
Integrating Data Layout
Transformations with the

Polyhedral Model

IMPACT 2019
January 23rd, 2019

Jun Shirako and Vivek Sarkar
Georgia Institute of Technology

 2

Loop Transformations

• Change the statement order of program (i.e., loop structures)
• Impact on temporal/spatial locality and parallelism
• Use dependence analysis to identify legal transformations
• Best loop transformation depend on hardware and data layout

• Large body of work since 1980’s, including
• AST-based loop transformations

• Loop fusion/distribution, permutation, skewing, tiling, and etc.
• Sequence of individual transformations applied to AST

• Polyhedral transformations
• Linear algebraic framework to generalize loop transformations
• Unified and formalized as affine scheduling problems

Loop Transformations

 3

// Input
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
S: C[i][j] *= beta;
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 for (k = 0; k < nk; k++)
T: C[i][j] += alpha * A[i][k]
 * B[k][j];

// Loop fusion
 for (i = 0; i < ni; i++) {
 for (j = 0; j < nj; j++)
S: C[i][j] *= beta;
 for (k = 0; k < nk; k++)
 for (j = 0; j < nj; j++)
T: C[i][j] += alpha * A[i][k]
 * B[k][j];
 }

// Loop permutation
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
S: C[i][j] *= beta;
 for (i = 0; i < ni; i++)
 for (k = 0; k < nk; k++)
 for (j = 0; j < nj; j++)
T: C[i][j] += alpha * A[i][k]
 * B[k][j];

Polyhedral model: Unify arbitrary loop transformations as affine scheduling
𝚯S = { S(i, j) → (0, i, 0, j) }
𝚯T = { S(i, j, k) → (0, i, 1, k, j) }

Data Layout Transformations

 4

• Change the memory layout of given (fragment of) program
• Impact on spatial data locality of arrays/variables
• Always legal transformations, as far as no over-write
• Best layouts depend on program execution order and parallelism

• Various approaches proposed, including
• Array dimensional permutations

• Row-major vs. column-major selection for 2-D arrays
• Data tiling combined with loop iteration tiling

• Per-tile data elements are located closely in space
• ~5.4x improvement on a 32-thread (4-socket) AMD Opteron [Reddy-ICS14]

• Selection between Array-of-Struct and Struct-of-Array
• Possibly different choices for different systems (e.g., CPUs vs. GPUs)
• ~4.7x improvement on a 8-thread IBM POWER7 [Sharma-EuroPar15]

Data Layout Transformations

 5

// Input
 double C[NI][NJ];
 double A[NI][NK];
 double B[NK][NJ];
 …
 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 C[i][j] += alpha * A[i][k]
 * B[k][j];

// Conversion to Struct-of-Array
 double C[NI][NJ];
 struct Struct_of_AB {
 double A[NI];
 double B[NJ];
 };
 Struct_of_AB SoAB[NK];
 …
 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 C[i][j] += alpha * SoAB[k].A[i]
 * SoAB[k].B[j];

// Array dimensional permutation
 double C[NI][NJ];
 double A[NK][NI];
 double B[NK][NJ];
 …
 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 C[i][j] += alpha * A[k][i]
 * B[k][j];

Goal: Unify arbitrary set of layout transformations via polyhedral model

Background: Polyhedral Compilation

 6

• Polyhedral model

• Algebraic framework for affine program representations & transformations

• Unified view that captures arbitrary loop structures

• Generalize loop transformations as form of affine transform

• Polyhedral representations (SCoPs)

• Domain 𝐷Si : set of statement instances for statement Si

• Access 𝑨Si : mapping a statement instance to array element(s) to be accessed

• Schedule 𝚯Si : mapping a statement instance to lexicographical time stamp

• Capture composition of loop transformations as a single affine mapping

Affine Representation of Data Layout Transformations

 7

• Unification of various layout transformations as affine mapping
• Affine scheduling problem to formalize layout transformations

• As with schedule to generalize loop transformations
• Additional legality constraints for valid data layout transformations

• Two types of layout representations
• Array-based

• Unit of mapping/transformation is an array element
• Always legal as far as one-to-one mapping

• Value-based
• Unit of mapping/transformation is the value defined by a statement instance
• Support broader range of data layout transformations, including storage

expansion (i.e., privatization) and contraction

Array-based Data Layout Transformations

 8

 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
S: C[i][j] += alpha * A[i][k] * B[k][j];

𝐷C = { C(e1, e2) : 0 ≤ e1 < ni, 0 ≤ e2 < nj }
𝐷A = { A(e1, e2) : 0 ≤ e1 < ni, 0 ≤ e2 < nk }
𝐷B = { B(e1, e2) : 0 ≤ e1 < nk, 0 ≤ e2 < nj }

