is borrowed

from Python (Rossum 1995).

Some operations used in this paper are not described in the

tutorial, either because they were added to islmore recently

or because they are of a more heuristic nature and are only

useful in specific circumstances. The new operation is that of

binding a tuple to a sequence of symbolic constants, which

fixes the tuple dimensions to the corresponding symbolic

constants. The tuple itself is removed in this operation. For

example, binding the range tuple of a binary relation results

in a set corresponding to the domain of the binary relation.

Binding the range or the relation in (2) to the (single element)

sequence [Y] yields the set

{ [x] : 0 ≤ Y < x ≤ 10 }, (4)

which is equal to the interval { [Y + 1:10] } if the symbolic

constant Y has a value between 0 and 9 and is equal to the

empty set if Y has some other value. This operation only

changes the interpretation of the input object and does not

require any computations.

Variable compression (Meister 2004) exploits the equality

constraints in the description of a set to obtain a set with

the same number of points, but of a lower dimensionality. In

particular, the points in the original set can be obtained from

the “compressed” set by applying an affine function that is

constructed during the computation of the compression. The

original description is formulated in terms of polyhedra. In

isl, the input set may be described by a generic Presburger

formula, which is converted internally into a disjunction of

conjunctions. The equality constraints used for compression

are those shared by all disjuncts. If these equality constraints

involve any existentially quantified variables, then these are

treated as set variables for the purpose of compression in the

isl implementation. The dimensionality of the compressed

set may therefore in theory be greater than that of the input

set.

The fixed-size box hull operation examines the constraints

of a binary relation to find an overapproximation where the

range can be described as a rectangular box with fixed size

and an offset that depends on the domain variables and the

symbolic constants. Moreover, the offset is restricted to being

purely affine. This operation was described by Verdoolaege,

Juega, et al. (2013, Section 7.3) for obtaining a suitable map-

ping to shared memory in PPCG (Verdoolaege, Juega, et al.

2013) and is also used by Tensor Comprehensions (Vasi-

lache et al. 2019). In these applications, the memory size is

required to be fixed (and in particular not depend on outer

loops or block identifiers) and the offset should be purely

affine to avoid the introduction of piecewise of quasi-affine

expressions in the accesses to shared memory. Since this

operation is based on the constraints of a particular repre-

sentation of a set, it is not guaranteed to produce the same

results on different representations of the same set. The op-

eration may also fail to produce any result, either because

the range cannot be approximated by a fixed-sized box or

because no suitable fixed-sized box with purely affine offset

could be found.

3 Target Architecture
The target architecture is an MPPA (Massively Parallel Pro-

cessor Array), consisting of a 2-dimensional grid of PEs that

communicate with their nearest neighbors in the four cardi-

nal directions. At the time of writing, only few details have

been made public (Lie 2019). Most relevant for the present

paper is that memory is distributed over the PEs and that
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the hardware performs dataflow scheduling. In particular,

the data that is communicated between PEs can be either a

floating point number or a pair of a floating point number

(of smaller size) and an integer value. In this second case, the

integer value is typically an indication of the position of the

communicated piece of data inside a tensor, called its index.
Positions that do not appear in any such pair are assumed

to have a zero value, meaning that zero values do not need

to be communicated. Tensors communicated in this way are

called sparse. There is also a mechanism for marking the end

of a sequence of value-position pairs, but the details are not

important here.

On start-up, each PE executes its main function, which

typically performs some configuration before the actual com-

putation is initiated. The computation itself is performed by

tasks that can be invoked by other tasks (including main)
or by the hardware in response to some event such as the

arrival of tensor data.

A feature of the architecture that is especially relevant

to the present paper is that it supports powerful SIMD in-

structions that mimic a loop nest of depth at most four. In

particular, each invocation of such an instruction performs

a sequence of operations defined by a rectangular set of in-

stances of dimension at most four. The rectangular set is

described by a sequence of fixed loop sizes. That is, each

instance is represented by a sequence of integers between 0

(inclusive) and the corresponding size (exclusive). Further-

more, each access performed by the instruction needs to be

equal to some offset plus a linear function of this sequence of

integers. In particular, apart from the constant term, they are

not allowed to be quasi-affine or piecewise. A SIMD instruc-

tion can not only perform a certain number of operations

per cycle, but it also removes a lot of overhead compared to

an explicit loop since the software management of the loop

is replaced by a hardware mechanism. Note that the exact

number of operations that can be performed in one cycle has

not been made public yet.

