
Integrating Data Layout Transformations with the
Polyhedral Model

Jun Shirako
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia, USA
shirako@gatech.edu

Vivek Sarkar
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia, USA
vsarkar@gatech.edu

Abstract
In the polyhedral model, classical loop transformations and
statement reordering transformations have been unified and
formalized as affine scheduling problems that can be applied
to optimization goals such as locality and parallelism. More
recently, data layout transformations have shown signifi-
cant benefits in improving performance by contributing to
improved efficiencies in spatial locality, multi-core paral-
lelism and vector parallelism. However, integration of data
layout transformations in the polyhedral model has received
relatively little attention thus far.

In this paper, we report on our work-in-progress on inte-
grating data layout transformations in the polyhedral model,
with a focus on affine representations of data layout trans-
formations. We also demonstrate the potential benefit of
performing loop and data layout transformations as an inte-
grated optimization problem, compared to standard decou-
pled approaches which pick a specific phase order (e.g., data
layout transformations before loop transformations) and can
thereby miss opportunities to co-optimize both data layout
transformations and loop transformations.

Keywords Data layout transformations, loop transforma-
tions, parallelism, data locality, polyhedral model
ACM Reference Format:
Jun Shirako and Vivek Sarkar. 2019. Integrating Data Layout Trans-
formations with the Polyhedral Model. In Proceedings of Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT’19).
ACM, New York, NY, USA, 10 pages.

1 Introduction
In recent years, a major focus of optimizing compilers is to
transform the input program so as to extract the best granu-
larity of parallelism and data locality that can fit the target
architecture. Loop transformations represent a major class
of program transformations that have been used to address
these objectives. The primary goal of loop transformations
is to reorder dynamic statement/instruction execution se-
quences to optimize parallelism and locality, while satisfy-
ing dependence constraints for legality. More recently, data
layout transformations have also been receiving attention

IMPACT’19, January 21–23, 2019, Valencia, Spain
2019.

because of their ability to deliver significant performance im-
provements due to improved locality and improved support
for efficient multi-core and vector parallelism.
There is a large body of past work on loop transforma-

tions since the 1980’s, e.g., [3, 15, 19, 42, 43]. Syntactic/AST-
based loop transformation frameworks automatically select
a sequence of individual loop transformations, driven by
analytical cost models, to achieve a desired optimization
goal [23, 29, 41]. More recently, the polyhedral compilation
model has provided significant advances in the unification
of affine loop transformations combined with powerful code
generation techniques [1, 5, 6, 13, 16, 32]. The benefits of
this unified formulation can be seen (for example) in the
PLuTo compiler [5, 6], which has been successfully extended
and specialized to integrate SIMD constraints [20, 36], and
the PPCG system [38, 45], which is capable of modeling the
multi-level parallelism and the temporal/spatial locality of
multiprocessors and accelerators, generating both OpenMP
C and CUDA programs from sequential input.
Data layout transformations represent another class of

program transformations that is increasingly being used
in compiler optimizations. While loop transformations aim
at multiple objectives, e.g., parallelism, temporal locality,
and spatial locality, data layout transformations primarily
impact spatial locality (which can impact both cache per-
formance and SIMD performance in single-threaded and
multithreaded executions). A number of data layout trans-
formation techniques have been proposed, including per-
mutation of array dimensions [18, 36], conversion between
Array-of-Structs (AoS) and Struct-of-Arrays (SoA) [9, 31],
data skewing, and data tiling [28]. In the polyhedral model,
storage optimizations to contract memory space are gener-
ally treated as memory allocation problems, e.g., the single
assignment form of a given program can be obtained via
dataflow analysis [10, 11, 26], or by the nature of input lan-
guage [27, 40], and iteration points in the single assignment
form can be allocated to the same or different memory ad-
dresses while preserving program semantics.
There are a number of polyhedral frameworks that ad-

dressed the memory allocation problem: [7, 8, 21, 27, 40]
for schedule-specific storage optimizations; and [33–35] for
schedule-independent and/or unified schedule and storage

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

optimizations. As a noteworthy recent achievement for stor-
age optimizations, [4] proposed an intra-array storage op-
timization algorithm to minimize the dimensionality and
storage requirements of arrays in given sequences of loop
nests. Furthermore, a few polyhedral frameworks focused on
selected data layout transformations, such as joint formula-
tion for loop transformations and array dimension permuta-
tions to improve spatial locality for better vectorization effi-
ciency [18] and data tiling combined with loop tiling to min-
imize inter-node communications on distributed-memory
clusters [28].
Despite these important achievements and increasing at-

tention, data layout transformations in the polyhedral model,
especially the integration of loop and data layout transforma-
tions, have still received relatively little attention compared
to the extensive body of literature on polyhedral loop trans-
formations. As a first step to integrating data layout transfor-
mations in the polyhedral model, this paper discusses poly-
hedral extensions to support general data layout transforma-
tions including array dimensional permutation, conversion
between SoA and AoS, data layout skewing, data tiling, and
storage optimizations for both space reduction and paral-
lelism enhancement. We present and discuss the advantages
and disadvantages of two types of layout representations,
array-based – where the unit of mapping/transformation is
an array element – and value-based – where the unit is the
value defined by an individual statement instance. We also
demonstrate the potential benefit of integrating loop and
data layout transformations as a single optimization prob-
lem over decoupled approaches, which pick a specific phase
order (often by performing loop transformations before data
layout transformations) and can thereby miss opportunities
to co-optimize both data layout transformations and loop
transformations.
The rest of the paper is organized as follows. Section 2

contains background information on the polyhedral model.
Section 3 presents array-based and value-based layout trans-
formations. Section 4 discusses the code generation for lay-
out transformations. Section 5 demonstrate the potential
benefit of integrating loop and data layout transformations.
Sections 6 and 7 summarize related work and our conclu-
sions.

2 Background
The polyhedral model is a linear algebraic representation for
collections of (imperfectly) nested loops whose loop bounds
and branch conditions are affine functions of outer loop it-
erators and runtime constants, which are handled as global
parameters [12]. Code regions amenable to this algebraic rep-
resentation are called Static Control Parts and represented in
the SCoP format [24]. In this model, a statement consists of

three elements: iteration domain, access relation, and sched-
ule. A dynamic instance of a statement is identified by its
statement name S and loop iteration vector i⃗ , as S (⃗i).