• Array domain 𝐷A : set of elements for array A
• A(e) to denote an element of array A
• Lower and upper bounds of each dimension are affine combination of

global parameters (constant value at beginning of runtime SCoP region)

Array-based Data Layout Transformations

 9

• Layout 𝜱A: mapping array element A(e) to memory space vector
• To capture the relative position in the transformed memory space
• Impose one-to-one mapping to avoid additional legality constraints
• Data layout transformation = find a new layout mapping

// Original
 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 C[i][j] += alpha * A[i][k]
 * B[k][j];

𝜱C = { C(e1, e2) → (0, e1, e2) }
𝜱A = { A(e1, e2) → (1, e1, e2) }
𝜱B = { B(e1, e2) → (2, e1, e2) }

𝜱C = { C(e1, e2) → (0, e1, e2) }
𝜱A = { A(e1, e2) → (1, e2, 0, e1) }
𝜱B = { B(e1, e2) → (1, e1, 1, e2) }transformation

// 1. Array permutation for A
// 2. Conversion to Struct-of-Array
 for (k = 0; k < nk; k++)
 for (i = 0; i < ni; i++)
 for (j = 0; j < nj; j++)
 C[i][j] += alpha * SoAB[k].A[i]
 * SoAB[k].B[j];

codegen

Summary: Array-based Data Layout Transformations

 10

• Array element A(e) as unit of representation/transformation
• Array domain 𝐷A: define upper/lower bounds of dimensions

• Layout 𝜱A: map element A(e) to arbitrary transformed data layout

• Individual array element A(e) has unique location specified by 𝜱A(A(e))

• Strength
• No additional legality constraints, assuming one-to-one mapping
• Cover layout transformations to improve spatial locality

• Array permutation, SoA/AoS conversion, data skewing, and data tiling

• Weakness
• Not amenable to support many-to-one (contraction of memory space) and one-

to-many (expansion/privatization for parallelism) transformations

• Best layout 𝜱A can differ across statements that access A

• Need data re-distribution with additional data transfer overhead

Value-based Data Layout Transformations

 11

• Total data expansion [Feautrier-IJPP91]

• Convert the input program into single-assignment form

• Value: Unit of transformation

• Producer: An statement instance S(i) defines the value

• Consumers: One or more statement instances T1(j1), …, Tn(jn) use the value

• Dataflow

• Relations between producer S(i) and consumers T1(j1), …, Tn(jn) are captured

by dataflow analysis (i.e., j1 = f1(i1), …, jn = fn(in))

• Let flowk denote k-th dataflow:

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: A[i][j] = C[i][j-1];
T: B[i][j] = A[i][j] + C[i-1][j];
U: C[i][j] = B[i][j];

} }

Figure 3. Sample input
#define _insS(i,j) band_0
#define _insT(i,j) band_0
#define _insU(i,j) band_1 [(j)]

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: _insS(i,j) = _insU(i,j-1);
T: _insT(i,j) = _insS(i,j) + _insU(i-1,j);
U: _insU(i,j) = _insT(i,j);

} }

Figure 4. value-based layout transformation

3.2 Value-Based Layout Transformations
Storage optimizations that contract or expand the memory
space require array data�ow analysis to capture which state-
ment instances (consumers) use the value de�ned by a given
statement instance (producer). The layout transformations
need to be performed so as to ensure legality with respect to
liveness (for many-to-one layouts) and consistency (for one-
to-many layouts). The notion of value-based layout trans-
formation is fundamentally equivalent to partial data ex-
pansion [21]. In contrast to that past work, we aim to also
study legality constraints in cases where the schedule is not
�xed, thereby enabling exploration of an optimization space
in which both the schedule and layout maps are computed
simultaneously.

3.2.1 Total data expansion
As with [21] and [4], we assume the input static control
program is converted into functionally equivalent single-
assignment form, and each statement instance S (~i) has a
unique memory location for its de�ned value – i.e., array
InsS(~i) in [21].We consider this location in the single-assignment
form as value identi�er, which is the unit of interest in value-
based layout transformations.

3.2.2 Layout Mapping
Let layout mapping �S denote the data layout to store the
value de�ned by statement S in the transformed memory
space. �S maps each element S (~i) to logical address vector
expressed as a multidimensional (quasi-)a�ne function of
~i . Analogous to the array-based layout representation, the
value-based representation is capable of modeling arbitrary
layout transformations to enhance spatial data locality, e.g.,
array permutation, AoS/SoA conversion, data skewing, and
data tiling, in addition to storage optimizations to contract/-
expand memory space.