4 Code Generation Overview
The inputs to dtg_codegen are

1. an algorithm description in a high-level Cerebras spe-

cific intermediate representation called LAIR (Linear

Algebra Intermediate Representation);

2. the size of a rectangular block of PEs that should per-

form this computation;

3. information about how tensors arrive and should leave

this block.

The output is C-like code that should be run on each PE.

4.1 Input
The input to dtg_codegen consists of two major pieces, a

description of the algorithm in LAIR and information about

how this algorithm should be mapped to a block or PEs.

lair ff<T=float16 >(M, N):

T W[M][N], T x[N] -> T y[M]

{

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

Listing 1. Excerpt from Fully Connected LAIR input

4.1.1 LAIR
LAIR is a DSL (Domain Specific Language) for describing

ML (Machine Learning) layers. It can be written by hand or

it can be extracted from a description in an ML framework

such as TensorFlow (Abadi et al. 2016). Listing 1 shows an
excerpt from a LAIR description for a fully connected layer.

In particular, it shows a node called ff containing the matrix-

vector multiplication for the forward pass.

Each lair node describes how a set of input tensors is

transformed to one or more output tensors. Some interesting

features of this description are:

• each statement has a rectangular set of instances, with

lower bounds zero and (exclusive) upper bounds spec-

ified in the in-clause of the all-construct.
• LAIR is a single assignment language in the sense that

a tensor is defined by a single statement. In a reduction,

a given tensor element may be defined by multiple

instances of this statement. However, such a reduction

statement always initializes the reduction and never

updates the tensor with respect to some previous value.

Since all reductions are initializing, no special notation

is needed for marking initializing reductions, such as

the ‘!’ of Tensor Comprehensions.
• All accesses are (strictly and totally) affine. In particu-

lar, quasi-affine expressions or piecewise affine expres-

sions are not allowed.

• Each tensor in a statement is accessed through a single

affine index expression. In particular, if the same tensor

appears multiple times in the same statement, then it

is accessed in exactly the same way in all appearances.

This restricted representation should be adequate for most

deep learning applications.

Other nodes in the LAIR input combine and/or specialize

lair nodes to form a complete ML layer description. In

particular, while the lair nodes may have parametric tensor

sizes such as M and N in Listing 1, the input to dtg_codegen
is always fully specialized to fixed integer tensor sizes. The

rest of this paper will takeM = 32 and N = 16.

4.1.2 LAIR mapping
The LAIR mapping provides information to dtg_codegen
about how it should map the LAIR input to a rectangle of

PEs. This information is specified in isl syntax.
3
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{

ff[i,j] -> PE[j//4, 1 + i//8];

fg[i,j] -> PE[j//4, 1 + i//8];

fd[j,i] -> PE[j//4, 1 + i//8];

update[i,j] -> PE[j//4, 1 + i//8]

}

Listing 2. Placement for Fully Connected LAIR input

The first bit of information is the size of the target rectan-

gle of PEs, e.g., { PE[4, 5] } representing the set of PEs

{ [0:3, 0:4] }. The second bit describes the communication of

the input and output tensors. In particular, for each input

tensor element, it specifies from which external PE(s) the

element arrives at the target rectangle and in what order

compared to the other elements that arrive from the same

external PE. Note that these external PEs need to be adjacent

to the target rectangle. For example, the x input of Listing 1

may have the following specification:

{ x[i = 0:15] -> [PE[0, -1] -> index[i]] }

This means that the entire x tensor arrives at PE (0, 0) from
the north (i.e., (0,−1)) and that the index value that comes

along with the data (assuming it is sparse) is equal to the po-

sition in the vector. If the index space is multi-dimensional,

then it is only the innermost dimension that specifies the

index value, while the outer dimensions count the number

of value-position sequences. These are called the outer in-
dex values. If the tensor is not sparse, then the index space
specifies the (lexicographic) order in which tensor elements

arrive. For example, assuming the y output is not sparse, the

specification

{ y[i = 0:31] -> [PE[4, 1 + i//8] ->

index[i mod 8]] }

means that the PEs (4, 1) to (4, 4) are each expecting a chunk

of y of size 8 from the target rectangle and that within each

chunk the elements are sent in order of increasing vector

position. Note that while any isl supported function could

be specified for these tensor mappings, in practice they are

limited to a combination of interchange, reversal and chunk-

ing.

