Integrating Data Layout
Transformations with the
Polyhedral Model

IMPACT 2019
January 23rd, 2019
Jun Shirako and Vivek Sarkar
Georgia Institute of Technology

e Change the statement order of program (i.e., loop structures)

e |Impact on temporal/spatial locality and parallelism
 Use dependence analysis to identify legal transformations

* Best loop transtormation depend on hardware and data layout
e Large body of work since 1980’s, including

 AST-based loop transformations
* Loop fusion/distribution, permutation, skewing, tiling, and etc.
* Sequence of individual transformations applied to AST
e Polyhedral transtormations
e Linear algebraic framework to generalize loop transformations

« Unified and formalized as affine scheduling problems

|_oop Transformations

// Loop permutation
for (i = 0; i < ni; i++)
for (j = 0; J < nj; Jj++)
S: C[i][]J] *= beta;
for (i = 0; i < ni; i++)
for (k = 0; k < nk; k++)
for (j = 0; j < nj; j++)

// Input T: C[i][Jj] += alpha * A[i][k]
for (i = 0; i < ni; i++) , * BLkI[J]:
for (j = 0; j < nj; j++)
S: C[1][]J] *= beta;
for (i = 0; i < ni; i++) *
for (j = 0; j < nj; j++)
for (k = 0; k < nk; k++) // Loop fusion
T: C[i][]J] += alpha * A[1][k] for (i = 0; i < ni; i++) {
* B[k][J]; for (j = 0; j < nj; Jj++)

S: C[i][]J] *= beta;
for (k = 0; k < nk; k++)
for (j = 0; j < nj; j++)
T: C[i][]J] += alpha * A[i][k]
* BLk][J];

Polyhedral model: Unify arbitrary loop transtormations as affine scheduling
®Os = { S(l’ J) - (01 i’ 01 J) }
O = { S('; j’ k) - (O’ i! 1’ k’ J) }

 Change the memory layout of given (fragment of) program
* |Impact on spatial data locality of arrays/variables
« Always legal transtormations, as far as no over-write

* Best layouts depend on program execution order and parallelism

* Various approaches proposed, including
* Array dimensional permutations
« Row-major vs. column-major selection for 2-D arrays
* Data tiling combined with loop iteration tiling
* Per-tile data elements are located closely in space
« ~b5.4x improvement on a 32-thread (4-socket) AMD Opteron [Reddy-ICS14]
* Selection between Array-of-Struct and Struct-of-Array

» Possibly different choices for different systems (e.g., CPUs vs. GPUSs)
e« ~4.7x improvement on a 8-thread IBM POWER7 [Sharma-EuroPar15]

Data Layout Transtformations

// Input
double C[NI][NJ];
double A[NI][NK];
double B[NK][NJ];

for (k = 0; k < nk; k++)
for (1 = 0; 1 < ni; i++)
for (j = 0; jJ < nj; j++)
C[i][]J] += alpha * A[i][k]
* B[k][J];

A

// Array dimensional permutation
double C[NI][NJ];
double A[NK][NI];
double B[NK][NJ];

for (k = 0; k < nk; k++)
for (1 = 0; 1 < ni; i++)
for (j = 0; j < nj; j++)
C[i][]J] += alpha * A[k][1]

* BLk1[J1;

// Conversion to Struct-of-Array
double C[NI][NJ];
struct Struct_of AB {
double A[NI];
double B[NJ];
}i
Struct_of AB SoAB[NK];

for (k = 0; k < nk; k++)
for (i = 0; i < ni; i++)
for (j = 0; J < nj; Jj++)
C[i][j] += alpha * SoAB[k].A[i]
* SoAB[k].B[j];

Goal: Unity arbitrary set of layout transformations via polyhedral model

* Polyhedral model

e Algebraic framework for affine program representations & transtformations
e Unified view that captures arbitrary loop structures

» (Generalize loop transformations as form of affine transform

* Polyhedral representations (SCoPs)

« Domain Ds; : set of statement instances for statement Si
o Access Asi: mapping a statement instance to array element(s) to be accessed

e Schedule Bsi: mapping a statement instance to lexicographical time stamp

« (Capture composition of loop transformations as a single affine mapping

e Unification of various layout transtormations as aftine mapping
e Affine scheduling problem to formalize layout transformations
* As with schedule to generalize loop transformations

e Additional legality constraints for valid data layout transformations

* [wo types of layout representations

* Array-based
* Unit of mapping/transformation is an array element
* Always legal as far as one-to-one mapping
e Value-based
* Unit of mapping/transformation is the value defined by a statement instance

* Support broader range of data layout transtormations, including storage
expansion (i.e., privatization) and contraction

for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; J++)
S: C[1][]J] += alpha * A[1][k] * B[kI[]J];