Our ultimate goal is to compute both schedule � and lay-
out � simultaneously as a single optimization problem. The
legality constraints are imposed by value-based dependences.
Let �owk denote k-th data�ow, i.e., value-based Read-After-
Write (RAW) dependence.

�owk = {Sk (~i) ! Tk,1 (~j1), ...,Tk,nk (~jnk)}
Producer-consumer constraints: The producer of a value
Sk (~i) must precede any consumers of the value Tk,1 (~j1), ...,
Tk,nk (~jnk).

�(Sk (~i)) � lex_min(�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk)))

Liveness constraints: Thememory location of a valuemust
not be overwritten until the last use of the value. In other
words, given two value-based RAW dependences �owk and
�owl , they must satisfy either of: livenesses of �owk and
�owl do not overlap; or memory locations identi�ed by
�(Sk (~i)) and �(Sl (~i)) are di�erent.

lex_max (�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk))) � �(Sl (~i))

_ lex_max (�(Tl,1 (~j1)), ..., �(Tl,nl (~jnl))) � �(Sk (~i))

_ �(Sk (~i)) , �(Sl (~i))

Figures 3 and 4 respectively show a sample input code
and the code with value-based data layout transformations
to contract the memory space. After converting the input
program into single-assignment form (e.g, A[i][j] into
_instS(i,j)), the following layout mapping is used to spec-
ify the location to store the de�ned values in the transformed
memory space.

�S = {S (i, j) ! (0)}
�T = {T (i, j) ! (0)}
�U = {U (i, j) ! (1, j)}

4 Code Generation for Transformed
Layout

4.1 Code-level Layout Speci�cation
The a�ne mapping representations of layout transforma-
tions are straightforward to be used at the source code level.
We use the following layout directive to specify layout trans-
formations as an extension to the C language:

#pragma layout map(trans f er :map : dom) ...

where one or more map clauses, each of which speci�es the
layout transformations of a single array, can be included in
directive. A map clause contains three components: trans f er
is the type of data transfers among original and transformed
layouts;map is the a�ne mapping of array element A(~e) to
multidimensional layout vector; anddom is the array domain.
There are four types of transfers: in – i.e. copy-in from

the original to transformed layouts, out – i.e., copy-out from

Value-based Data Layout Transformations

 12

• Loop transformations

• Schedule: 𝚯S = { S(i) → time_stamp_vector }

• S(i) is a statement instance

• Capture sequential execution order of a program, i.e., loop structure

• Loop transformations = find a new schedule map 𝚯

• Data layout transformations

• Layout: 𝜱S = { S(i) → memory_space_vector }

• S(i) define a unique value to be used by consumers

• Single-assignment form via total data expansion

• Capture relative position in the transformed memory space, i.e., data layout

• Layout transformations = find a new layout map 𝜱

Legality of Value-based Data Layout Transformations

 13

• Value (k-th dataflow)
• Relations between producer Sk(i) and consumers Tk,1(j1), …, Tk,n(jnk)

• Legality
• Order of instructions: The producer of a value must precede any consumers

of the value (producer-consumer requirement)

• Liveness of value: The memory location of a value must not be overwritten
until the last use of the value (liveness requirement)
• Given two values whose dataflows are flowk and flowl :

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: A[i][j] = C[i][j-1];
T: B[i][j] = A[i][j] + C[i-1][j];
U: C[i][j] = B[i][j];

} }

Figure 3. Sample input
#define _insS(i,j) band_0
#define _insT(i,j) band_0
#define _insU(i,j) band_1 [(j)]

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: _insS(i,j) = _insU(i,j-1);
T: _insT(i,j) = _insS(i,j) + _insU(i-1,j);
U: _insU(i,j) = _insT(i,j);

} }

Figure 4. value-based layout transformation

3.2 Value-Based Layout Transformations
Storage optimizations that contract or expand the memory
space require array data�ow analysis to capture which state-
ment instances (consumers) use the value de�ned by a given
statement instance (producer). The layout transformations
need to be performed so as to ensure legality with respect to
liveness (for many-to-one layouts) and consistency (for one-
to-many layouts). The notion of value-based layout trans-
formation is fundamentally equivalent to partial data ex-
pansion [21]. In contrast to that past work, we aim to also
study legality constraints in cases where the schedule is not
�xed, thereby enabling exploration of an optimization space
in which both the schedule and layout maps are computed
simultaneously.

3.2.1 Total data expansion
As with [21] and [4], we assume the input static control
program is converted into functionally equivalent single-
assignment form, and each statement instance S (~i) has a
unique memory location for its de�ned value – i.e., array
InsS(~i) in [21].We consider this location in the single-assignment
form as value identi�er, which is the unit of interest in value-
based layout transformations.