Finally, the LAIR mapping specifies which PEs should

perform which LAIR compute node instances. For example,

Listing 2 shows a complete placement for a fully connected

LAIR input, including the ff-node of Listing 1. The LAIR

code for the other nodes (the gradient fg, the backpropaga-
tion fd and the weight update update) is not shown here.

Note that the computations are mapped to the set of PEs

{ [0:3, 1:4] }, which is a strict subset of the target rectangle.

As explained in Section 4.2 below, the top row of PEs will

be used to spread data to the computation PEs. It is also

possible to only specify the placement direction (here, (j, i))
and to let dtg_codegen determine the appropriate tiling and

offset onto the rectangle of PEs. In the future, some suitable

mapping may be (optionally) computed automatically.

The LAIR mapping also contains additional information

about how tensors are communicated (such as whether they

are sparse) and about delays between different parts of the

LAIR graph, but this is beyond the scope of this paper.

4.2 Task Graph Construction
During task graph construction, the computation performed

by the input LAIR graph is broken up into communication

and computation tasks. The communication tasks send data

available on some PEs to other PEs, e.g., spreading input

tensors to all PEs that need them or collecting the results of

a reduction. Computation tasks perform local computations.

A distinction is made between tasks that react to the arrival

of an element from a sparse tensor and those that read in an

entire tensor or that operate on local memory. A special class

of computation tasks that operate on local memory is formed

by the initialization tasks. These initialize local memory to

some fixed value, typically zero when preparing for storing

sparse data or the neutral element when preparing for a

reduction.

During this construction process, various assumptions are

made on the internal and external communication. For exam-

ple, within the rectangle of PEs performing the computation,

all data is assumed to flow either horizontally or vertically. If

these conditions are not met, then the set of PEs that perform

the core computations is reduced such that the peeled-off

border PEs can make the required adjustments. For example,

according to the specification shown in Section 4.1.2, all x
elements arrive on a single PE. These elements are spread

over the columns that need them by adapters introduced in

the top row of the original target rectangle of PEs. The target

rectangle and the LAIR mapping for the computation PEs

are adjusted accordingly. In particular, the target rectangle

of computation PEs is reduced to size 4× 4 and from the per-

spective of these computation PEs, the x tensor now arrives

as

{ x[i = 0:15] → [PE[⌊i/4⌋ ,−1] → index[i mod 4]] }. (5)

Similarly, y is now sent out as

{ y[i = 0:31] → [PE[4, ⌊i/8⌋] → index[i mod 8]] } (6)

and also the placement of Listing 2 is shifted up by one

because the PE-space is shifted down by one.

4.3 Local Memory Allocation
Some input tensors are processed as they arrive. Other input

tensors need to be stored in memory, e.g., because they are

used in multiple operations or because an operation takes

multiple input tensors. Similarly, for output tensors that are

the result of a reduction, the partial results computed by each

PE may need to be stored in memory. Any internal tensor
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(i.e., not an input or output tensor) also needs to be stored in

memory.

The allocation of local memory for these tensors consti-

tutes a first application of the box hull operation. In this

case, the fixed size that this operation produces is not critical

since the size of a local array could in theory depend on the

PE coordinates. The purely affine offset is also not strictly

required. Even though the mapping from global tensors to

local tensors needs to be taken into account in the generation

of the accesses of SIMD instructions that access local tensors,

these accesses may have an arbitrary constant term. While

the box hull operation is not guaranteed to produce a result,

given the structured nature of the input it always does here

in practice.

The detailed computation is illustrated on the output ten-

sor y of the code in Listing 1. Combining the access relation

{ ff[i = 0:31, 0:15] → y[i] } and the placement of Listing 2,

adjusted according to Section 4.2, yields the set of tensor

elements accessed per PE:

{ PE[0:3, i1 = 0:3] → y[i = 0:31] : 8i1 ≤ i ≤ 7 + 8i1 }. (7)

The constraints 8i1 ≤ i ≤ 7 + 8i1 can be used to obtain a

suitable box of size { y[8] } at offset { PE[i0, i1] → y[8i1] }.
The (PE-dependent) mapping from global tensor elements

to local memory is obtained by subtracting this offset from

an identity mapping on y, resulting in

{ [PE[i0, i1] → y[i]] → y_local[−8i1 + i] }, (8)

or

{ y[i] → y_local[−8PEY + i] } (9)

after binding to symbolic constants representing the PE co-

ordinates.

The initial local memory allocation described here may get

adjusted later to accommodate extra computation instances

as described in Section 5.3 below.