2.1 Basic Components
Iteration domain,DS : The iteration domain of a statement
S enclosed bym loops is represented by anm-dimensional
polytope, where an element S (⃗i) ∈ DS is an instance of
statement S . As an example in Figure 1, the iteration domain
of statement S is:

DS = {S (i, j) | 0 ≤ i < ni ∧ 0 ≤ j < nj}
Access relation,AS→A: The array reference(s) toA by state-
ment S is abstracted as an access relation, which maps a
statement instance S (⃗i) to one or more array elements A(e⃗)
to be read/written1, typically as affine functions [44]. In Fig-
ure 1, the write access relation for statement S to array C
is:

Awrite
S→C = {S (i, j) → C (e1,e2) | i = e1 ∧ j = e2}

Schedule, ΘS : The sequential execution order of a program
is captured by the schedule, which maps a statement instance
S (⃗i) to a logical time-stamp vector, expressed as a multidi-
mensional (quasi-)affine function of i⃗ . Statement instances
are executed according to the increasing lexicographic order
of their time-stamps. Dimensions of schedule may contain
loop iterators. A dimension is called a loop dimension if it
contains one or more iterators; otherwise it is called scalar
dimension. Schedules to represent the sequential execution
order of statements S and T in Figure 1 are:

ΘS = {S (i, j) → (i, j,0)}
ΘT = {T (i, j,k) → (i, j,1,k)}

The first and second dimensions i, j of ΘS and of ΘT indicate
that i-loop and j-loop are enclosing S andT . The 0 or 1 value
in the third dimension indicates that, for the same iteration
of the i, j loop nest, the instance of S is executed before any
instance of T . The k of ΘT indicates that T is enclosed in
the k loop at the innermost level. While the above affine
mapping is a compact representation of schedule, schedule
tree [39] directly encodes inclusive relation and ordering of
statements and serves as a foundation of compiler/runtime
optimizations, including our data layout transformations.

2.2 Legality and Loop Transformations
As with traditional compiler optimizations, the polyhedral
compilation computes dependences based on the original
schedule and memory accesses, summarized as dependence
polyhedra [5]. The polyhedral loop transformations amount
to computing new schedules under the legality constraints
of dependence polyhedra.
1A scalar variable is considered as a degenerate case of an array.

IMPACT’19, January 21–23, 2019, Valencia, Spain

for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {

S: C[i][j] *= beta;
for (k = 0; k < nk; k++)

T: C[i][j] += alpha * A[i][k] * B[j][k];
} }

Figure 1. gemm input
#define _C(x,y) band_0 [(x)/32][(y)/64][(x)%32][(y)%64]
#define _A(x,y) band_1 [(y)]. band_1_0 [(x)]
#define _B(x,y) band_1 [(x)]. band_1_1 [(y)]

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S: _C(i,j) *= beta;
for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

T: _C(i,j) += alpha * _A(i,k) * _B(k,j)

Figure 2. array-based layout transformation

Dependence Polyhedra, PS→T : The dependences between
statements S andT are captured by dependence polyhedra —
the subset of pairs (S (⃗i),T (⃗i)) ∈ DS × DT that participate
in a dependence. Given two statement instances S (⃗i) and
T (⃗i),T (⃗i) is said to depend on S (⃗i) if: 1) they access the same
array element where at least one of them is write access; and
2) S (⃗i) has a lexicographically smaller schedule value than
T (⃗i) – i.e., Θ(S (⃗i)) ≺ Θ(T (⃗i)).

In general, any composition of iteration- and statement-
reordering loop transformations (e.g., permutation, skewing,
distribution, fusion, and tiling) can be specified by polyhedral
schedules. To compute new schedules, polyhedral optimizers
rely on integer linear programming where dependence poly-
hedra are used as legality constraints and their optimization
goals are formulated as objectives and/or constraints.

3 Layout Representations
In this section we present two types of layout representa-
tions, array-based and value-based, and discuss their relative
advantages and disadvantages.

3.1 Array-Based Layout Transformations
A straightforward approach to model data layout transfor-
mations is to consider an array element as the unit of repre-
sentations and transformations. Section 2 showed how the
set of statement instances is captured by iteration domains,
and loop transformations are implemented by computing
new schedules. We apply the same notions to the region of
arrays and data layout transformations as described below.

3.1.1 Array Domain
As with statements, let A(e⃗) denote an element of array A
and DA as the array domain of array A. Given SCoP re-
gion, the upper/lower bound of each dimension of A is an
affine function of global parameters, and hence invariant.

Therefore, array domain DA ofm-dimensional array A is a
m-dimensional rectangular solid whose dimension sizes are
constant at the beginning of the SCoP region at runtime. In
Figure 1, the array domains of array C , A, and B are:

DC = {C (e1,e2) | 0 ≤ e1 < ni ∧ 0 ≤ e2 < nj}

DA = {A(e1,e2) | 0 ≤ e1 < ni ∧ 0 ≤ e2 < nk}
DB = {B (e1,e2) | 0 ≤ e1 < nk ∧ 0 ≤ e2 < nj}

3.1.2 Layout Mapping
As schedule Θ specifies the relative order of statement in-
stances in time, let layout mapping Φ denote the relative
order of array elements in the transformed memory space.
ΦA is the data layout of array A and maps each element A(e⃗)
to a logical address vector, expressed as a multidimensional
(quasi-)affine [2] function of e⃗ . There are interesting and
intuitive relations between schedule map ΘS and layout map
ΦA, such as loop permutation and array dimensional per-
mutation; loop fusion/distribution and AoS/SoA conversion;
and loop skewing/tiling and data skewing/tiling. All of these
transformations can be represented and implemented via
affine mappings, as with loop transformations covered by
schedule. In contrast, there is a notable difference in that a
schedule is unique to a given SCoP region while data layouts
can, in general, be changed within a SCoP region, e.g., via
data re-distribution [30].

A major advantage of array-based layout transformations
is that, so long as the layout is a one-to-one function, there
is no legality constraint imposed on layout mapping Φ be-
cause each array elementA(e⃗) has a unique location in mem-
ory space. In contrast, array-based transformations are not
amenable to one-to-many (i.e., expansion) or many-to-one
(i.e., contraction) storage optimizations, which, in general,
require array dataflow analysis to establish legality.
Figure 1 contains gemm as an input and Figure 2 shows

the code with array-based layout transformations specified
by the following mapping, which corresponds to: 1) data
layout tiling applied to array C with tile sizes of 32 and 64
for the first and second dimensions respectively; 2) array
dimensional permutation applied to array A; and 3) array
dimensional fusion applied at the outer dimensions of arrays
A and B, resulting in an Array-of-Struct-of-Array layout.