3.2.2 Layout Mapping
Let layout mapping �S denote the data layout to store the
value de�ned by statement S in the transformed memory
space. �S maps each element S (~i) to logical address vector
expressed as a multidimensional (quasi-)a�ne function of
~i . Analogous to the array-based layout representation, the
value-based representation is capable of modeling arbitrary
layout transformations to enhance spatial data locality, e.g.,
array permutation, AoS/SoA conversion, data skewing, and
data tiling, in addition to storage optimizations to contract/-
expand memory space.

Our ultimate goal is to compute both schedule � and lay-
out � simultaneously as a single optimization problem. The
legality constraints are imposed by value-based dependences.
Let �owk denote k-th data�ow, i.e., value-based Read-After-
Write (RAW) dependence.

�owk = {Sk (~i) ! Tk,1 (~j1), ...,Tk,nk (~jnk)}
Producer-consumer constraints: The producer of a value
Sk (~i) must precede any consumers of the value Tk,1 (~j1), ...,
Tk,nk (~jnk).

�(Sk (~i)) � lex_min(�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk)))

Liveness constraints: Thememory location of a valuemust
not be overwritten until the last use of the value. In other
words, given two value-based RAW dependences �owk and
�owl , they must satisfy either of: livenesses of �owk and
�owl do not overlap; or memory locations identi�ed by
�(Sk (~i)) and �(Sl (~i)) are di�erent.

lex_max (�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk))) � �(Sl (~i))

_ lex_max (�(Tl,1 (~j1)), ..., �(Tl,nl (~jnl))) � �(Sk (~i))

_ �(Sk (~i)) , �(Sl (~i))

Figures 3 and 4 respectively show a sample input code
and the code with value-based data layout transformations
to contract the memory space. After converting the input
program into single-assignment form (e.g, A[i][j] into
_instS(i,j)), the following layout mapping is used to spec-
ify the location to store the de�ned values in the transformed
memory space.

�S = {S (i, j) ! (0)}
�T = {T (i, j) ! (0)}
�U = {U (i, j) ! (1, j)}

4 Code Generation for Transformed
Layout

4.1 Code-level Layout Speci�cation
The a�ne mapping representations of layout transforma-
tions are straightforward to be used at the source code level.
We use the following layout directive to specify layout trans-
formations as an extension to the C language:

#pragma layout map(trans f er :map : dom) ...

where one or more map clauses, each of which speci�es the
layout transformations of a single array, can be included in
directive. A map clause contains three components: trans f er
is the type of data transfers among original and transformed
layouts;map is the a�ne mapping of array element A(~e) to
multidimensional layout vector; anddom is the array domain.
There are four types of transfers: in – i.e. copy-in from

the original to transformed layouts, out – i.e., copy-out from

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: A[i][j] = C[i][j-1];
T: B[i][j] = A[i][j] + C[i-1][j];
U: C[i][j] = B[i][j];

} }

Figure 3. Sample input
#define _insS(i,j) band_0
#define _insT(i,j) band_0
#define _insU(i,j) band_1 [(j)]

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: _insS(i,j) = _insU(i,j-1);
T: _insT(i,j) = _insS(i,j) + _insU(i-1,j);
U: _insU(i,j) = _insT(i,j);

} }

Figure 4. value-based layout transformation

3.2 Value-Based Layout Transformations
Storage optimizations that contract or expand the memory
space require array data�ow analysis to capture which state-
ment instances (consumers) use the value de�ned by a given
statement instance (producer). The layout transformations
need to be performed so as to ensure legality with respect to
liveness (for many-to-one layouts) and consistency (for one-
to-many layouts). The notion of value-based layout trans-
formation is fundamentally equivalent to partial data ex-
pansion [21]. In contrast to that past work, we aim to also
study legality constraints in cases where the schedule is not
�xed, thereby enabling exploration of an optimization space
in which both the schedule and layout maps are computed
simultaneously.

3.2.1 Total data expansion
As with [21] and [4], we assume the input static control
program is converted into functionally equivalent single-
assignment form, and each statement instance S (~i) has a
unique memory location for its de�ned value – i.e., array
InsS(~i) in [21].We consider this location in the single-assignment
form as value identi�er, which is the unit of interest in value-
based layout transformations.