Dc = {C(e1,e2): O0<ei<ni, 0<es<nj}
Dan = {Ale1,e2): O0<ei<ni, 0<es<nk}
Dg = {B(e1,e2): 0<er<nk, 0<es<nj}

e Array domain Da : set of elements for array A
 A(e) to denote an element of array A

 Lower and upper bounds of each dimension are affine combination of
global parameters (constant value at beginning of runtime SCoP region)

// Original

for (k
for (i = 0; i < ni; i++)

= 0; k < nk; k++)

for (j = 0; J < nj; J++)
C[i][]J] += alpha * A[i][k]
* B[k1[J1;

{ C(e1,e2) = (0, eq,e2) }
{ Ale1,e2) = (1,eq,e2) }
{ Ble1,e2) = (2,e1,€2) }

i

transformation @

// 1. Array permutation for A
// 2. Conversion to Struct-of-Array
for (k = 0; k < nk; k++)
for (1 = 0; i < ni; i++)
for (j = 0; J < nj; Jj++)
C[i][Jj] += alpha * SoAB[k].A[i]
* SoAB[k].B[j];

f codegen

dc = { Cle1,e2) = (0,eq,e2) }
D = { Aler,e2) = (1,e2,0,e1) }
B = { B(e1,62) - (1! e1515e2) }

o Layout @a: mapping array element A(e) to memory space vector

* To capture the relative position in the transformed memory space

* Impose one-to-one mapping to avoid additional legality constraints

* Data layout transformation = find a new layout mapping

o Array element A(e) as unit of representation/transformation

e Array domain Da: define upper/lower bounds of dimensions

e Layout @a: map element A(e) to arbitrary transformed data layout

« Individual array element A(e) has unique location specified by @a(A(e))

o Strength

 No additional legality constraints, assuming one-to-one mapping
e Cover layout transformations to improve spatial locality

e Array permutation, SOA/A0S conversion, data skewing, and data tiling
 Weakness

« Not amenable to support many-to-one (contraction of memory space) and one-
to-many (expansion/privatization for parallelism) transformations

« Best layout @a can differ across statements that access A

« Need data re-distribution with additional data transfer overhead

10

e Total data expansion [Feautrier-lJPP91]
* Convert the input program into single-assignment form
e Value: Unit of transformation
* Producer: An statement instance S(i) defines the value
* Consumers: One or more statement instances T4(j1), ..., Tn(jn) use the value

e Dataflow

* Relations between producer S(i) and consumers T1(j1), ..., Tn(jn) are captured

by dataflow analysis (i.e., j1 = fi(i1), ..., jn = Falin))

e | et flowx denote k-th dataflow:

flow, = (S (D) = Te1G1)eeor Thony Ging)

11

* Loop transformations

« Schedule: ®s = {S(i) = time_stamp_vector |
e S(i) is a statement instance

* (Capture sequential execution order of a program, i.e., loop structure

e Loop transformations = find a new schedule map O

* Data layout transformations

e Layout: &@s = { S(i) @ memory_space_vector |

* S(i) define a unigue value to be used by consumers
e Single-assignment form via total data expansion

e (Capture relative position in the transformed memory space, i.e., data layout

e Layout transformations = find a new layout map @

12

e Value (k-th dataflow)
* Relations between producer Sk(i) and consumers Tk 1(j1), ..., Tkn(jnk)
flow. = {Sk (@) = Te.1Gi1)s o Ty, Uiy)}
* Legality

e Order of instructions: The producer of a value must precede any consumers
of the value (producer-consumer requirement)

O(Sk (1)) < lex_min(®(Tx1(j1))» +or O(Tk.ny (i)

e Liveness of value: The memory location of a value must not be overwritten
until the last use of the value (liveness requirement)

e Given two values whose dataflows are flowi and flow; :
lex_max(O(Tk.1(j1))s -s O(Thn, (i) < O(S1(0))

V lex_max(O(T;,1(1))s -es O(T1.n, (in,))) < O(Sk (i)
VOSk(D) £ ©S()

13

* Value defined by S(i) as unit of representation/transformation
e Total data expansion to convert into single-assignment form

« Layout @a: map value to arbitrary transformed data layout

e Strength
« Enable many-to-one (contraction) and one-to-many (expansion) transform
o Cover layout transformations to improve spatial locality
e Array permutation, SOA/A0S conversion, data skewing and tiling

e \Weakness

* Impose additional legality constraints to drastically increase complexity

o (Currently) lack of efficient cost models and algorithms to co-optimize schedule

and layout considering memory contraction/expansion

14

Layout map:
dc = { C(er, e2) = (0, e1, e2) }
Dy = { Aler,e2) = (1,e2,0,e1) } »
Pz = { B(e1,e2) = (1,eq,1,€2) }

e Schedule tree representation

o Straightforward to capture nested structures of data layout

sequenceroot

— ~—
bando bandj
C(et,e2) = (e1) Ale1,e2) = (e2); B(e1,e2) = (e1)
|
seguence
e N
bando,o band1 o bandi 1

