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How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models 
have strong assets:

• Point-to-point synchronization

▪ Hide latency

• Numerous opportunities for parallelism

▪ Task, data and pipeline

• Scheduling is the runtime’s job

• Provide functional determinism
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Why the polyhedral model?

• Arbitrarily compose loop transformations inc. tiling granularity control

• Static program analysis streams memory footprint/bounding

• Multi-objective: parallelism, vectorization, multi-level cache reuse

• Compact program representation unlike graph algorithms

• Despite restrictions: stencils, dense linear algebra and image filters



Outline
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1) Manual granularity tuning

• Motivating example: Gauss-Seidel stencil

2) Stream bounding & automatic granularity tuning

• The polynomial indexing problem

• Future work solutions
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Data-flow extension to OpenMP

• Tasks: units of work spawned as concurrent coroutines

• Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

created dynamically 
at runtime
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1D Gauss-Seidel: stencil code granularity tuning

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;
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for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

Sequential C [SeqC]
stream_array S[N];

for (i = 0; i < I; ++i)
for (j = 1; j < N - 1; ++j)
task {
read once from S[j];     // phi[j] (discarded)
peek once from S[j - 1]; // phi[j - 1]
peek once from S[j + 1]; // phi[j + 1]
write once into S[j];    // phi[j]

// work function:
// phi[j] = (phi[j - 1] + phi[j + 1]) / 2;

}
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1D Gauss-Seidel: stencil code granularity tuning

Loop tile/
Pluto-tiled task

Flow dependence 
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Loop iteration/
fine-grained task
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1) Semantically equivalent C code (SA)

2) Pluto source-to-source compiler

3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT]
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1D Gauss-Seidel: results
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2D Gauss-Seidel: a visual picture

j

k

i

OpenStream: Fine-grained tasks [OS-FG]

Previous iteration

Current iteration

Current grid point

Not yet computed

Flow dependence 
distance vector

j

i



2D Gauss-Seidel: a visual picture

10 / 15

j

k

i

OpenStream: Pluto-tiled tasks [OS-PT]



2D Gauss-Seidel: a visual picture

10 / 15

j

k

i

OpenStream: Spatially tiled tasks [OS-ST]

j

k

i

OpenStream: Pluto-tiled tasks [OS-PT]



11 / 15

2D Gauss-Seidel: results
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• Stream indexing is polynomial

▪ e.g. parametric tiling

• Deadlock undecidability

▪ Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

• Schedule found: no deadlock

▪ Paul Feautrier and Albert Cohen. 2018. On Polynomial Code Generation
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Future work: bounding streams
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• Task-parallel dataflow programs can benefit from polyhedral transformations

• Analyses and transformations are hindered by polynomials

• Bounding streams: adding back-pressure dependencies and finding a schedule

• Granularity control: loop strip-mining? how do we align this w/ current techniques?