3.2.2 Layout Mapping
Let layout mapping �S denote the data layout to store the
value de�ned by statement S in the transformed memory
space. �S maps each element S (~i) to logical address vector
expressed as a multidimensional (quasi-)a�ne function of
~i . Analogous to the array-based layout representation, the
value-based representation is capable of modeling arbitrary
layout transformations to enhance spatial data locality, e.g.,
array permutation, AoS/SoA conversion, data skewing, and
data tiling, in addition to storage optimizations to contract/-
expand memory space.

Our ultimate goal is to compute both schedule � and lay-
out � simultaneously as a single optimization problem. The
legality constraints are imposed by value-based dependences.
Let �owk denote k-th data�ow, i.e., value-based Read-After-
Write (RAW) dependence.

�owk = {Sk (~i) ! Tk,1 (~j1), ...,Tk,nk (~jnk)}
Producer-consumer constraints: The producer of a value
Sk (~i) must precede any consumers of the value Tk,1 (~j1), ...,
Tk,nk (~jnk).

�(Sk (~i)) � lex_min(�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk)))

Liveness constraints: Thememory location of a valuemust
not be overwritten until the last use of the value. In other
words, given two value-based RAW dependences �owk and
�owl , they must satisfy either of: livenesses of �owk and
�owl do not overlap; or memory locations identi�ed by
�(Sk (~i)) and �(Sl (~i)) are di�erent.

lex_max (�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk))) � �(Sl (~i))

_ lex_max (�(Tl,1 (~j1)), ..., �(Tl,nl (~jnl))) � �(Sk (~i))

_ �(Sk (~i)) , �(Sl (~i))

Figures 3 and 4 respectively show a sample input code
and the code with value-based data layout transformations
to contract the memory space. After converting the input
program into single-assignment form (e.g, A[i][j] into
_instS(i,j)), the following layout mapping is used to spec-
ify the location to store the de�ned values in the transformed
memory space.

�S = {S (i, j) ! (0)}
�T = {T (i, j) ! (0)}
�U = {U (i, j) ! (1, j)}

4 Code Generation for Transformed
Layout

4.1 Code-level Layout Speci�cation
The a�ne mapping representations of layout transforma-
tions are straightforward to be used at the source code level.
We use the following layout directive to specify layout trans-
formations as an extension to the C language:

#pragma layout map(trans f er :map : dom) ...

where one or more map clauses, each of which speci�es the
layout transformations of a single array, can be included in
directive. A map clause contains three components: trans f er
is the type of data transfers among original and transformed
layouts;map is the a�ne mapping of array element A(~e) to
multidimensional layout vector; anddom is the array domain.
There are four types of transfers: in – i.e. copy-in from

the original to transformed layouts, out – i.e., copy-out from

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: A[i][j] = C[i][j-1];
T: B[i][j] = A[i][j] + C[i-1][j];
U: C[i][j] = B[i][j];

} }

Figure 3. Sample input
#define _insS(i,j) band_0
#define _insT(i,j) band_0
#define _insU(i,j) band_1 [(j)]

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: _insS(i,j) = _insU(i,j-1);
T: _insT(i,j) = _insS(i,j) + _insU(i-1,j);
U: _insU(i,j) = _insT(i,j);

} }

Figure 4. value-based layout transformation

3.2 Value-Based Layout Transformations
Storage optimizations that contract or expand the memory
space require array data�ow analysis to capture which state-
ment instances (consumers) use the value de�ned by a given
statement instance (producer). The layout transformations
need to be performed so as to ensure legality with respect to
liveness (for many-to-one layouts) and consistency (for one-
to-many layouts). The notion of value-based layout trans-
formation is fundamentally equivalent to partial data ex-
pansion [21]. In contrast to that past work, we aim to also
study legality constraints in cases where the schedule is not
�xed, thereby enabling exploration of an optimization space
in which both the schedule and layout maps are computed
simultaneously.

3.2.1 Total data expansion
As with [21] and [4], we assume the input static control
program is converted into functionally equivalent single-
assignment form, and each statement instance S (~i) has a
unique memory location for its de�ned value – i.e., array
InsS(~i) in [21].We consider this location in the single-assignment
form as value identi�er, which is the unit of interest in value-
based layout transformations.

3.2.2 Layout Mapping
Let layout mapping �S denote the data layout to store the
value de�ned by statement S in the transformed memory
space. �S maps each element S (~i) to logical address vector
expressed as a multidimensional (quasi-)a�ne function of
~i . Analogous to the array-based layout representation, the
value-based representation is capable of modeling arbitrary
layout transformations to enhance spatial data locality, e.g.,
array permutation, AoS/SoA conversion, data skewing, and
data tiling, in addition to storage optimizations to contract/-
expand memory space.