ΦC = {C (e1,e2) → (0, e1/32, e2/64, e1%32, e2%64)}

ΦA = {A(e1,e2) → (1,e2,0,e1)}
ΦB = {B (e1,e2) → (1,e1,1,e2)}

In Figure 2, loop transformations (distribution and permu-
tation) are simultaneously implemented with the following
schedule. For efficient tiled data access, loop tiling should
also be applied in conjunction with data tiling but we omitted
that in the interest of readability.

ΘS = {S (i, j) → (0,i, j)}

ΘT = {T (i, j,k) → (1,k,i, j)}

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: A[i][j] = C[i][j-1];
T: B[i][j] = A[i][j] + C[i-1][j];
U: C[i][j] = B[i][j];

} }

Figure 3. Sample input
#define _insS(i,j) band_0
#define _insT(i,j) band_0
#define _insU(i,j) band_1 [(j)]

for (i = 1; i < ni; i++) {
for (j = 1; j < nj; j++) {

S: _insS(i,j) = _insU(i,j-1);
T: _insT(i,j) = _insS(i,j) + _insU(i-1,j);
U: _insU(i,j) = _insT(i,j);

} }

Figure 4. value-based layout transformation

3.2 Value-Based Layout Transformations
Storage optimizations that contract or expand the memory
space require array dataflow analysis to capture which state-
ment instances (consumers) use the value defined by a given
statement instance (producer). The layout transformations
need to be performed so as to ensure legality with respect to
liveness (for many-to-one layouts) and consistency (for one-
to-many layouts). The notion of value-based layout trans-
formation is fundamentally equivalent to partial data ex-
pansion [21]. In contrast to that past work, we aim to also
study legality constraints in cases where the schedule is not
fixed, thereby enabling exploration of an optimization space
in which both the schedule and layout maps are computed
simultaneously.

3.2.1 Total data expansion
As with [21] and [4], we assume the input static control
program is converted into functionally equivalent single-
assignment form, and each statement instance S (⃗i) has a
unique memory location for its defined value – i.e., array
InsS (⃗i) in [21].We consider this location in the single-assignment
form as value identifier, which is the unit of interest in value-
based layout transformations.

3.2.2 Layout Mapping
Let layout mapping ΦS denote the data layout to store the
value defined by statement S in the transformed memory
space. ΦS maps each element S (⃗i) to logical address vector
expressed as a multidimensional (quasi-)affine function of
i⃗ . Analogous to the array-based layout representation, the
value-based representation is capable of modeling arbitrary
layout transformations to enhance spatial data locality, e.g.,
array permutation, AoS/SoA conversion, data skewing, and
data tiling, in addition to storage optimizations to contract/-
expand memory space.

Our ultimate goal is to compute both schedule Θ and lay-
out Φ simultaneously as a single optimization problem. The
legality constraints are imposed by value-based dependences.
Let flowk denote k-th dataflow, i.e., value-based Read-After-
Write (RAW) dependence.

flowk = {Sk (⃗i) → Tk,1 (j⃗1), ...,Tk,nk (⃗jnk)}

Producer-consumer constraints: The producer of a value
Sk (⃗i) must precede any consumers of the value Tk,1 (j⃗1), ...,
Tk,nk (⃗jnk).

Θ(Sk (⃗i)) ≺ lex_min(Θ(Tk,1 (j⃗1)), ..., Θ(Tk,nk (⃗jnk)))

Liveness constraints: Thememory location of a valuemust
not be overwritten until the last use of the value. In other
words, given two value-based RAW dependences flowk and
flowl , they must satisfy either of: livenesses of flowk and
flowl do not overlap; or memory locations identified by
Φ(Sk (⃗i)) and Φ(Sl (⃗i)) are different.

lex_max (Θ(Tk,1 (j⃗1)), ..., Θ(Tk,nk (⃗jnk))) ⪯ Θ(Sl (⃗i))

∨ lex_max (Θ(Tl,1 (j⃗1)), ..., Θ(Tl,nl (j⃗nl))) ⪯ Θ(Sk (⃗i))

∨ Φ(Sk (⃗i)) , Φ(Sl (⃗i))

Figures 3 and 4 respectively show a sample input code
and the code with value-based data layout transformations
to contract the memory space. After converting the input
program into single-assignment form (e.g, A[i][j] into
_instS(i,j)), the following layout mapping is used to spec-
ify the location to store the defined values in the transformed
memory space.

ΦS = {S (i, j) → (0)}

ΦT = {T (i, j) → (0)}
ΦU = {U (i, j) → (1, j)}

4 Code Generation for Transformed
Layout

4.1 Code-level Layout Specification
The affine mapping representations of layout transforma-
tions are straightforward to be used at the source code level.
We use the following layout directive to specify layout trans-
formations as an extension to the C language:

#pragma layout map(trans f er :map : dom) ...

where one or more map clauses, each of which specifies the
layout transformations of a single array, can be included in
directive. A map clause contains three components: trans f er
is the type of data transfers among original and transformed
layouts;map is the affine mapping of array element A(e⃗) to
multidimensional layout vector; anddom is the array domain.
There are four types of transfers: in – i.e. copy-in from

the original to transformed layouts, out – i.e., copy-out from

IMPACT’19, January 21–23, 2019, Valencia, Spain

the transformed to original layouts, inout – i.e., both copy-
in and copy-out, and redist – i.e., re-distribution of data
layout. The layout directive with in, out, and inout types
may appear only at the beginning of a SCoP region while
the directive with redist type is used in the middle of the
SCoP region, to specify the point where the data stored in
an old layout is transferred into the new layout2. We em-
ploy the iscc [37] expression for the layout mapping. As-
suming the lower array bounds in C language are always 0,
let type[size1,size2, ...] denote the array domain of A, where
type is the data type (e.g., int and double) and sizei is the
i-th dimension size represented as the affine combination of
global parameters. To simplify the code generation presented
in Section 4.2, type must be same across all map clauses in
the current implementations.
Figure 6 shows an example corresponding to the layout

mapping example from Section 3.1.2 (data tiling is omitted
for simplicity). Arrays A and B are read-only (in) while C is
read then written (inout).