5 SIMD Code Generation
In some cases, the generation of SIMD instructions is fairly

trivial. For example, initialization tasks initialize an entire

(rectangular) local tensor (or a rectangular subset if the local

tensor gets extended as described in Section 5.3 below). In

this case, the rectangular domain of the generated SIMD

instruction corresponds to the local tensor and the linear

access is simply an identity function.

In other cases, the generation is more involved. In par-

ticular, this section will focus on the generation of SIMD

instructions for tasks that react to the arrival of an element

from a sparse tensor and that therefore only need to perform

the operations that correspond to the given index value(s).

A SIMD instruction is only generated for such a task if the

following conditions are met.

1. The computation of the task consists of a single oper-

ation for which SIMD support is available.

2. The set of instances is a (dense) rectangular domain

with a fixed size.

3. The dimensionality of this domain is greater than zero.

4. All accesses are linear (ignoring the constant term).

Item 3 is imposed because otherwise it is simply not useful

to generate a SIMD instruction. The other conditions are

required by the target architecture as explained in Section 3.

The fixed-size nature of the domain in Item 2 needs some

clarification. The size only needs to be fixed at the point

in the code where the SIMD instruction is configured. This

means the size can depend on the PE coordinates since those

are fixed on each PE. In theory, the size could also depend

on the index of the arriving sparse tensor. However, this

would mean that the SIMD instruction needs to be config-

ured before every call. Since this configuration can itself

be fairly expensive, this is not currently considered. In fact,

the configuration is currently performed once at the start of

the execution, meaning that the size is also not allowed to

depend on the outer index values.

5.1 Base Case
The analysis starts by checking if the performed computa-

tion is one for which a SIMD instruction is available. In the

base case, no checks need to be performed on the accesses

since they come directly from the LAIR specification, which

requires accesses to be purely affine.

The instance set of the task is computed by first binding

the range of the placement (intersected with the instance

set of the computation) to symbolic constants representing

the PE coordinates and then intersecting the result with the

constraints on the symbolic constants representing the index

values. These constraints are obtained by binding the range

of the order of the incoming tensor to the index symbolic

constants (relating these symbolic constants to the tensor

indices) and applying the inverse access relation.

Example 5.1. The task corresponding to the matrix-vector

multiplication of Listing 1 performs an add-multiple, for

which a SIMD instruction is available. The original placement

of Listing 2 was adjusted to

{ ff[i, j] → PE[⌊j/4⌋ , ⌊i/8⌋] } (10)

in Section 4.2. Binding the range of this relation to the PE

coordinates and taking into account the instance set results

in

{ ff[i = 0:31, j = 0:15] : 8PEY ≤ i ≤ 7 + 8PEY ∧

4PEX ≤ j ≤ 3 + 4PEX }.
(11)

Assuming the task is activated on the arrival of an element of

a sparse x, its order is { x[i = 0:15] → index[i] } as specified
in Section 4.1.2. Binding the range of this relation to the

(here) single index symbolic constant, results in { x[index] :

0 ≤ index ≤ 15 }. Applying the inverse of the access relation

{ ff[i0, i1] → x[i1] } yields { ff[i0, index] : 0 ≤ index ≤ 15 }.
5
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lair C() : float16 x[16],

float16 W[2][3] -> float16 y[2][14]

{

all (k, w, rw) in (2, 16 - 3 + 1, 3)

y[k][w] += x[w + rw] * W[k][rw]

}

Listing 3. Excerpt from 1D convolution LAIR input

Intersecting the domain (11) with these constraints gives

{ ff[i = 0:31, j = index] : 0 ≤ index ≤ 15 ∧

PEX = ⌊(index)/4⌋ ∧

8PEY ≤ i ≤ 7 + 8PEY }.

(12)

The resulting instance set is then examined to see if it

forms a dense rectangular domain of fixed size (on each PE).

This can be determined by independently computing the

minimal and maximal values of the set dimensions using

PILP (Parametric Integer Linear Programming) (Feautrier

1988), constructing a set with these bounds and then check-

ing if this set is a subset of the original set. The difference

between maximal and minimal values (plus 1) yields the size

and this size needs to be fixed. As explained above, this means

that the size should not depend on any symbolic constants

representing index values.

