
The Polyhedral Model Beyond Loops

Recursion Optimization and Parallelization Through Polyhedral
Modeling

Salwa Kobeissi & Philippe Clauss

CAMUS team - Inria, University of Strasbourg, ICPS team - ICube Laboratory

IMPACT - HIPEAC 2019, January 23, 2019

Salwa Kobeissi & Philippe Clauss 1 / 24

Outline

1 Introduction

2 Proposed Solution: From Recursive Functions to Optimized Loops

3 Case Studies

4 Conclusion and Perspectives

Salwa Kobeissi & Philippe Clauss 2 / 24

Introduction

1 Introduction

2 Proposed Solution: From Recursive Functions to Optimized Loops

3 Case Studies

4 Conclusion and Perspectives

Salwa Kobeissi & Philippe Clauss 3 / 24

Introduction

Motivation

There may be a huge gap between:

• the statements in a program source code

• the instructions actually performed by a given processor
architecture

Efficient optimizations may be applied as soon as the actual runtime
behavior has been discovered

• dedicated to specific control structures & memory access
patterns

Salwa Kobeissi & Philippe Clauss 4 / 24

Introduction

Motivation

There may be a huge gap between:

• the statements in a program source code

• the instructions actually performed by a given processor
architecture

Efficient optimizations may be applied as soon as the actual runtime
behavior has been discovered

• dedicated to specific control structures & memory access
patterns

Salwa Kobeissi & Philippe Clauss 4 / 24

Introduction

Inspiration

Apollo

• Captures a polyhedral
behavior of loops at runtime

• Applies the polyhedral model

We apply the Apollo Approach for
codes that are originally not loops!
=> recursions

Memory Accesses Behavior at Runtime

from statically non-polyhedral loops!

Salwa Kobeissi & Philippe Clauss 5 / 24

Introduction

Inspiration

Apollo

• Captures a polyhedral
behavior of loops at runtime

• Applies the polyhedral model

We apply the Apollo Approach for
codes that are originally not loops!
=> recursions

Memory Accesses Behavior at Runtime

from statically non-polyhedral loops!

Salwa Kobeissi & Philippe Clauss 5 / 24

Introduction

Objectives

We are interested in recursive functions:

1 whose runtime behavior can be modeled as polyhedral loops

2 where the structure of their modeling loops is constant regarding
the input

Objectives

1 optimizing recursive functions through transformation into affine
loops

2 extending the scope of polyhedral optimizations to cover
recursive functions

Salwa Kobeissi & Philippe Clauss 6 / 24

Introduction

Objectives

We are interested in recursive functions:

1 whose runtime behavior can be modeled as polyhedral loops

2 where the structure of their modeling loops is constant regarding
the input

Objectives

1 optimizing recursive functions through transformation into affine
loops

2 extending the scope of polyhedral optimizations to cover
recursive functions

Salwa Kobeissi & Philippe Clauss 6 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

1 Introduction

2 Proposed Solution: From Recursive Functions to Optimized Loops

3 Case Studies

4 Conclusion and Perspectives

Salwa Kobeissi & Philippe Clauss 7 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Implementation

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Instructions

Execution

Nested Loop Recognition (NLR)

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of Basic Block IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

The implementation
consists of 3 main
steps:

1 Recursive Control
and Memory
Behavior Analysis

2 Recursion to Affine
Loop Nest
Transformation

3 Polyhedral
Optimizations

Salwa Kobeissi & Philippe Clauss 8 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Implementation

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Instructions

Execution

Nested Loop Recognition (NLR)

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of Basic Block IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

The implementation
consists of 3 main
steps:

1 Recursive Control
and Memory
Behavior Analysis

2 Recursion to Affine
Loop Nest
Transformation

3 Polyhedral
Optimizations

Salwa Kobeissi & Philippe Clauss 8 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Implementation

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Instructions

Execution

Nested Loop Recognition (NLR)

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of Basic Block IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

The implementation
consists of 3 main
steps:

1 Recursive Control
and Memory
Behavior Analysis

2 Recursion to Affine
Loop Nest
Transformation

3 Polyhedral
Optimizations

Salwa Kobeissi & Philippe Clauss 8 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Recursive Control and Memory Behavior Analysis

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: recursive code

Apply classical LLVM optimization
passes

• promote memory to register

• simplify CFG

• dead code elimination

Output: optimized LLVM IR & call
graph

Salwa Kobeissi & Philippe Clauss 9 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Recursive Control and Memory Behavior Analysis

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: optimized IR & call graph

main

f

g

h

i jk

Output: direct & indirect
recursions

Salwa Kobeissi & Philippe Clauss 9 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Recursive Control and Memory Behavior Analysis