sequenceroot

band0
C(e1,e2) → (e1)

band0,0
C(e1,e2) → (e2)

leaf0,0,0
C(e1,e2)

band1
A(e1,e2) → (e2); B(e1,e2) → (e1)

sequence1

band1,0
A(e1,e2) → (e1)

leaf1,0,0
A(e1,e2)

band1,1
B(e1,e2) → (e2)

leaf1,1,0
B(e1,e2)

Figure 5. Schedule tree for layout of Figure 6

4.2 Code Generations for New Layout
Once new layouts are computed in IR-level by compilers
or specified in source-level by users, the next challenge is
how to implement the new layouts in the output code. This
section presents two approaches to implement the data lay-
out transformations specified as array domain and layout
mapping. The same approaches are used for value-based
layout transformations after converting input code into the
single-assignment form as discussed in Section 3.2.1. For the
data layout code generation, we first convert the multidimen-
sional form of layout mapping into schedule tree [39], which
is more straightforward form to capture the arbitrary nested
structures of data layouts. Figure 5 shows the schedule tree
representation of the layout mapping in Figure 6. We use
this layout mapping as the running example in this section.

4.3 Linearized field
The first approach is to map the schedule tree form of layout
mapping into a one-dimensional memory field. In order to
2This point must be at the top-level, i.e., not enclosed in any loops.

compute the total field size and the offset to individual array
element in the linearized field, we first compute the size of
tree node in the following manner.
• Size of sequence node is the total size of child nodes.

size (sequencek) =
#children∑

i=0
size (child_nodek,i)

• Size of band node is its child node size × dimension
length, which is given by the maximum value of the
dimension with optional padding (padk ≥ 1).

size (bandk) = lenдthk × size (child_nodek (,0))

lenдthk =max (ranдe (bandk)) + padk

• Size of leaf node is 1 if all arrays are same type. Oth-
erwise leaf size corresponds to the data type of the
array.

size (lea fk) = 1 (or sizeof(type))

In the code generation phase, the schedule tree is traversed in
depth-first order and the expressions of dimension lengths
and node sizes are defined respectively, according to the
above rules (Figure 7).
The total field size is equivalent to the root node of the

schedule tree, e.g., size (sequenceroot) in the running exam-
ple. The offset to array element A(e⃗) is equivalent to the
linearized form of layout mapping ΦA and computed as the
summation of contributions from individual dimensions: a)
in case of scalar dimension, its contribution is the total size
of preceding nodes in the schedule tree; and b) in case of
loop dimension, its contribution is the child node size × the
expression of the loop dimension, e.g., e2 and e1 for the first
and second loop dimensions of array A (Figure 6). The code
generation phase also defines the expressions of total field
size and offsets, and inserts the statement to allocate the
linearized array field and macros to access individual array
elements.
Finally, the copy-in/out data transfers between original

and transformed layouts, as with the re-distribution of trans-
formed layouts, are simply implemented as assignments us-
ing the access macros, e.g., the doubly nested loop to copy the
original A into the transformed layout via macro _A(e1,e2)
at the bottom of Figure 7. Also, the loop code generation
phase uses the access macros for each array reference.

4.4 Nested Structures
The second approach is to allocate the C structs that cor-
respond to the schedule tree. Although this is even more
straightforward than the first approach, the resulting struc-
ture is not guaranteed to strictly preserve the relative order
of the layout mapping. We first determine the data type of
each node in the following manner.

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

#pragma layout map(inout: C(e1,e2) -> (0, e1, e2) : double[ni, nj]) \
map(in: A(e1,e2) -> (1, e2, 0, e1) : double[ni, nk]) \
map(in: B(e1,e2) -> (1, e1, 1, e2) : double[nk, nj])

Figure 6. Layout directive to specify layout transformations in Section 3.1.2 (data tiling is omitted for simplicity)
// Dimension length
int len_0_0 = nj + padding;
int len_0 = ni;
int len_1_0 = ni + padding;
int len_1_1 = nj + padding;
int len_1 = max(nk, nk);

// Node size definition
int band_0_0 = len_0_0 * 1;
int band_0 = len_0 * band_0_0;
int band_1_0 = len_1_0 * 1;
int band_1_1 = len_1_1 * 1;
int seq_1 = band_1_0 + band_1_1;
int band_1 = len_1 * seq_1;
int seq_root = band_0 + band_1;

// Allocation for new layout
double *field = malloc(seq_root * sizeof(double));

// Accesses for new layout
#define _C(e1,e2) field[0 + (e1) * band_0_0 + (e2)]
#define _A(e1,e2) field[band_0 + (e2) * seq_1 + 0 + (e1)]
#define _B(e1,e2) field[band_0 + (e1) * seq_1 + band_1_0 + (e2)]

// Data transfer
for (int e1 = 0; e1 < ni; e1++)

for (int e2 = 0; e2 < nj; e2++)
_A(e1,e2) = A[e1][e2];

...

Figure 7. Codegen via linearized field

// Dimension length
... (same as linearized field)

// Node struct definition
typedef struct _seq_1 {

double *band_1_0 , *band_1_1;
} Seq_1;

// Allocation for new layout
int szd = sizeof(double);
double ** band_0 = malloc(len_0 * sizeof(double *));
band_0 [0] = malloc(len_0 * len_0_0 * szd);
for(i = 0; i < len_0; i++) {

band_0[i] = (* band_0 + len_0_0 * i);
}
Seq_1 *band_1 = malloc(len_1 * sizeof(Seq_1));
for (i = 0; i < len_1; i++) {

band_1[i]. band_1_0 = malloc(len_1_0 * szd);
band_1[i]. band_1_1 = malloc(len_1_1 * szd);

}

// Accesses for new layout
#define _C(e1,e2) band_0 [(e1)][(e2)]
#define _A(e1,e2) band_1 [(e2)]. band_1_0 [(e1)]
#define _B(e1,e2) band_1 [(e1)]. band_1_1 [(e2)]

// Data transfer
... (same as linearized field)

Figure 8. Codegen via nested structs

• The data type of sequence node is defined as a struct
whose members correspond to child nodes of the se-
quence node.
typedef struct _seq_k {

type_k_0 child_k_0; type_k_1 child_k_1; ...
} Seq_k;

• The data type of band node is the pointer type of the
child node so as to allocate an array of child node type.
type_k_0 *band_k;
band_k = malloc(len_k * sizeof(type_k_0));

• The data type of leaf node is the array’s data type.
In the code generation phase, the schedule tree is traversed
in depth-first order and the data type of each node is deter-
mined. The structs of sequence nodes except for the root
node are explicitly defined in the output code (Figure 8).