Example 5.2. Continuing from Example 5.1, the minimal

and maximal values of the set (12) are

{ ff[8PEY, index] : K } (13)

and

{ ff[7 + 8PEY, index] : K }, (14)

with K the known constraints on the symbolic constants:

K : 0 ≤ index ≤ 15∧PEX = ⌊index/4⌋ ∧0 ≤ PEY ≤ 3. (15)

Building a set with these bounds yields exactly the set (12),

meaning that it forms a dense rectangular set. The resulting

size is

{ ff[8, 1] : K }, (16)

which simplifies to { ff[8, 1] } when simplifying with respect

to the known constraints (15). This size is independent of

the symbolic constants representing index values and the

computation can therefore be performed by a SIMD instruc-

tion.

5.2 Compression
In some cases, the instances that need to be performed at the

arrival of a tensor element do not form a (dense) rectangular

set in the original space of node instances, but they can still

be transformed to form a set of this shape in some other

space. A prime class of examples is formed by convolution

style algorithms.

Example 5.3. Consider the excerpt for a small 1D convolu-

tion in Listing 3, with placement {C[k,w, rw] → PE[0,k] }
and sparse tensor order { x[w = 0:15] → index[w] }. Com-

puting the set of instances of the single computation that

need to be performed on each invocation of the task as in

Example 5.1 yields

{C[k = PEY,w = 0:13, rw = index −w] :

PEX = 0 ∧ 0 ≤ index ≤ 15 ∧ 0 ≤ PEY ≤ 1 ∧

−2 + index ≤ w ≤ index }.

(17)

Note in particular that the symbolic constant index is equal

to the sum of two tuple dimensions. This means that the

instances that need to be run on an invocation lie on a diag-

onal inside the full set of instances. Computing minimal and

maximal values in each direction results in a rectangular box

containing this diagonal and this box is clearly not equal to

the diagonal itself.

The main property that prevents these sets of instances

from being recognized as a (dense) rectangular box is that

they live in a higher-dimensional space. Variable compres-

sion can be used to reduce the dimensionality of the ambient

space, thereby increasing the chance of obtaining a rectan-

gular box. Note that there is no guarantee that the result will

be a rectangular box, even if the set of instances could still

be transformed into a rectangular box using a further affine

transformation. In particular, a unimodular transformation

may need to be applied, e.g., the one that is used for factor-

ing polyhedra (Verdoolaege, Seghir, et al. 2007, Section 7).

However, such a unimodular transformation is not currently

considered by dtg_codegen. The variable compression it-

self is applied indiscriminately. This means it is also applied

when the original instance set can already be identified as a

rectangular box.

Example 5.4. Consider first the instance set (12) from Ex-

ample 5.1, which was already determined to be a rectangular

box in Example 5.2. Applying variable compression to this

set produces the compression

{ [i0] → ff[i0, index] } (18)

and the compressed instance set

{ [i0 = 0:31] : 0 ≤ index ≤ 15 ∧ PEX = ⌊(index)/4⌋ ∧

8PEY ≤ i0 ≤ 7 + 8PEY }.
(19)

Since this is a one-dimensional set, it is clearly still a rectangu-

lar set. The minimal and maximal values of this compressed

instance set are

{ [8PEY] : K } and { [7 + 8PEY] : K }, (20)

with K the known constraints (15). The corresponding size

is

{ [8] : K }. (21)
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lair C() : float16 x[16][16] ,

float16 W[2][3][3] -> float16 y[2][14][14]

{

all (k, w, h, rw, rh) in (2, 14, 14, 3, 3)

y[k][w][h] +=

x[w + rw][h + rh] * W[k][rw][rh]

}

Listing 4. Excerpt from 2D convolution LAIR input

Note that the variable compression changes the repre-

sentation of the set of computation instances, requiring a

modification to the access functions. However, since both

the original access functions and the compression are purely

affine, so is their composition and the modified access func-

tion are therefore also purely affine.

Example 5.5. Continuing from Example 5.3, applying vari-

able compression to the set (17) yields the compression

{ [i0] → C[PEY, index − i0, i0] } (22)

and the compressed instance set

{ [i0 = 0:2] : PEX = 0 ∧ 0 ≤ index ≤ 15 ∧

0 ≤ PEY ≤ 1 ∧ −13 + index ≤ i0 ≤ index }.
(23)

Since this is a one-dimensional set, it is clearly a rectangular

set. Since no existentially quantified variables are involved

in the description, the set is also dense. However, the size

of the interval is not constant. In particular, simplified with

respect to the known constraints on the symbolic constants,

the size is of the form

{ [16 − index] : index ≥ 13 } ∪

{ [3] : 2 ≤ index ≤ 12 } ∪

{ [1 + index] : index ≤ 1 }.