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: direct & indirect recursions

main

f

g

h

i jk

Output: instrumented recursive
code

Salwa Kobeissi & Philippe Clauss 9 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Recursive Control and Memory Behavior Analysis

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition (NLR)

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: Trace of the program execution :
Basic Block IDs & Memory Addresses

Nested Loop Reconginition (NLR)
algorithm applications:

1 program behavior modeling
for any measured quantity
such as memory accesses

2 execution trace compressing

3 value prediction
(ketterlin & Clauss, GGO 2008)

Output: Affine Loop Model

Salwa Kobeissi & Philippe Clauss 9 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Recursion to Affine Loop Nest Transformation

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect RecursionsDirect & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: Affine loop model

1 Extract NLR resulting loop
nests structures

2 Construct loops in the LLVM IR
using:

• Instrumented basic blocks
• Interpolated memory

addresses

Output: Iterative code with affine loops

Salwa Kobeissi & Philippe Clauss 10 / 24

Proposed Solution: From Recursive Functions to Optimized Loops

Polyhedral Optimizations

Recursive Code

Clang/LLVM Compiler

Recursion Analysis

Reachability Analysis & Impacting Inst.

Execution

Nested Loop Recognition

Code Generation

Compiler & Polyhedral Optimization

Optimized Recursive Code

Optimized LLVM IR & Call Graph

Direct & Indirect RecursionsDirect & Indirect Recursions

Instrumented Recursive Code

Trace of BB IDs & Memory AdressesNew Input

Affine Loop Model

Iterative Code with Affine Loops

Input: Iterative code with affine loops

• Apply LLVM optimization
passes

• Use polly LLVM polyhedral
optimizer (Grosser et al., PPL 2012)

Output: Optimized recursive code

Salwa Kobeissi & Philippe Clauss 11 / 24

Case Studies

1 Introduction

2 Proposed Solution: From Recursive Functions to Optimized Loops

3 Case Studies

4 Conclusion and Perspectives

Salwa Kobeissi & Philippe Clauss 12 / 24

Case Studies

Recursive Matrix Multiplication

void MatrixMultiplication(int A[N][N], int B[N][N]){
static int row=0, column=0, index=0;

if (row >= N)
return;

if(column < N){
if(index < N){
C[row][column]+= A[row][index]*B[index][column];

index++;
MatrixMultiplication(A, B);

}
index=0;
column++;
MatrixMultiplication(A, B);

}
column=0;
row++;
MatrixMultiplication(A, B);

}

Salwa Kobeissi & Philippe Clauss 13 / 24

Case Studies

Recursive Matrix Multiplication Analysis Results

for i0 = 0 to N-1
for i1 = 0 to N-1
for i2 = 0 to N-1
val MatrixMultiplication::if.then4 //IR basic block
...
load // memory read
val MEM1 + 4*N*i0 + 4*i2 //memory address in terms of loops indices
... //repetitive memory access patterns
load
val MEM2 + 4*i1 + 4*N*i2 //4 is the size of an integer
...
val load
val MEM3 + 4*N*i0 + 4*i1
val store // memory write
val MEM3 + 4*N*i0 + 4*i1
...

val MatrixMultiplication::if.end15
...

val MatrixMultiplication::if.end17
...

for i0 = 0 to N*N-1
for i1 = 0 to N-1
val MatrixMultiplication::if.end17
...
val MatrixMultiplication::if.end15
...

val MatrixMultiplication::if.end15
...

Salwa Kobeissi & Philippe Clauss 14 / 24

Case Studies

Recursive Matrix Multiplication Experimental Results

Serial execution (gcc -O3)
Salwa Kobeissi & Philippe Clauss 15 / 24

Case Studies

Heat - REAPAR Benchmarks

Salwa Kobeissi & Philippe Clauss 16 / 24

Case Studies

Heat - REAPAR Benchmarks

Salwa Kobeissi & Philippe Clauss 16 / 24

Case Studies

Heat - REAPAR Benchmarks

Salwa Kobeissi & Philippe Clauss 16 / 24

Case Studies

Heat - REAPAR Benchmarks

Salwa Kobeissi & Philippe Clauss 16 / 24

Case Studies

Heat

The function compstripe involves interesting linear loops

void compstripe(register double **new, register double **old, int lb, int ub)
{
register int a, b, llb, lub;
llb = (lb == 0) ? 1 : lb;
lub = (ub == nx) ? nx - 1 : ub;
for (a=llb; a < lub; a++) {
for (b=1; b < ny-1; b++) {
new[a][b] = dtdxsq * (old[a+1][b] - 2 * old[a][b] + old[a-1][b])