The kind of root node can be either of band or sequence. If
the root is a band node, the code generation phase declares
the variable corresponding to the root band node. Otherwise,
it declares the variable(s) corresponding to the members
of the root sequence node, e.g., “double **band_0” and
“Seq_1 *band_1” in Figure 8. The arrays for band nodes are
recursively allocated in the nested structure. The macro to
access each array element is simply computed from the root-
to-leaf path in the schedule tree. In our running example, the

pass from sequenceroot to lea f1,0,0 gives the access macro:
#define _A(e1,e2) band_1[(e2)].band_1_0[(e1)].

5 Potential Impact of Integrating Loop and
Data Layout Transformations

We use the generalized matrix-multiply (gemm) from Poly-
Bench 4.2 [25] along with the default benchmark dataset,
to motivate the potential impact of integrating loop and
data layout transformations in a single optimization prob-
lem. As with many of other PolyBench benchmarks, gemm
has high computational intensity, i.e., 2-dimensional arrays
were accessed in 3-dimensional loop nests. The execution
time measured in the following experiments includes 2-D
arrays’ data copy-in and copy-out overhead, which is indeed
ignorable on all the tested systems. We observed that 22 of 29
PolyBench benchmarks are also computationally intensive,
i.e., n-dimensional arrays inm-dimensional loop nests where
n < m, and can be good candidates for the performance
study of the data layout transformations.

Three Linux-based SMP systems are used: a 12-core (dual
6-core) 2.8GHz Intel XeonWestmere, a 12-core 2.1GHz Broad-
well, and a 24-core (dual 12-core) 3.0GHz IBM POWER8. On
Xeon, all experimental variants were compiled using the
Intel C/C++ compiler v15.0 (Westmere) and v17.0 (Broad-
well) with the “-O3 -xHOST” options for sequential runs

IMPACT’19, January 21–23, 2019, Valencia, Spain

#pragma omp parallel for ...
for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++)
S: C[i][j] *= beta;

for (k = 0; k < nk; k++) {
T: C[i][j] += alpha

* A[i][k] * B[j][k];
} }

Figure 9. gemm using PLuTo (min-
imum reuse distance schedule) +
manual best layout search (which
resulted in transposing the dimen-
sions of array B)

#pragma omp parallel for ...
for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++)
S: C[i][j] *= beta;

for (k = 0; k < nk; k++)
for (j = 0; j < nj; j++)

T: C[i][j] += alpha
* A[i][k] * B[k][j];

}

Figure 10. gemm using PolyAST
+ manual best layout search
(which resulted in no change to
the original data layout)

#pragma omp parallel for private(j)
for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)
S: C[i][j] *= beta;
#pragma omp parallel for private(i, j) \

reduction (+: C[0:ni][0:nj])
for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

T: C[i][j] += alpha
* A[k][i] * B[k][j];

Figure 11. gemm using our framework (which
resulted in transposing the dimensions of array
A, and also a different loop transformation)

and the “-O3 -xHOST -openmp” options for the output from
automatic parallelization. On POWER8, all variants were
compiled using the IBM XL C/C++ compiler 13.1 with the
“xlc -O5” command for sequential runs and the “xlc_r -O5
-qsmp=omp” command for the output from automatic paral-
lelization by PLuTo, PolyAST, and our framework.

Figure 9 is the output of the PLuTo polyhedral compiler [5,
6], whose objective function is to minimize the temporal
distance between two accesses to the same memory location,
i.e., minimum reuse distance. This is also a core objective of
many polyhedral optimizers to achieve maximal temporal
data locality and outermost forall parallelism. As an example
of the phase-ordered approach, after loop transformations
we manually tried all possible (23 = 8) array dimensional per-
mutation candidates on three platforms, and found the best
layout: permuting 2-D array B so that the original B[k][j]
was changed into B[j][k]with better spatial locality. As dis-
cussed later, the original B[k][j] layout was selected when
enabling intra-tile permutation by PLuTo.
We also applied PolyAST [32], a hybrid framework to in-

tegrate polyhedral and AST-based loop transformations, and
obtained the output shown in Figure 10. PolyAST employs
analytical memory cost models, which guide loop transfor-
mations to implement better temporal and spatial data lo-
cality on the given data layout. As a result, the best layout
found by manual array dimensional permutation on three
platforms is same as the original layout. Note that we omit
loop tiling in Figures 9–11 for readability, though tiling was
performed to obtain the performance numbers in Table 1.
Figure 11 is the output of our on-going work, cost-based

iterative compilation to integrate data layout and loop trans-
formations. This approach first generates candidate layouts
Φ, which are all 8 combinations of array permutation in this
example, and applies PolyAST transformations to all candi-
dates and generates corresponding schedules Θ. Finally, it
selects the pair of Φ and Θ with the minimum estimated cost
as the final output. Our framework selected very different
loop transformations from others, e.g., statements S and T
are completely distributed and the k-loop is parallelized as
an array reduction for statement T . Integrated with these

loop transformations, the data layout selected by our frame-
work is: permuting 2-D array A so that the original A[i][k]
reference was changed to A[k][i]. Although the reduction
parallelism needs extra overhead to compute the final values,
our cost analysis detected that the overhead is sufficiently
small and more than overcome by the benefits of reduced
memory cost. The selected data layout minimizes the array
read costs on A and B, while the partial sum of array reduc-
tion on C is accumulated into thread-local storage, thereby
incurring no inter-thread communications except the final
sum.
Table 1 shows the speedups of the all experimental vari-

ants with tiling, relative to the original program. It clearly
shows the effectiveness of the integrated loop and data lay-
out transformations over the phase-ordered strategies using
PLuTo and PolyAST polyhedral loop optimizers. The ’PLuTo’
and ’Min dist + layout’ variants have the same inter-tile loop
structures as shown in Figure 9, while PLuTo additionally
permutes intra-tile loops to enhance vectorizations. Because
of the intra-tile loop permutation to locate j-loop innermost,
the original layout B[k][j] was selected as the best for the
PLuTo variant. To summarize, proper integration of data
layout and loop transformations can find the optimal solu-
tion which may lie in a space not covered by phase-ordered
approaches.