(24)

That is, the size starts out at 1 for index equal to 0, increases

to 3, remains at 3 for a number of index values and then

drops back down to 1. This non-constant size issue will be

addressed in Section 5.3 and illustrated in Example 5.9.

The original access functions for accessing the other ten-

sors are

{C[i0, i1, i2] → W[i0, i2] } and {C[i0, i1, i2] → y[i0, i1] }.
(25)

Combined with the compression (22), these become

{ [i0] → W[PEY, i0] } and { [i0] → y[PEY, index − i0] }.
(26)

Example 5.6. Similar results can be obtained for the 2D con-

volution in Listing 4, with placement {C[k,w,h, rw, rh] →
[0,k] } and sparse tensor order { x[w = 0:15,h = 0:15] →

lair C() : float16 x[8][8][4] ,

float16 filter [4][4] -> float16 y[8][8][4]

{

all (k, h, w, c) in (4, 8, 8, 4)

y[h][w][k] += x[h][w][c] * filter[c][k]

}

Listing 5. Excerpt from degenerate 2D convolution LAIR

input

index[w,h] }. The original instance set is

{C[k = PEY,w = 0:13,h = 0:13,

rw = index0 −w, rh = index − h] :

PEX = 0 ∧ 0 ≤ index0 ≤ 15 ∧ 0 ≤ index ≤ 15 ∧

0 ≤ PEY ≤ 1 ∧ −2 + index0 ≤ w ≤ index0 ∧

−2 + index ≤ h ≤ index }.

(27)

The compression is

{ [i0, i1] → C[PEY, index0 − i0, index − i1, i0, i1] } (28)

and the compressed instance set is

{ [i0 = 0:2, i1 = 0:2] :

PEX = 0 ∧ 0 ≤ index0 ≤ 15 ∧ 0 ≤ index ≤ 15 ∧

0 ≤ PEY ≤ 1 ∧ −13 + index0 ≤ i0 ≤ index0 ∧

−13 + index ≤ i1 ≤ index }.

(29)

This is again a rectangular box of non-constant size.

Example 5.7. To illustrate that variable compression, or at

least the isl implementation, can in some case also be used

to turn a strided domain into a dense domain, consider the

(degenerate) 2D convolution in Listing 5, with placement

{C[k,h,w, c] → PE[⌊k/2⌋ + 2 ⌊w/4⌋ , 2 ⌊h/4⌋ + ⌊c/2⌋] }
(30)

and sparse tensor order

{ x[h = 0:7,w = 0:7, c = 0:3] → index[h mod 4,w, c mod 2] }.
(31)

The original instance set is

{C[k = 0:3,h = 0:7,w = index1,

c = index0 + index + 2PEY − h] :

(index0 − h) mod 4 = 0 ∧ 0 ≤ index0 ≤ 3 ∧

0 ≤ index1 ≤ 7 ∧ 0 ≤ index ≤ 1 ∧

h ≤ index0 + index + 2PEY ≤ h + 3 ∧

2PEX − k ≤ 4 ⌊(index1)/4⌋ ≤ 1 + 2PEX − k }.

(32)

The compression is

{ [i0, i1] → C[i0, index0 − 4i1, index1, index + 2PEY + 4i1] }
(33)
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and the compressed instance set is

{ [i0 = 0:3, i1 = ⌊(3 − index − 2PEY)/4⌋] :

0 ≤ index0 ≤ 3 ∧ 0 ≤ index1 ≤ 7 ∧

0 ≤ index ≤ 1 ∧ −7 + index0 ≤ 4i1 ≤ index0 ∧

2PEX − i0 ≤ 4 ⌊(index1)/4⌋ ≤ 1 + 2PEX − i0 }.

(34)

This too is a rectangular box of non-constant size. Note that

the second tuple dimension has a fixed (symbolic) value,

meaning that variable compression failed to exploit all equal-

ity constraints among the variables, mainly because the re-

maining equality constraint is not explicitly available in the

description of the input set. Still, the compressed set has the

form of a rectangular box, be it of size 1 in one dimension.

5.3 Approximation
When performing a convolution, the number of operations

that need to be performed at the border is typically less than

in the center. This causes a variation in the size of the in-

stance set, which would require the SIMD configuration to be

performed multiple times, rather than just once at the start

of the entire execution. It is, however, possible in some cases

to still perform a single SIMD configuration by letting the

SIMD instruction perform some extra operations for those
invocation where it would have to do fewer operations. The

results of these extra operations are then simply discarded.