Our ultimate goal is to compute both schedule � and lay-
out � simultaneously as a single optimization problem. The
legality constraints are imposed by value-based dependences.
Let �owk denote k-th data�ow, i.e., value-based Read-After-
Write (RAW) dependence.

�owk = {Sk (~i) ! Tk,1 (~j1), ...,Tk,nk (~jnk)}
Producer-consumer constraints: The producer of a value
Sk (~i) must precede any consumers of the value Tk,1 (~j1), ...,
Tk,nk (~jnk).

�(Sk (~i)) � lex_min(�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk)))

Liveness constraints: Thememory location of a valuemust
not be overwritten until the last use of the value. In other
words, given two value-based RAW dependences �owk and
�owl , they must satisfy either of: livenesses of �owk and
�owl do not overlap; or memory locations identi�ed by
�(Sk (~i)) and �(Sl (~i)) are di�erent.

lex_max (�(Tk,1 (~j1)), ..., �(Tk,nk (~jnk))) � �(Sl (~i))

_ lex_max (�(Tl,1 (~j1)), ..., �(Tl,nl (~jnl))) � �(Sk (~i))

_ �(Sk (~i)) , �(Sl (~i))

Figures 3 and 4 respectively show a sample input code
and the code with value-based data layout transformations
to contract the memory space. After converting the input
program into single-assignment form (e.g, A[i][j] into
_instS(i,j)), the following layout mapping is used to spec-
ify the location to store the de�ned values in the transformed
memory space.

�S = {S (i, j) ! (0)}
�T = {T (i, j) ! (0)}
�U = {U (i, j) ! (1, j)}

4 Code Generation for Transformed
Layout

4.1 Code-level Layout Speci�cation
The a�ne mapping representations of layout transforma-
tions are straightforward to be used at the source code level.
We use the following layout directive to specify layout trans-
formations as an extension to the C language:

#pragma layout map(trans f er :map : dom) ...

where one or more map clauses, each of which speci�es the
layout transformations of a single array, can be included in
directive. A map clause contains three components: trans f er
is the type of data transfers among original and transformed
layouts;map is the a�ne mapping of array element A(~e) to
multidimensional layout vector; anddom is the array domain.
There are four types of transfers: in – i.e. copy-in from

the original to transformed layouts, out – i.e., copy-out from

Summary: Value-based Data Layout Transformations

 14

• Value defined by S(i) as unit of representation/transformation
• Total data expansion to convert into single-assignment form

• Layout 𝜱A: map value to arbitrary transformed data layout

• Strength
• Enable many-to-one (contraction) and one-to-many (expansion) transform

• Cover layout transformations to improve spatial locality

• Array permutation, SoA/AoS conversion, data skewing and tiling

• Weakness
• Impose additional legality constraints to drastically increase complexity

• (Currently) lack of efficient cost models and algorithms to co-optimize schedule
and layout considering memory contraction/expansion

Code Generation via Schedule Tree

 15

Layout map:
𝜱C = { C(e1, e2) → (0, e1, e2) }
𝜱A = { A(e1, e2) → (1, e2, 0, e1) }
𝜱B = { B(e1, e2) → (1, e1, 1, e2) }

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the a�ne combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or speci�ed in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations speci�ed as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we �rst convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized �eld
The �rst approach is to map the schedule tree form of layout
mapping into a one-dimensional memory �eld. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total �eld size and the o�set to individual array
element in the linearized �eld, we �rst compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#childrenX

i=0
size (child_nodek,i)

• Size of band node is its child node size ⇥ dimension
length, which is given by the maximum value of the
dimension with optional padding (padk � 1).

size (bandk) = len�thk ⇥ size (child_nodek (,0))

len�thk =max (ran�e (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(t�pe))

In the code generation phase, the schedule tree is traversed in
depth-�rst order and the expressions of dimension lengths
and node sizes are de�ned respectively, according to the
above rules (Figure 7).
The total �eld size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The o�set to array element A(~e) is equivalent to the
linearized form of layout mapping �A and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size ⇥ the
expression of the loop dimension, e.g., e2 and e1 for the �rst
and second loop dimensions of array A (Figure 6). The code
generation phase also de�nes the expressions of total �eld
size and o�sets, and inserts the statement to allocate the
linearized array �eld and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the �rst approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We �rst determine the data type of
each node in the following manner.