12-core 12-core 24-core
Westmere Broadwell POWER8

PLuTo + layout 4.96× 4.44× 9.62×
Min dist + layout 5.09× 4.01× 8.62×
PolyAST + layout 5.72× 4.48× 11.58×
Integrated 7.50× 4.97× 14.96×

Table 1. Speedup over the original sequential. The manual
best layout search selected the original layouts for PLuTo
and PolyAST respectively due to intra-tile loop permutation
and temporal/spatial locality-aware affine scheduling.

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

6 Related Work
There is an extensive body of literature on loop and data
layout transformations. In this section, we focus on past
contributions that are most closely related to this paper.
[18] proposed a combined loop and data layout transfor-

mation framework for improving the cache performance of
sequential codes. They first apply loop transformations to
optimize the locality of a given loop nest, and then apply data
transformations for arrays for which the array references do
not exhibit good spatial locality after the loop transforma-
tions, i.e., loop-first approach.

[40] first tackled the memory allocation problem for poly-
hedral programs in the context of the ALPHA language,
where variables have single assignment form by nature.
Given a schedule, they gave necessary and sufficient condi-
tions for the legality of a memory allocation.

[33] addressed the problem of finding memory allocations
for a perfect loop nest with stencil-like uniform dependences.
They proposed universal occupancy vector, which provides
a schedule-independent storage reuse pattern and enables
storage reduction while keeping the flexibility in loop sched-
uling.
[34, 35] was the first to address the unification of affine

scheduling and storage optimization with consideration for
the optimal tradeoff between parallelism and storage space.
They proposed a mathematical framework that unifies the
techniques of one-dimensional affine scheduling and occu-
pancy vector analysis, which determines a good storage
mapping for a given schedule, a good schedule for a given
storage mapping, and a good storage mapping that is valid
across a range of schedules.

[27] provided constructive algorithms for asymptotically
optimal memory allocation functions for a given schedule.
This work builds on top of [40] and the analysis targets static
control flow programs in a single assignment form.

[7, 8] presented lattice basedmemory allocation for schedule-
specific storage optimization in the context of the polyhe-
dral model. They formulated modular memory allocations in
terms of integer lattices, where the basis of the lattice is akin
to a set of occupancy vectors that are applied simultaneously.
The size of the allocated storage is equivalent to the deter-
minant of the lattice, and they proposed several heuristics
for minimizing this quantity.
[22] proposed a temporal and spatial data locality op-

timization framework of nested loops, where unimodular
transformations are used to implement good temporal lo-
cality while aggressive data layout transformations with
special attention on TLB effectiveness are used to improve
spatial locality. Their data layout transformation would be
closely related to the array-based layout transformation pre-
sented in Section 3.1. An important difference is that their
approach aims to implement contiguous memory access for

TLB efficiency and represents transformed layouts in one-
dimensional polynomial functions (e.g., i × (i − 1)) while we
are interested in general layout transformations that can be
represented as multi-dimensional (quasi-)affine functions.
[36] proposed a joint formulation for loop transforma-

tions and data layout permutations based on the optimiza-
tion algorithms of the R-Stream polyhedral compiler. The
proposed extension allows additional flexibility of permuting
arrays per statement, aiming at improved spatial locality for
better vectorization efficiency. The data layout transforma-
tions considered with scheduling have so far been limited
to permutations and the scheduling problem requires many
boolean decision variables, which can certainly be improved
in their future work.
[14] formulated the memory stream alignment problem,

a fundamental performance bottleneck for stencil computa-
tions on short-vector SIMD architectures, and develop an
approach to overcoming the problem via data layout trans-
formations for improved vectorization.
[31] proposed an automatic data layout selection algo-

rithm built on a source-to-source layout transformation tool.
Given an input program and target machine specification,
this approach recommend a good SoA/AoS data layout. [9]
introduced selection of optimized SoA/AoS generation for
CPU+GPU hybrid architectures. Neither [31] nor [9] in-
cluded loop transformations in the scope of their work.

[17] presented the design and evaluation of Brainy, a pro-
gram analysis tool for optimized data structure selection
based on dynamic profiling. Given program, inputs, and tar-
get architecture, it generates machine-learning based models
to predict the best data structure implementation. Loop trans-
formations were not included in the scope of this work.
[28] addressed the minimization of inter-node communi-

cations on distributed-memory clusters by combining data
tiling transformations with loop tiling. On top of polyhe-
dral loop transformations to enable locality optimizations
(including tiling), they successfully introduced additional
constraints for data tiling to minimize communications.

7 Conclusions
In this paper, we introduced our on-going study on inte-
grating data layout transformations in the polyhedral model.
We presented two types of layout representations, array-
based and value-based, and discussed the advantages and
disadvantages of both representations.

The array-based layout transformation is amenable to spa-
tial data locality optimizations without imposing additional
legality constraints while not straightforward to implement
storage contraction and expansion. In contrast, value-based
layout transformation is capable of enabling a broader range
of transformations including storage contraction/expansion
while it affects legality constraints and brings new challenges
to compute both schedule and layout simultaneously.

IMPACT’19, January 21–23, 2019, Valencia, Spain

As an optimization framework using the array-based lay-
out representations, we are developing a cost-based iterative
compilation algorithm to find the best pair of loop and data
layout transformations. The potential benefit of this inte-
grated approach was demonstrated on three SMP systems
using GEMM in this paper. Integrating the value-based lay-
out transformation, whose effectiveness was demonstrated
by a wide range of past researches, in our optimization frame-
work is another important direction of the future work.

Acknowledgments
We are very thankful to the IMPACT Program Committees
for their detailed and positive feedback on this paper.

References
[1] The Polyhedral Compiler Collection. http://www.cs.ucla.edu/

~pouchet/software/pocc/.
[2] Polyhedral Extraction Tool.
[3] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings

of the 1984 SIGPLAN Symposium on Compiler Construction, SIGPLAN
’84, pages 233–246, New York, NY, USA, 1984. ACM. ISBN 0-89791-
139-3. doi: 10.1145/502874.502897. URL http://doi.acm.org/10.1145/
502874.502897.