Since these extra operations are only performed for invo-

cations at the border, the extra cost is small compared to

having to perform a reconfiguration.

The extra instances are obtained by computing a fixed-

size box hull of the (compressed) set of instances. Obviously,

these extra instances should not be allowed to interfere with

the proper instances. In particular, this means that the tensor

elements written by the extra instances should be disjoint

from those written by the proper instances. That is, for any

PE, the sets should be disjoint over all invocations of the

task. This means that the symbolic constants representing

index values should be projected out before checking for

disjointness. The disjoint accesses typically correspond to

out-of-bounds tensor accesses. The mapping of the tensor to

local memory therefore needs to be adjusted accordingly. The

current implementation does not allow the extra instances to

perform any out-of-bounds reads, although this could easily

be relaxed since it does not matter which values are used in

a computation of which the results will be discarded.

Note that dtg_codegen computes a box hull approxima-

tion first and only if this fails to produce a suitable rectan-

gular domain does it try to compute the actual minima and

maxima as described in Section 5.1. This means that this hull

may be used even in cases where the actual (compressed)

instance set already is a rectangular box. The set of extra

instances will simply be empty in such cases and there is

then therefore no way that they could interfere with the

proper instances.

Example 5.8. For the compressed instance set (19) from

Example 5.4, a fixed-size box hull is computed with offset

{ [8PEY] } and size { [8] }, which in this case is the same

as what would be obtained from computing the minimal

and maximal values. There are then also no extra instances

involved.

Example 5.9. The compressed instance set (23) from Ex-

ample 5.5 has a non-constant size (24), but it can be approx-

imated by a fixed-size box hull with offset { [0] } and size

{ [3] }. That is, the approximated (compressed) instance set

is

{ [0:2] : PEX = 0 ∧ 0 ≤ PEY ≤ 1 ∧ 0 ≤ index ≤ 15 }. (35)

The extra instances are therefore

{ [1 + index:2] } ∪ { [0:−14 + index] }, (36)

when simplified with respect to the known constraints on

the symbolic constants.

The read access relation (26) in terms of the compressed

instance set becomes

{ [i0] → W_local[0, i0] } (37)

when composedwith themapping to local memory. The local

memory elements read by the extra instances are therefore

(simplified)

{W_local[0, 1 + index:2] } ∪ {W_local[0, 0:−14 + index] },

(38)

which falls within the bounds of the allocated memory.

The write access relation (26) in terms of the compressed

instance set becomes

{ [i0] → y_local[0, index − i0] } (39)

when composedwith themapping to local memory. The local

memory elements written by the proper instances (over all

index values) are therefore

{ y_local[0, 0:13] : PEX = 0 ∧ 0 ≤ PEY ≤ 1 }, (40)

while those written by the extra instances are

{ y_local[0, 14:15] : PEX = 0 ∧ 0 ≤ PEY ≤ 1 } ∪

{ y_local[0,−2:−1] : PEX = 0 ∧ 0 ≤ PEY ≤ 1 }.
(41)

These sets of memory elements are clearly disjoint, so the

extra instances do not interfere with the proper instances.

The mapping to local memory does need to be adjusted,

though. In particular, the allocation size is extended to be-

come { y_local[1, 18] } and the accesses need to be shifted

over an offset { y_local[0,−2] }.

5.4 Size Enumeration
An alternative to extending the set of instances to a fixed-

size box hull in case it is not of fixed size already is to set

up different SIMD configurations, one for each possible size.

This allows SIMD instructions to be used when the extra

instances introduced by the box hull conflict with the other

8
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instances, with only a limited overhead. In particular, the

SIMD configurations are performed at the start of the exe-

cution and the right configuration is selected before each

invocation of the SIMD instruction. The down-side is that

only a limited number of SIMD configurations can be active

at any given time, meaning that this approach can only be

taken if the total number of possible sizes is small.

Note that, in theory, the sizes may not only depend on the

symbolic constants corresponding to the index values, but

also on those corresponding to the PE coordinates. In order

for the set of sizes to be enumerated, all symbolic constants

need to be projected out. However, each PE should ideally

only perform SIMD configurations for sizes that it needs.

The set of sizes is therefore first approximated by a fixed-size

box hull and the offset is subtracted from the elements in the

actual set of sizes.