• Schedule tree representation
• Straightforward to capture nested structures of data layout
• Capable to compute total data size and relative offset to array element

• Sequence node:

• Band node:

• Leaf node:

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the a�ne combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or speci�ed in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations speci�ed as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we �rst convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized �eld
The �rst approach is to map the schedule tree form of layout
mapping into a one-dimensional memory �eld. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total �eld size and the o�set to individual array
element in the linearized �eld, we �rst compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#childrenX

i=0
size (child_nodek,i)

• Size of band node is its child node size ⇥ dimension
length, which is given by the maximum value of the
dimension with optional padding (padk � 1).

size (bandk) = len�thk ⇥ size (child_nodek (,0))

len�thk =max (ran�e (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(t�pe))

In the code generation phase, the schedule tree is traversed in
depth-�rst order and the expressions of dimension lengths
and node sizes are de�ned respectively, according to the
above rules (Figure 7).
The total �eld size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The o�set to array element A(~e) is equivalent to the
linearized form of layout mapping �A and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size ⇥ the
expression of the loop dimension, e.g., e2 and e1 for the �rst
and second loop dimensions of array A (Figure 6). The code
generation phase also de�nes the expressions of total �eld
size and o�sets, and inserts the statement to allocate the
linearized array �eld and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the �rst approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We �rst determine the data type of
each node in the following manner.

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the a�ne combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or speci�ed in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations speci�ed as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we �rst convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized �eld
The �rst approach is to map the schedule tree form of layout
mapping into a one-dimensional memory �eld. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total �eld size and the o�set to individual array
element in the linearized �eld, we �rst compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#childrenX

i=0
size (child_nodek,i)

• Size of band node is its child node size ⇥ dimension
length, which is given by the maximum value of the
dimension with optional padding (padk � 1).

size (bandk) = len�thk ⇥ size (child_nodek (,0))

len�thk =max (ran�e (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(t�pe))

In the code generation phase, the schedule tree is traversed in
depth-�rst order and the expressions of dimension lengths
and node sizes are de�ned respectively, according to the
above rules (Figure 7).
The total �eld size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The o�set to array element A(~e) is equivalent to the
linearized form of layout mapping �A and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size ⇥ the
expression of the loop dimension, e.g., e2 and e1 for the �rst
and second loop dimensions of array A (Figure 6). The code
generation phase also de�nes the expressions of total �eld
size and o�sets, and inserts the statement to allocate the
linearized array �eld and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the �rst approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We �rst determine the data type of
each node in the following manner.

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the a�ne combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or speci�ed in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations speci�ed as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we �rst convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized �eld
The �rst approach is to map the schedule tree form of layout
mapping into a one-dimensional memory �eld. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total �eld size and the o�set to individual array
element in the linearized �eld, we �rst compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#childrenX

i=0
size (child_nodek,i)

• Size of band node is its child node size ⇥ dimension
length, which is given by the maximum value of the
dimension with optional padding (padk � 1).

size (bandk) = len�thk ⇥ size (child_nodek (,0))

len�thk =max (ran�e (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(t�pe))

In the code generation phase, the schedule tree is traversed in
depth-�rst order and the expressions of dimension lengths
and node sizes are de�ned respectively, according to the
above rules (Figure 7).
The total �eld size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The o�set to array element A(~e) is equivalent to the
linearized form of layout mapping �A and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size ⇥ the
expression of the loop dimension, e.g., e2 and e1 for the �rst
and second loop dimensions of array A (Figure 6). The code
generation phase also de�nes the expressions of total �eld
size and o�sets, and inserts the statement to allocate the
linearized array �eld and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the �rst approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We �rst determine the data type of
each node in the following manner.

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the a�ne combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or speci�ed in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations speci�ed as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we �rst convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized �eld
The �rst approach is to map the schedule tree form of layout
mapping into a one-dimensional memory �eld. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total �eld size and the o�set to individual array
element in the linearized �eld, we �rst compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#childrenX

i=0
size (child_nodek,i)

• Size of band node is its child node size ⇥ dimension
length, which is given by the maximum value of the
dimension with optional padding (padk � 1).

size (bandk) = len�thk ⇥ size (child_nodek (,0))

len�thk =max (ran�e (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(t�pe))

In the code generation phase, the schedule tree is traversed in
depth-�rst order and the expressions of dimension lengths
and node sizes are de�ned respectively, according to the
above rules (Figure 7).
The total �eld size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The o�set to array element A(~e) is equivalent to the
linearized form of layout mapping �A and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size ⇥ the
expression of the loop dimension, e.g., e2 and e1 for the �rst
and second loop dimensions of array A (Figure 6). The code
generation phase also de�nes the expressions of total �eld
size and o�sets, and inserts the statement to allocate the
linearized array �eld and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the �rst approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We �rst determine the data type of
each node in the following manner.

