
With great trends come great polyhedral responsibilities
Benoit Meister, Reservoir Labs

IMPACT keynote, 23 Jan 20191

High Performance Computing Buzzword Bingo

Big Data

Exascale Deep Learning

Heterogeneity

Low-Latency Graph
Computing

Opportunity to contribute to a few of the current trends
Lots of fun to be had

Golden era for the polyhedral model
How do we stay golden ?

2

Outline

Quick context: Reservoir Labs

U.S. Department of Energy Exascale Computing Programs
Context of Reservoir’s work
Technical fun
Adoption

Deep Learning optimization
Context of Reservoir’s work
Technical fun
Adoption

How could this be even better ?

3

Reservoir Labs

Other major activities

- Cybersecurity
- R-Scope

- Tensor-based data analytics
- ENSIGN

- Fast Algorithms
- Radar
- Faster Fourier Transforms

Compiler R & D
- R-Stream polyhedral mapper
- Compiler services

Some joined from polyhedral community
- Benoit Meister (Tech lead)
- Muthu Baskaran
- Tom Henretty

Polyhedral Alumni
- Nicolas Vasilache
- Benoit Pradelle
- Louis-Noel Pouchet
- Cedric Bastoul
- Sanket Tavarageri
- Athanasios Konstantinidis
- Allen Leung, Eric Papenhausen

Many others, from other backgrounds President: Rich Lethin

4

The R-Stream compiler

Introduced polyhedral engine in 2005
- Version 3.0

Java code
- Plus a few C and C++ bindings

Some strengths:

- Mapping and code gen is driven by a machine model (XML file)
- Hierarchical, heterogeneous

- Supports hardware features found in most computers
- Explicit memory management (scratchpads, DMAs)
- Tiled architectures

- Targets broad set of parallel programming models
- Annotations, SPMD, runtime APIs

- Has an auto-tuner

5

DOE Exascale

6

Exascale at the U.S. Dept. of Energy (DOE)
A bird’s eye view

DOE funds basic and applied energy-related research
- High energy physics
- Materials
- Chemistry
- Clean energy
- Biology & Environment

Important areas related to computing:
- Production (Instruments), management and processing of Big Data
- Modeling & Simulation
- Cybersecurity

Worked with the polyhedral model on this

But Reservoir is also present & active on these topics
- R-Scope Network Intrusion Detection appliance
- ENSIGN Tensor analytics

7

Motivation for Exascale

Scientists really have more needs! Exaflops.

- Resolution
- E.g. can simulate combustion of a cubed-millimeter but

not an entire combustion chamber

- Realism
- Multi-physics, more interrelated PDEs

- Machine learning is permeating DOE research

Not only about who has the bigger machine

8

Main Challenges with Exascale

All the Petascale challenges, but worse
- Performance

- Parallelism, locality, load balancing, algorithmic
scalability

- Latency of local & remote memory accesses
- Productivity

- DSLs, with their flexibility vs performance tradeoff
- Parallel debugging

Hitting some hardware boundaries
- Process scaling continues
- But energy envelope is bounding HW capabilities

9

Working around Power Constraints

Lower voltage as much as possible
- Near Threshold Voltage

- Performance variability across PEs increases
- Heterogeneity, even in a homogeneous array of PEs

Increase parallelism as much as possible, lower frequency
- Use of hierarchies to get to scale

- Affects latencies
- Fork-Join, Loop parallelism often not enough to produce that

much concurrency

Limit memory bandwidth

10

Direct impact on software requirements

Parallel programming model must enable
- Fine-grain load balancing
- Non-loop (task) parallelism

- Even in loop codes
- Hiding long memory latencies

DOE projects widely adopted Event-Driven Task (EDT) runtimes
- Declare tasks and their dependences
- Tasks are scheduled asynchronously

- Work-stealing variants

Reservoir Supported 2 projects with 3 different EDT runtimes:
- Intel: Open Community Runtime (3 versions), CnC
- ET International: SWARM

Many other developments: Legion, HPX, ParSec, etc.