Example 5.10. Consider once more the 1D convolution

from Example 5.5. While this input can be handled by the

fixed-size box hull of the computation instances without

conflicts, it is instructive for illustrating the difference. Pro-

jecting out the symbolic constants representing the index

values from the set of sizes (24) yields

{ [1:3] : PEX = 0 ∧ 0 ≤ PEY ≤ 1 }. (42)

The fixed-size box hull has offset { [1] } and size { [3] }. Note

that the offset does not depend on the PE coordinates here,

but it could in theory. Subtracting the offset and projecting

out the symbolic constants corresponding to the PE coordi-

nates yields the set

{ [0:2] }. (43)

The elements in this set are used as identifiers for the differ-

ent SIMD configurations. Adding back the offset that was

subtracted before produces the size that corresponds to an

identifier.

6 Experimental Evaluation
Some preliminary experimental results show the effective-

ness of using SIMD instructions. Unfortunately, the actual

speed-ups obtained cannot be included in this paper as that

would reveal the number of operations that can be performed

in one cycle. The number of cycles performed with and with-

out the use of SIMD instructions are obtained from a simu-

lator of the hardware. In order to obtain a fixed number of

cycles for each invocation of the network layer, the number

of zero entries was set to zero in these experiments. The ten-

sor sizes and the number of PEs used in the experiments are

also kept very small to reduce the running time of the simula-

tor. This means that the advantage of SIMD code over explicit

loops is somewhat exaggerated as there is little steady state

in the loops and therefore comparably a lot of overhead.

For some test cases no SIMD code can or needs to be gener-

ated. These show no difference when SIMD code generation

is enabled. Some test cases show a speed-up below the num-

ber of operations that can be executed in a single cycle by

the SIMD engine. This can be explained by the fact that the

number of iterations performed by the SIMD instruction is

relatively low, meaning that the SIMD instructions do not

completely dominate the number of cycles. Many of the test

cases with lower speed-up use the size enumeration of Sec-

tion 5.4, which has some overhead in selecting the SIMD

configuration. Some test cases show a speed-up that is much

larger than the SIMD width. This can be explained by the

fact that the overhead of the loops simulated by the SIMD

instruction is completely removed. This overhead includes

not only the updates of the loop iterators and the address

calculations, but also the computation of the bounds on inner

loops.

7 Related Work
ALAIR specification is essentially a restricted form of a SARE

(System of Affine Recurrence Equations) augmented with re-

duction operators (Lavenier et al. 1999) with an implicit time.

There is a plethora of research on mapping such systems

to various forms of parallel hardware. In dtg_codegen, this
mapping is currently taken as input and the main purpose

is the generation of PE code for performing the required

communications and computations. Note that the way data

is communicated shares some similarity with the treatment

of communication on SAREs, but this is not the focus of the

present paper.

Feld et al. (2013) focus on finding good tile sizes taking into

account SIMD units and cache sizes. Kong et al. (2013) focus

on constructing schedules that favor stride-0 and stride-1 ac-

cesses and then mapping the resulting vectorizable “codelets”

to efficient target specific SIMD code. Henretty et al. (2013)

focus on stencil computations and combine a data layout

transformation interleaving vector segments with split tiling.

Sharma et al. (2015) perform more general array interleaving

for SIMD architectures. Hallou et al. (2017) operate on binary

code and consider the conversion of SSE to AVX SIMD in-

structions as well as runtime vectorization using polyhedral

compilation techniques.

The instance set compression of Section 5.2 is similar

to the array compaction of Schreiber and Cronquist (2004).

Both this array compaction and the variable compression

of Meister (2004) used in Section 5.2 rely on the Hermite

Normal Form.

Alias and Barthou (2005) decide where to call performance

libraries by matching code against library templates. Iooss

(2016) extends this to templates where inputs can occur mul-

tiple times and also considers semantic properties such as dis-

tributivity, associativity and commutativity. Lu et al. (2012)

break up tensor contraction expressions into components

that are mapped to matrix multiplications with efficient li-

brary implementations. As part of mapping their DSL to

9
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CUDA, Vasilache et al. (2019, Section 3.7) also detect reduc-

tions that can be handled by CUB.

8 Conclusion
This paper has shown that an effective combination of two

relatively well-known polyhedral operations, variable com-

pression and fixed-size box hull, can be used to expose rectan-

gular sets of operations that can be mapped to the advanced

SIMD operations of the Cerebras CS-1 architecture.
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