* impose same type for all arrays

Example: Code Generation for a given Data Layout

 16

#pragma scop
{
 for (i = 0; i < NI; i++)
 for (j = 0; j < NJ; j++)
 C[i][j] *= beta;

 for (k = 0; k < NK; k++)
 for (i = 0; i < NI; i++)
 for (j = 0; j < NJ; j++)
 C[i][j] += alpha * A[i][k]
 * B[k][j];
}

Layout transformation by:
𝜱C = { C(e1, e2) → (0, e1, e2) }
𝜱A = { A(e1, e2) → (1, e2, 0, e1) }
𝜱B = { B(e1, e2) → (1, e1, 1, e2) }

 // Dimension length
 int len_0_0 = nj + pad;
 int len_0 = ni;
 int len_1_0 = ni + pad;
 int len_1_1 = nj + pad;
 int len_1 = max(nk, nk);

 // Tree node size
 int band_0_0 = len_0_0 * 1;
 int band_0 = len_0 * band_0_0;
 int band_1_0 = len_1_0 * 1;
 int band_1_1 = len_1_1 * 1;
 int seq_1 = band_1_0 + band_1_1;
 int band_1 = len_1 + seq_1;
 int seq_root = band0 + band_1;

 // Allocation for new layout
 double *field = malloc(seq_root * sizeof(double));

 // Macro to access new layout
 #define _C(e1, e2) field[(e1)*band_0_0 + (e2)]
 #define _A(e1, e2) field[band_0 + (e2)*seq_1 + (e1)]
 #define _B(e1, e2) field[band_0 + (e1)*seq_1 + \
 band_1_0 + (e2)]

 // Original scop region
 for (i = 0; i < NI; i++)
 for (j = 0; j < NJ; j++)
 _C(i, j) *= beta;

 for (k = 0; k < NK; k++)
 for (i = 0; i < NI; i++)
 for (j = 0; j < NJ; j++)
 _C(i, j) += alpha * _A(i, k) * _B(k, j);

 // Data transfer (copy-in)
 for (e1 = 0; e1 < ni; e1++)
 for (e2 = 0; e2 < nj; e2++)
 _C(e1, e2) = C[e1][e2];
 …

 // Data transfer (copy-out)
 …

 17

• Platforms
• 12-core 2.8GHz Intel Xeon (Westmere) with Intel C/C++ compiler v15.0
• 24-core 3.0GHz IBM POWER8 with XL C/C++ compiler 13.1

• Benchmarks: PolyBench 4.2
• 22 benchmarks (total 29 benchmarks) whose kernels are n-dimensional loops working

on m-dimensional arrays (n > m)
• Data copy-in / copy-out were part of measured execution time

• Experimental variants
• Minimum distance schedule (PLUTO algorithm) + best layout

• Compute schedule for original layout; and then manually search best layout
• PolyAST [Shirako-SC14] + best layout

• Same as first variant, with different scheduler
• Iterative search (co-optimization)

• Iterates through different layouts and apply PolyAST loop transformation in each case;
and find the globally best solution.

Preliminary Results for Loop and Data
Layout Co-optimizations

 18

Performance on 12-core Intel Xeon Westmere
Sp

ee
du

p
ov

er
 s

eq
ue

nt
ia

l

0

10

20

30

40

2mm 3mm adi cholesky correlation covariance doitgen fdtd-2d floyd-warshall gemm gramschmidt heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm GEOMEAN

min dist loop + best layout PolyAST loop + best layout integrated (co-optimization)

Geometric mean improvement: 1.21x over PolyAST + best layout

 19

Performance on 24-core IBM POWER8
Sp

ee
du

p
ov

er
 s

eq
ue

nt
ia

l

0

30

60

90

120

2mm 3mm adi cholesky correlation covariance doitgen fdtd-2d floyd-warshall gemm gramschmidt heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm GEOMEAN

min dist loop + best layout PolyAST loop + best layout integrated (co-optimization)

Geometric mean improvement: 1.24x over PolyAST + best layout

 20

Conclusions
• Affine representation of data layout transformations

• Array-based layout transformations
• No additional legality constraints to be imposed

• Value-based layout transformations
• Support many-to-one (contraction) / one-to-many (expansion) transformations

• Preliminary integration of loop and data layout transformations
• Iterates candidate layouts and compute best loop transformation in each
• Select the globally best solution based on memory and computational cost

• 1.21x / 1.24x geometric mean speedup on 12-core Xeon / 24-core POWER8

• Future work
• Continue the work on cost-driven integration for array-based layout transformations

• Comparison with the optimal solution by runtime exhaust search
• Extensions and evaluations on GPU architectures

• Develop heuristic to co-optimize schedule and value-based layout transformations