+ dtdysq * (old[a][b+1] - 2 * old[a][b] + old[a][b-1])
+ old[a][b];

}
}
for (a=llb; a < lub; a++)
new[a][ny-1] = randb(xu + a * dx, t);

for (a=llb; a < lub; a++)
new[a][0] = randa(xu + a * dx, t);

if (lb == 0) {
for (b=0; b < ny; b++)
new[0][b] = randc(yu + b * dy, t);

}
if (ub == nx) {
for (b=0; b < ny; b++)
new[nx-1][b] = randd(yu + b * dy, t);

}
}

Salwa Kobeissi & Philippe Clauss 17 / 24

Case Studies

Heat Analysis Results

for i0 = 0 to Number_of_Steps-1
for i1 = 0 to 14
for i2 = 0 to 509
val compstripe::for.body10, MEM1 + 8224*i1 + 8*i2, MEM2 + 8224*i1 + 8*i2, MEM3 + 8224*i1 + 8*i2
, MEM4 + 8224*i1 + 8*i2 , MEM5 + 8224*i1 + 8*i2, MEM6 + 8224*i1 + 8*i2

for i1 = 0 to 14
val compstripe::for.body63, MEM7 + 8224*i1

for i1 = 0 to 14
val compstripe::for.body81, MEM8 + 8224*i1

for i1 = 0 to 511
val compstripe::for.body97, MEM9 + 8*i1

for i1 = 0 to 61
for i2 = 0 to 15
for i3 = 0 to 509
val compstripe::for.body10, MEM10 + 131584*i1 + 8224*i2 + 8*i3, MEM11 + 131584*i1 + 8224*i2 + 8*i3, MEM12 + 131584*i1 + 8224*i2 + 8*i3
, MEM13 + 131584*i1 + 8224*i2 + 8*i3, MEM14 + 131584*i1 + 8224*i2 + 8*i3, MEM15 + 131584*i1 + 8224*i2 + 8*i3

for i2 = 0 to 15
val compstripe::for.body63 , MEM16 + 131584*i1 + 8224*i2

for i2 = 0 to 15
val compstripe::for.body81 , MEM17 + 131584*i1 + 8224*i2

for i1 = 0 to 14
for i2 = 0 to 509
val compstripe::for.body10, MEM18 + 8224*i1 + 8*i2, MEM19 + 8224*i1 + 8*i2, MEM20 + 8224*i1 + 8*i2
, MEM21 + 8224*i1 + 8*i2, MEM22 + 8224*i1 + 8*i2, MEM23 + 8224*i1 + 8*i2

for i1 = 0 to 14
val compstripe::for.body63 , MEM24 + 8224*i1

for i1 = 0 to 14
val compstripe::for.body81 , MEM25 + 8224*i1

for i1 = 0 to 511
val compstripe::for.body115 , MEM26 + 8*i1
............
............
............
............

Salwa Kobeissi & Philippe Clauss 18 / 24

Case Studies

Heat Experimental Results

The codes have been parallelized by Pluto using OpenMP 24 threads (AMD Opteron
6172 2x12-cores - gcc -O3 -fopenmp)

Salwa Kobeissi & Philippe Clauss 19 / 24

Case Studies

Heat Experimental Results

The codes have been parallelized by Pluto using OpenMP 24 threads (AMD Opteron
6172 2x12-cores - gcc -O3 -fopenmp)

Salwa Kobeissi & Philippe Clauss 20 / 24

Conclusion and Perspectives

1 Introduction

2 Proposed Solution: From Recursive Functions to Optimized Loops

3 Case Studies

4 Conclusion and Perspectives

Salwa Kobeissi & Philippe Clauss 21 / 24

Conclusion and Perspectives

Conclusion

A proof of concept for an automatic recursion-to-affine-loop
transformation:

• involving static and dynamic analysis

• transformation passes

• polyhedral optimizers

Achievements

1 extends the polyhedral model applicability to non-loop control
structures

2 brings the handled recursive functions to a higher level of
optimizations

Salwa Kobeissi & Philippe Clauss 22 / 24

Conclusion and Perspectives

Future Works

Our future works include:

1 Performing dynamic analysis for recursive behavior at runtime

2 Inducing verification features to obtain a predictive model

3 Tackling input dependent recursive codes

Salwa Kobeissi & Philippe Clauss 23 / 24

Conclusion and Perspectives

Thank you

Questions ?

Salwa Kobeissi & Philippe Clauss 24 / 24

	Introduction
	Proposed Solution: From Recursive Functions to Optimized Loops
	Case Studies
	Conclusion and Perspectives