11

DOE Exascale: Technical Fun

12

Runnemede
Intel’s Target Exascale Target

A few thousand PEs per chip

One host (“control”) processor per 8 PEs
- Dumbed down x86

Non-vector: each PE has its IP

No cache coherency
- Scratchpad memory hierarchy
- Optional read-only caches

Near Threshold Voltage

13

Our contribution

Automatic parallelization of C programs to scalable asynchronous tasks
and dependence

C R-Stream

14

Challenges

Producing task parallelism
- Existing literature [Baskaran]

- Dependence computation didn’t scale
- Tasks need to be carefully scheduled to scale

Explicit data management
- In OCR, data is partitioned into data blocks (DBs)

- Blocks of contiguous memory
- EDT readiness triggered by two kind of dependences

- Control
- Data (a DB)

15

Scaling task dependence computations
(Problem 1)

Loops have inter-task (outer) and intra-task (inner) dimensions
State of the art [Baskaran]

- Produce a dependence polyhedron
- Tiled iteration spaces

- Project out intra-task dimensions

Computation of task dependence was too slow
- Tiled dependence polyhedron dimensionality can be high
- Projection is relatively expensive

16

Using pre-tiling iteration spaces
(Solution to Problem 1)

Use representation of tiling as a linear relationship

I = TJ + K, 0 =< K < diag(T)

Retain integer J points that correspond to a non-empty task

[Meister]

Naive compression
along tiles
Misses non-full tiles!

Pre-tiling
domain

+ =

Conservative method (P+U)
Includes exact
representatives
But more complex shape

Inflation-based method
May include more tile
representatives
Same shape as original
iteration domain

17

Representing dependences at runtime
(Problem 2)

We have inter-task dependences in the (source task, dest task) space
- Naive approach: use a synchronization object per dependence

- O(n^2), impractical even at lower scales
- Especially if we create them all upfront

- Better approaches use one object per task
- “Pull” model

- When done, source task validates task dependence
- Destination tasks register with all their predecessors
- Each task maintains the list of its predecessors

- “Push” model
- Each destination task knows its # predecessors
- When done, source task decreases counter for each successor

18

Limiting runtime task management overhead
(Problem 3)

Cost to maintaining a lot of non-ready tasks

Worst case when all tasks need to be created upfront
- Also gets huge Amdahl’s law penalty

Best approach: push model with on-the-fly task creation
Problem when successor task has >1 predecessors

Decide who creates the successor task without introducing extra syncs
In OCR, tasks are atomic: extra syncs means extra tasks (and deps)

selects
successor

19

On-the-fly task creation
(Solution to Problem 3)

Single node: first predecessor that is done
- Decrement successor counter but create it if necessary

- “Autodec” operation
- Based on atomics

Multi-node: agreed upon predecessor
- All predecessors must know it statically to avoid syncs
- E.g., lexicographic min of the predecessors

- But PILP is costly, can produce ugly code
- Lexico min can be computed at runtime

- Early-exited loop
- Cheap, readable. Yay!

20

Dealing with data blocks
(Problem 4)

DBs create some challenges
- Introduce index set splitting

- E.g., some iterations use (DB0, DB1), vs (DB2, DB1)
- “Static” performance cost

- Read-Written ones create more synchronizations
- Impact on runtime overhead

- # DBs to manage at any point in time
- Small DBs: high runtime overhead, less sync

A B

C D

21

Limiting data block management overhead
(Solutions to problem 4)

Our solution maintains the #DBs managed to the runtime low
- Creates a DB for its first user
- Destroys a DB when its last user is done

Solution similar with task management
- Also based on counting

Partial solutions to index set splitting problem
- Can copy data from DBs into local DB and run without splitting

- Costs an extra copy. Only worth if
- Reuse is good
- Performance benefits greatly from not splitting

- Use map data -> (DB Id, offset within DB) directly in access
functions

- Cost function is complex.
[Pradelle]

22

DOE Exascale tools: Adoption

23

Excellent case for the Polyhedral Model

Programming with tasks, dependences and data blocks is complicated
- Direct calls to API, can be tedious
- Dealing with on-the-fly task creation
- Dealing with data blocks
- Tuning hints

Application writers have to rewrite their code anyway
- Why not just write it in a polyhedral friendly way ?