C(eq,e2) = (€2) A(e1,e2) = (e1) B(e1,e2) = (€2)

leafo oo leaft0.0 leaft,1,0
C(es,e2) A(e1,e2) B(e1,e2)

« Capable to compute total data size and relative offset to array element

¢ Seqguence node:
 Band node:

e [eaf node:

#children

size(sequencey) = Z size(child_nodey ;)

=0

size(bandy) = lengthy X size(child_nodey)

lengthy = max(range(bandy)) + pady

size(leafr) =1

* impose same type for all arrays
15

#pragma scop

{
for (1 = 0; 1i < NI; i++)
for (3 = 0; j < NJ; j++)
C[i][j] *= beta;
for (k = 0; k < NK; k++)
for (1 = 0; 1 < NI; i++)
for (j = 0; J < NJ; j++)
C[i][]J] += alpha * A[i][k]
* B[k][J];
}

Layout transformation by:
dc = { C(eq,e2) = (0,eq,e2) }

Dy = { Ale1,e2) = (1,e2 0, e1) }
®s = { B(e1,e2) = (1,e1,1,e2) }

—xample: Code Generation for a given Data Layout

// Dimension length

int len 0 0 = nj + pad;
int len 0 = ni;

int len 1 0 ni + pad;
int len 1 1 nj + pad;
int len 1 = max(nk, nk);

// Tree node size

int band 0 0 = 1len 0 0 * 1;
int band 0 = len 0 * band 0 0;
int band 1 0 len 1 0 * 1;
int band 1 1 len 1 1 * 1;

int seq 1 = band 1 0 + band 1 1;
int band 1 = len 1 + seq 1;

int seq root band0 + band 1;

// Allocation for new layout
double *field = malloc(seq root * sizeof(double));

// Macro to access new layout

#define C(el, e2) field[(el)*band 0 0 + (e2)]

#define A(el, e2) field[band 0 + (e2)*seq 1 + (el)]

#define B(el, e2) field[band 0 + (el)*seq 1 + \
band 1 0 + (e2)]

// Data transfer (copy-in)

for (el = 0; el < ni; el++)
for (e2 = 0; e2 < nj; e2++)
_C(el, e2) = C[el][e2];

// Original scop region

for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)

C(i, J) *= beta;

for (k = 0; k < NK; k++)
for (1 = 0; 1 < NI; 1++)
for (j = 0; J < NJ; j++)
C(i, j) += alpha * _A(i, k) * _B(k, J);

// Data transfer (copy-out) 16

e Platforms

o 12-core 2.8GHz Intel Xeon (Westmere) with Intel C/C++ compiler v15.0
e 24-core 3.0GHz IBM POWERS8 with XL C/C++ compiler 13.1

 Benchmarks: PolyBench 4.2

e 22 benchmarks (total 29 benchmarks) whose kernels are n-dimensional loops working
on m-dimensional arrays (n > m)

e Data copy-in / copy-out were part of measured execution time

e Experimental variants

 Minimum distance schedule (PLUTO algorithm) + best layout

« Compute schedule for original layout; and then manually search best layout
 PolyAST [Shirako-SC14] + best layout

e Same as first variant, with different scheduler
 |terative search (co-optimization)

 [terates through different layouts and apply PolyAST loop transformation in each case;
and find the globally best solution.

17

Performance on 12-core Intel Xeon Westmere

40 min dist loop + best lavou PolvA 00p + best layou inteqrated (co-optimizationr

30
20

|H
|

Geometric mean improvement: 1.21x over PolyAST + best layout

Speedup over sequential

10

itgen fdtd-2d floyd-warshall gemm gramschmidt heat-3d jacobi-1d jacobi-2d ludcmp nov seidel-2d symm trmm GEOMEAN

0

2mm 3mm adi cholesky correla

18

Performance on 24-core IBM POWERS8

120 min dist loop + best lavou OlVA 00p + best layou inteqrated (co-optimizationr

90

60

Speedup over sequential

30

ludcmp

Geometric mean improvement: 1.24x over PolyAST + best layout

19

o Affine representation of data layout transformations
« Array-based layout transformations
* No additional legality constraints to be imposed
o Value-based layout transformations
e Support many-to-one (contraction) / one-to-many (expansion) transformations
* Preliminary integration of loop and data layout transformations
» |terates candidate layouts and compute best loop transformation in each

« Select the globally best solution based on memory and computational cost

e 1.21x/1.24x geometric mean speedup on 12-core Xeon / 24-core POWERS
e [Future work

« (Continue the work on cost-driven integration for array-based layout transformations
 Comparison with the optimal solution by runtime exhaust search
« Extensions and evaluations on GPU architectures

« Develop heuristic to co-optimize schedule and value-based layout transformations

20