[4] S. G. Bhaskaracharya, U. Bondhugula, and A. Cohen. Automatic stor-
age optimization for arrays. ACM Trans. Program. Lang. Syst., 38(3):
11:1–11:23, Apr. 2016. ISSN 0164-0925. doi: 10.1145/2845078. URL
http://doi.acm.org/10.1145/2845078.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In
Proc. of PLDI ’08, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-
860-2. doi: 10.1145/1375581.1375595. URL http://doi.acm.org/10.1145/
1375581.1375595.

[6] U. Bondhugula, A. Acharya, and A. Cohen. The pluto+ algorithm:
A practical approach for parallelization and locality optimization of
affine loop nests. ACM Trans. Program. Lang. Syst., 38(3):12:1–12:32,
Apr. 2016. ISSN 0164-0925. doi: 10.1145/2896389. URL http://doi.acm.
org/10.1145/2896389.

[7] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation.
IEEE Trans. Computers, 54(10):1242–1257, 2005. doi: 10.1109/TC.2005.
167. URL https://doi.org/10.1109/TC.2005.167.

[8] A. Darte, A. Isoard, and T. Yuki. Extended lattice-based memory
allocation. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,
pages 218–228, 2016. doi: 10.1145/2892208.2892213. URL https:
//doi.org/10.1145/2892208.2892213.

[9] R. B. Deepak Majeti, Kuldeep S. Meel and V. Sarkar. Automatic Data
Layout Generation and Kernel Mapping for CPU+GPU Architectures.
In 25th International Conference on Compiler Construction, Mar 2016.

[10] P. Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing,
pages 429–441, 1988.

[11] P. Feautrier. Dataflow analysis of scalar and array references. 20(1):
23–53, Feb. 1991.

[12] P. Feautrier and C. Lengauer. Polyhedron Model. In D. Padua, editor,
Encyclopedia of Parallel Computing, pages 1581–1592. Springer US,
2011. ISBN 978-0-387-09765-7 978-0-387-09766-4.

[13] T. Grosser, A. Größlinger, and C. Lengauer. Polly - Performing Poly-
hedral Optimizations on a Low-Level Intermediate Representation.
Parallel Processing Letters, 22(4), 2012. URL http://dblp.uni-trier.de/db/
journals/ppl/ppl22.html#GrosserGL12.

[14] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan. Data layout transformation for stencil computations

on short-vector simd architectures. In Proceedings of the 20th Interna-
tional Conference on Compiler Construction: Part of the Joint European
Conferences on Theory and Practice of Software, CC’11/ETAPS’11, pages
225–245, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-
19860-1. URL http://dl.acm.org/citation.cfm?id=1987237.1987255.

[15] F. Irigoin and R. Triolet. Supernode Partitioning. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’88, pages 319–329, New York, NY, USA, 1988. ACM.
ISBN 978-0-89791-252-5. doi: 10.1145/73560.73588.

[16] ISL. Integer set library. http://isl.gforge.inria.fr.
[17] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy: Effec-

tive selection of data structures. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’11, pages 86–97, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993509. URL http:
//doi.acm.org/10.1145/1993498.1993509.

[18] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Im-
proving locality using loop and data transformations in an integrated
framework. In Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 31, pages 285–297, Los Alami-
tos, CA, USA, 1998. IEEE Computer Society Press. ISBN 1-58113-016-3.
URL http://dl.acm.org/citation.cfm?id=290940.290999.

[19] K. Kennedy and K. McKinley. Maximizing loop parallelism and im-
proving data locality via loop fusion and distribution. In Languages
and Compilers for Parallel Computing, pages 301–320, 1993.

[20] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan. When Polyhedral Transformations Meet SIMD Code Gen-
eration. volume 48, pages 127–138, New York, NY, USA, June 2013.
ACM. doi: 10.1145/2499370.2462187. URL http://doi.acm.org/10.1145/
2499370.2462187.

[21] V. Lefebvre and P. Feautrier. Automatic storage management for
parallel programs. Parallel Comput., 24(3-4):649–671, May 1998. ISSN
0167-8191. doi: 10.1016/S0167-8191(98)00029-5. URL http://dx.doi.org/
10.1016/S0167-8191(98)00029-5.

[22] V. Loechner, B. Meister, and P. Clauss. Precise datalocality optimization
of nested loops. The Journal of Supercomputing, 21(1):37–76, 2002.

[23] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving Data Locality
with Loop Transformations. 18(4):424–453, July 1996. ISSN 0164-0925.
doi: 10.1145/233561.233564.

[24] OpenScop. Openscop specification and library. http://icps.u-
strasbg.fr/ bastoul/development/openscop/.

[25] PolyBench. The polyhedral benchmark suite. http://www.cse.
ohio-state.edu/~pouchet/software/polybench/.

[26] W. Pugh and D. Wonnacott. An evaluation of exact methods for
analysis of value-based array data dependences. In Sixth Annual Work-
shop on Programming Languages and Compilers for Parallel Computing,
pages 546–566. Springer-Verlag LNCS 768, Aug. 1993.

[27] F. Quilleré and S. V. Rajopadhye. Optimizing memory usage in the
polyhedral model. ACM Trans. Program. Lang. Syst., 22(5):773–815,
2000. doi: 10.1145/365151.365152. URL https://doi.org/10.1145/365151.
365152.

[28] C. Reddy and U. Bondhugula. Effective automatic computation place-
ment and data allocation for parallelization of regular programs.
In Proceedings of the 28th ACM International Conference on Super-
computing, ICS ’14, pages 13–22, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2642-1. doi: 10.1145/2597652.2597673. URL http:
//doi.acm.org/10.1145/2597652.2597673.

[29] V. Sarkar. Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers. IBM J. Res. & Dev., 41(3), May 1997.

