
Beyond Polyhedral Analysis of OpenStream Programs

Nuno Miguel Nobre nunomiguel.nobre@manchester.ac.uk

Joint work with: Andi Drebes, Graham Riley and Antoniu Pop

IMPACT 2019: January 23, 2019 | Valencia, Spain

2 / 15

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

• Point-to-point synchronization

▪ Hide latency

• Numerous opportunities for parallelism

▪ Task, data and pipeline

• Scheduling is the runtime’s job

• Provide functional determinism

2 / 15

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

• Point-to-point synchronization

▪ Hide latency

• Numerous opportunities for parallelism

▪ Task, data and pipeline

• Scheduling is the runtime’s job

• Provide functional determinism

But also disadvantages:

• Manually specified tasks

▪ Challenging dependency specification

▪ Hard debugging

▪ What’s the right granularity?

• Memory footprint: no in-place writes

2 / 15

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

• Point-to-point synchronization

▪ Hide latency

• Numerous opportunities for parallelism

▪ Task, data and pipeline

• Scheduling is the runtime’s job

• Provide functional determinism

But also disadvantages:

• Manually specified tasks

▪ Challenging dependency specification

▪ Hard debugging

▪ What’s the right granularity?

• Memory footprint: no in-place writes

3 / 15

Why the polyhedral model?

• Arbitrarily compose loop transformations inc. tiling granularity control

• Static program analysis streams memory footprint/bounding

• Multi-objective: parallelism, vectorization, multi-level cache reuse

• Compact program representation unlike graph algorithms

• Despite restrictions: stencils, dense linear algebra and image filters

Outline

4 / 15

1) Manual granularity tuning

• Motivating example: Gauss-Seidel stencil

2) Stream bounding & automatic granularity tuning

• The polynomial indexing problem

• Future work solutions

OpenStream: a (very) short overview

5 / 15

Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically
at runtime

c1

p1

p2

task

task

task

…

…

?

?

?

?

stream

OpenStream: a (very) short overview

5 / 15

Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically
at runtime

c1

p1

p2

task

task

task

…

…

?

?

?

?

stream

OpenStream: a (very) short overview

5 / 15

Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically
at runtime

Stream accesses dictate the
dependencies between tasks

c1

p1

p2

task

task

task

…

…

?

?

?

a

stream

OpenStream: a (very) short overview

5 / 15

Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically
at runtime

Stream accesses dictate the
dependencies between tasks

c1

p1

p2

task

task

task

…

…

a

b

c

d

stream

OpenStream: a (very) short overview

5 / 15

Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically
at runtime

Stream accesses dictate the
dependencies between tasks

c1

p1

p2

task

task

task

…

…

a

b

c

d

stream

c2

task

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

6 / 15

1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]
stream_array S[N];

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
task {
read once from S[j]; // phi[j] (discarded)
peek once from S[j - 1]; // phi[j - 1]
peek once from S[j + 1]; // phi[j + 1]
write once into S[j]; // phi[j]

// work function:
// phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

}

OpenStream: Fine-grained tasks [OS-FG]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

1/ 2 + 1/ 2

7 / 15

1D Gauss-Seidel: stencil code granularity tuning

Loop tile/
Pluto-tiled task

Flow dependence
distance vector
between tiles

Loop iteration/
fine-grained task

j

i

1) Semantically equivalent C code (SA)

2) Pluto source-to-source compiler

3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT]

7 / 15

1D Gauss-Seidel: stencil code granularity tuning

Loop tile/
Pluto-tiled task

Flow dependence
distance vector
between tiles

Loop iteration/
fine-grained task

j

i

OpenStream: Spatially tiled tasks [OS-ST]

Spatially tiled task

Flow dependence
distance vector
between tiles

Loop iteration/
fine-grained task

j

i

1) Semantically equivalent C code (SA)

2) Pluto source-to-source compiler

3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT]

8 / 15

1D Gauss-Seidel: results

9 / 15

2D Gauss-Seidel: a visual picture

j

k

i

OpenStream: Fine-grained tasks [OS-FG]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence
distance vector

j

i

2D Gauss-Seidel: a visual picture

10 / 15

j

k

i

OpenStream: Pluto-tiled tasks [OS-PT]

2D Gauss-Seidel: a visual picture

10 / 15

j

k

i

OpenStream: Spatially tiled tasks [OS-ST]

j

k

i

OpenStream: Pluto-tiled tasks [OS-PT]

11 / 15

2D Gauss-Seidel: results

The polynomial problem

12 / 15

• Stream indexing is polynomial

▪ e.g. parametric tiling

The polynomial problem

12 / 15

• Stream indexing is polynomial

▪ e.g. parametric tiling

• Deadlock undecidability

▪ Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

The polynomial problem

12 / 15

• Stream indexing is polynomial

▪ e.g. parametric tiling

• Deadlock undecidability

▪ Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

• Schedule found: no deadlock

▪ Paul Feautrier and Albert Cohen. 2018. On Polynomial Code Generation

13 / 15

Future work: bounding streams

c1

p1

p2

task

task

task

…

…

a

b

c

d

stream

p1

c1

p2

Dataflow task graph

13 / 15

Future work: bounding streams

c1

p1

p2

task

task

task

…

…

a

b

c

d

stream

p1

c1

p2

3-element stream:
deadlock

p1

c1

p2

Dataflow task graph

Back-pressure dependencies
Dataflow task graph: new edges (cycle)

Poly. model: “just” new schedule restrictions (no schedule)

13 / 15

Future work: bounding streams

c1

p1

p2

task

task

task

…

…

a

b

c

d

stream

p1

c1

p2

3-element stream:
deadlock

p1

c1

p2

Dataflow task graph

Back-pressure dependencies
Dataflow task graph: new edges (cycle)

Poly. model: “just” new schedule restrictions (no schedule)

If schedule found: OpenStream’s runtime can schedule the program

Future work: coarsening task graphs

14 / 15

Dataflow task graph

t1

t3

t2t1

t0

t2

Future work: coarsening task graphs

14 / 15

Dataflow task graph

t1

t3

t2t1

t0

t2

t1

t0 + t3

t2

Arbitrary coarsening:
deadlock

Future work: coarsening task graphs

14 / 15

Loop strip-mining, facilitated by stream mushing

Dataflow task graph

t1

t3

t2t1

t0

t2

t1

t0 + t3

t2

Arbitrary coarsening:
deadlock

e.g. coalescing instances of
the same task

t3

t0

t1 + t2

Future work: coarsening task graphs

14 / 15

Loop strip-mining, facilitated by stream mushing

If schedule found: OpenStream’s runtime can schedule the program

Dataflow task graph

t1

t3

t2t1

t0

t2

t1

t0 + t3

t2

Arbitrary coarsening:
deadlock

e.g. coalescing instances of
the same task

t3

t0

t1 + t2

Summary

15 / 15

• Task-parallel dataflow programs can benefit from polyhedral transformations

• Analyses and transformations are hindered by polynomials

• Bounding streams: adding back-pressure dependencies and finding a schedule

• Granularity control: loop strip-mining? how do we align this w/ current techniques?