Excellent case for generating code from a high-level description

24

However...

We offer a solution for a portion of the applications
- Including some sparse codes
- Still not the whole spectrum
- Also R-Stream didn’t support Fortran, C++

Application writers still need to code to the runtime for other apps
- Learn the APIs & code with them

Lack of Transparency: what was done to obtain generated code ?

Legacy of overpromising tools
- Application writers won’t bother rewriting some of their codes
- Reservoir can do it but the model doesn’t scale

Application writers might be uncomfortable with automated competition
- Captious!

25

Steps taken by Reservoir

Enhancing R-Stream from parallelizing compiler to porting compiler
- Parallel code as an input
- Deoptimization

Support for more input languages
- Through a new “LLVM front-end” to R-Stream

- Prototype, in good shape but not released yet.

How about the Community ?
- Some efforts at explaining automated optimization exist [Bastoul]
- Increase application domain of the polyhedral model

- Dynamically linear codes [Clauss:Apollo]
- Adaptive mesh computations [Bastoul]

26

Deep Learning

27

Context

DARPA PERFECT program
- Teamed up with UC Berkeley around RISC-V RocketChip

- Tools to specialize hardware
- Specialized vector processor: Hurricane (1 and 2)
- Application domain: computer vision

- First used R-Stream to map Caffe Kernels to Hurricane
- Developed at UCB

- Team moved to Google TensorFlow in 2017
- Coming out as most popular

28

Market context

Multiplication of the NN frameworks and representations
- Industry (Google, Intel, Microsoft, Facebook, Baidu, etc.)
- Academia

Multiplication of the Specialized HW
- Google, Nvidia, Intel, … almost everybody
- Academia

Multiplication of polyhedral solutions ?
- Reservoir, then Facebook, now Google

Huge stroke of luck
- A lot of the DL kernels have been looked at forever by the

community and their tools

29

Our contribution: R-Stream.TF (tfrcc)
Flow

The operator graph is partitioned
Sequential C code is generated for every partition
R-Stream parallelizes and optimizes the sequential C code
The optimized parallel operators are stitched back into the whole
graph

30

High points

Focus is not as much on polyhedral mapper than TF front-end and
target backends

Frontend: subgraph formation is tuned to
- Target architecture
- Version of R-Stream used with it

Performance model learned once per (target, rcc) pair

Future work
- Optimize training/gradients
- … and whatever our customers ask for!

31

Polyhedral Deep Learning: Adoption

32

Ecosystem approach

With the DOE, we were seeking adoption by application writers

Here, application writers choose a DL framework
Criteria:

- Hype (esp. for students, dabblers)
- Expressiveness (e.g., RNNs)
- Support for accelerator of choice

Frameworks are a good target for a polyhedral mapper

Most DL Frameworks are open source: we don’t need their approval
- Better if they collaborate

33

Ecosystem approach

Some success
- Tensor Comprehensions @Facebook - Insider support
- Google hired a team of polyhedral guys
- Cerebras hired skimo

Would an explosion of Polyhedral DL frameworks be good ?
- Expect it to be limited by small pool of polyhedral experts
- I still see a few “Yet Another Polyhedral Mapper” papers every

year, so...
- There will be more

Adoption story is pretty good, here!

34

Sustainable polyhedral compilation

The polyhedral model enjoys decent adoption in one sector
- How do we maintain it ?
- How do we propagate it to other sectors ?

Consolidate
- Moving R-Stream to LLVM may help
- Find a neutral territory to collaborate

- Hard problem ?
- Tool ?

Make it less scary
- Need to make and publish more user success stories
- Need to make it easy to teach

35

Sustainable polyhedral compilation
Resource starvation

Teach the polyhedral model better

When someone asks me for references to learn the model
- I point at several places

- Slides [Pouchet, Verdoolaege]
- Ph.D. Theses

- But end up explaining it in a short amount of time

“Everything easy in the polyhedral model has been done” - P. Feautrier

“Polyhedral compilation is easier than you think” - C. Bastoul (approximate)

36

Thank you!

37