[30] V. Sarkar and L. A. Vazquez. Automatic localization for distributed-
memory multiprocessors using a shared-memory compilation frame-
work. In Proc. of the Twenty-Seventh Hawaii International Conference
on System Sciences, Jan 1994.

http://www.cs.ucla.edu/~pouchet/software/pocc/
http://www.cs.ucla.edu/~pouchet/software/pocc/
http://doi.acm.org/10.1145/502874.502897
http://doi.acm.org/10.1145/502874.502897
http://doi.acm.org/10.1145/2845078
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/2896389
http://doi.acm.org/10.1145/2896389
https://doi.org/10.1109/TC.2005.167
https://doi.org/10.1145/2892208.2892213
https://doi.org/10.1145/2892208.2892213
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dl.acm.org/citation.cfm?id=1987237.1987255
http://isl.gforge.inria.fr
http://doi.acm.org/10.1145/1993498.1993509
http://doi.acm.org/10.1145/1993498.1993509
http://dl.acm.org/citation.cfm?id=290940.290999
http://doi.acm.org/10.1145/2499370.2462187
http://doi.acm.org/10.1145/2499370.2462187
http://dx.doi.org/10.1016/S0167-8191(98)00029-5
http://dx.doi.org/10.1016/S0167-8191(98)00029-5
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
https://doi.org/10.1145/365151.365152
https://doi.org/10.1145/365151.365152
http://doi.acm.org/10.1145/2597652.2597673
http://doi.acm.org/10.1145/2597652.2597673

IMPACT’19, January 21–23, 2019, Valencia, Spain Jun Shirako and Vivek Sarkar

[31] K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar. Data layout
optimization for portable performance. In Euro-Par 2015: Parallel
Processing, pages 250–262. Springer, 2015.

[32] J. Shirako, L.-N. Pouchet, and V. Sarkar. Oil and water can mix: An inte-
gration of polyhedral and ast-based transformations. In Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’14, pages 287–298, Piscataway, NJ, USA,
2014. IEEE Press. ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.29.
URL http://dx.doi.org/10.1109/SC.2014.29.

[33] M.M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independent
storage mapping for loops. In ASPLOS-VIII Proceedings of the 8th
International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, USA, October
3-7, 1998., pages 24–33, 1998. doi: 10.1145/291069.291015. URL https:
//doi.org/10.1145/291069.291015.

[34] W. Thies, F. Vivien, J. Sheldon, and S. P. Amarasinghe. A unified
framework for schedule and storage optimization. In Proceedings of
the 2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001,
pages 232–242, 2001. doi: 10.1145/378795.378852. URL https://doi.org/
10.1145/378795.378852.

[35] W. Thies, F. Vivien, and S. P. Amarasinghe. A step towards unifying
schedule and storage optimization. ACM Trans. Program. Lang. Syst.,
29(6):34, 2007. doi: 10.1145/1286821.1286825. URL https://doi.org/10.
1145/1286821.1286825.

[36] N. Vasilache, B. Meister, M. Baskaran, and R. Lethin. Joint scheduling
and layout optimization to enable multi- level vectorization. In
IMPACT-2: 2nd International Workshop on Polyhedral Compila-
tion Techniques, Paris, France, January, Paris, France, Jan 2012.
URL https://www.researchgate.net/publication/230759922_Joint_
Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_
Vectorization?ev=prf_pub.

[37] S. Verdoolaege. Counting Affine Calculator and Applications. In
First International Workshop on Polyhedral Compilation Techniques
(IMPACT’11), Chamonix, France, Apr. 2011. doi: 10.13140/RG.2.1.2959.
5601.

[38] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
and F. Catthoor. Polyhedral parallel code generation for CUDA. ACM
Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan. 2013. ISSN 1544-3566.
doi: 10.1145/2400682.2400713. URL http://doi.acm.org/10.1145/2400682.
2400713.

[39] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen. Schedule
Trees. In IMPACT - 4th Workshop on Polyhedral Compilation Tech-
niques, associated with HiPEAC, Vienna, Austria, Jan. 2014. ACM. URL
https://hal.inria.fr/hal-00911894.

[40] D. Wilde and S. V. Rajopadhye. Memory reuse analysis in the poly-
hedral model. In Euro-Par ’96 Parallel Processing, Second International
Euro-Par Conference, Lyon, France, August 26-29, 1996, Proceedings, Vol-
ume I, pages 389–397, 1996. doi: 10.1007/3-540-61626-8_51. URL
https://doi.org/10.1007/3-540-61626-8_51.

[41] M. Wolf, D. Maydan, and D.-K. Chen. Combining loop transformations
considering caches and scheduling. In MICRO 29: Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture,
pages 274–286, 1996.

[42] M. Wolfe. Loop skewing: The wavefront method revisited. Int. J.
Parallel Program., 15(4):279–293, Oct. 1986. ISSN 0885-7458. doi:
10.1007/BF01407876. URL http://dx.doi.org/10.1007/BF01407876.

[43] M. Wolfe. Iteration space tiling for memory hierarchies. In Pro-
ceedings of the Third SIAM Conference on Parallel Processing for Scien-
tific Computing, pages 357–361, Philadelphia, PA, USA, 1989. Society
for Industrial and Applied Mathematics. ISBN 0-89871-228-9. URL
http://dl.acm.org/citation.cfm?id=645818.669220.

[44] D. G. Wonnacott. Constraint-based Array Dependence Analysis. PhD
thesis, College Park, MD, USA, 1995. UMI Order No. GAX96-22167.

[45] O. Zinenko, S. Verdoolaege, C. Reddy, J. Shirako, T. Grosser, V. Sarkar,
and A. Cohen. Modeling the conflicting demands of parallelism and
temporal/spatial locality in affine scheduling. In Proceedings of the
27th International Conference on Compiler Construction, CC 2018, pages
3–13, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5644-2. doi:
10.1145/3178372.3179507. URL http://doi.acm.org/10.1145/3178372.
3179507.

http://dx.doi.org/10.1109/SC.2014.29
https://doi.org/10.1145/291069.291015
https://doi.org/10.1145/291069.291015
https://doi.org/10.1145/378795.378852
https://doi.org/10.1145/378795.378852
https://doi.org/10.1145/1286821.1286825
https://doi.org/10.1145/1286821.1286825
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
https://hal.inria.fr/hal-00911894
https://doi.org/10.1007/3-540-61626-8_51
http://dx.doi.org/10.1007/BF01407876
http://dl.acm.org/citation.cfm?id=645818.669220
http://doi.acm.org/10.1145/3178372.3179507
http://doi.acm.org/10.1145/3178372.3179507

	Abstract
	1 Introduction
	2 Background
	2.1 Basic Components
	2.2 Legality and Loop Transformations

	3 Layout Representations
	3.1 Array-Based Layout Transformations
	3.2 Value-Based Layout Transformations

	4 Code Generation for Transformed Layout
	4.1 Code-level Layout Specification
	4.2 Code Generations for New Layout
	4.3 Linearized field
	4.4 Nested Structures

	5 Potential Impact of Integrating Loop and Data Layout Transformations
	6 Related Work
	7 Conclusions
	References

