
The Polyhedral Model Beyond Loops
Recursion Optimization and Parallelization Through Polyhedral Modeling

Salwa Kobeissi
Inria Camus, ICube Lab., CNRS,

University of Strasbourg
Strasbourg, France

salwa.kobeissi@inria.fr

Philippe Clauss
Inria Camus, ICube Lab., CNRS,

University of Strasbourg
Strasbourg, France

philippe.clauss@inria.fr

Abstract
There may be a huge gap between the statements outlined
by programmers in a program source code and instructions
that are actually performed by a given processor architec-
ture when running the executable code. This gap is due to
the way the input code has been interpreted, translated and
transformed by the compiler and the final processor hard-
ware. Thus, there is an opportunity for efficient optimization
strategies, that are dedicated to specific control structures
and memory access patterns, to apply as soon as the actual
runtime behavior has been discovered, even if they could
not have been applied on the original source code.

In this paper, we develop this idea by identifying code ex-
tracts that behave as polyhedral-compliant loops at runtime,
while not having been outlined at all as loops in the original
source code. In particular, we are interested in recursive func-
tions whose runtime behavior can be modeled as polyhedral
loops. Therefore, the scope of this study exclusively includes
recursive functions whose control flow andmemory accesses
exhibit an affine behavior, which means that there exists a
semantically equivalent affine loop nest, candidate for poly-
hedral optimizations. Accordingly, our approach is based on
analyzing early executions of a recursive program using a
Nested Loop Recognition (NLR) algorithm, performing the
affine loop modeling of the original program runtime behav-
ior, which is then used to generate an equivalent iterative
program, finally optimized using the polyhedral compiler
Polly. We present some preliminary results showing that this
approach brings recursion optimization techniques into a
higher level in addition to widening the scope of the polyhe-
dral model to include originally non-loop programs.

Keywords Compilation, dynamic analysis, loop optimiza-
tion, parallelization, polyhedral model, recursion, recursive
function
ACM Reference Format:
Salwa Kobeissi and Philippe Clauss. 2018. The Polyhedral Model
Beyond Loops: Recursion Optimization and Parallelization Through
Polyhedral Modeling. In Proceedings of 9th International Workshop
on Polyhedral Compilation Techniques - in conjunction with HiPEAC
2019 (IMPACT 2019). ACM, New York, NY, USA, 7 pages.

IMPACT 2019, January 21-23, 2019, Valencia, Spain
.

1 Introduction
In the area of automatic program optimization and compila-
tion for imperative languages, loop structures are obviously
legitimate targets, since they represent a large and compute-
intensive part of the whole execution time. Accordingly,
numerous advanced loop analysis and optimization tech-
niques have been developed and implemented in compilers
and other tools dedicated to optimizing code transformations.
Many of these sophisticated loop optimizers are based on the
polyhedral model from which they acquire their powerful
capabilities in this domain (e.g., Polly [8], Pluto [5]).
The polyhedral model is a mathematical framework that

contributes a substantial abstraction and representation for
programs having affine loop nests and accessingmulti-dimen-
sional arrays through affine array references, i.e., programs
with static control parts (SCoPs). This framework provides
powerful analysis, and aggressive loop automatic optimiz-
ing and parallelizing transformations (e.g., loop tiling, loop
skewing, loop interchange, etc.).
The Apollo framework [14, 21] shows that even if loops

that are outlined in a source code do not have the required
shape, i.e., are not SCoPs, they may still be good candidates
for polyhedral optimizations since their actual runtime be-
havior is similar to SCoPs’ runtime behavior: actual loop
bounds and memory references can be modeled as affine
functions of surrounding loop indices. In this paper, we go
further with this idea of discovering a “SCoP” runtime be-
havior for code extracts that are even not outlined as loops
in the source code, but as recursive functions. Compared to
what has been achieved with Apollo, the general goal is not
only to build an affine modeling of the data flow, but also to
build an affine (loop) modeling of the control flow.

Among the time-expensive structures, recursive functions
also play an important role. They generally implement com-
plex algorithms that may scan huge data structures such as
graphs, trees and matrices. A recursive approach is usually
adopted when solving any problem whose solution relies on
smaller and simpler instances of its own. It also eases the
expression of computations that are generic to parameters
as search depths or problem dimensions.
It is well-known that recursive and iterative (loops) ap-

proaches can be used alternately to solve a problem. Re-
placing a recursive code by an equivalent iterative code and

IMPACT 2019, January 21-23, 2019, Valencia, Spain Salwa Kobeissi and Philippe Clauss

vice versa is usually possible [2]. In particular, tail recursive
functions are automatically handled by production compil-
ers (CLANG, GCC) and transformed into equivalent loops.
However, the so-generated loops are generally not suitable
for advanced polyhedral optimizations. Moreover, unlike
loops, recursive functions do not take advantage of very
advanced automatic parallelization and optimization tech-
niques [9, 15].

In this paper, we present our promising idea to make use
of the polyhedral model’s powerful capabilities to optimize
and parallelize recursions, through a guided modeling of
their runtime behaviors as polyhedral-compliant loops. Note
that the proposed approach is different than static recursion
elimination, since it mostly ignores the syntactic shape of
the target code. It should rather be understood as a dynamic
and automatic rewrite of the target recursive code, through
the polyhedral modeling of a part of its data and control
flow. Our approach mainly consists of a dynamic analysis
technique to check for a linear looping memory and control
behavior for a given recursion. Thus, before replacing the
original recursive code, we make sure that, at runtime, it acts
as an affine for-loop. Subsequently, we generate a seman-
tically equivalent iterative code and, finally, apply further
polyhedral optimizations.
The paper is organized as follows : Section 2 discusses

some representative previous works on recursion optimiza-
tions and parallelizations. Section 3 describes the steps of
our method and the tools utilized to implement our idea,
and Section 4 supports our proposal by showing some pre-
liminary results. Finally, Section 5 sums up the work and
proposes some future works concerning our purpose.

2 Related Work
Various studies exist for the purpose of optimizing and par-
allelizing recursive functions. Nevertheless, the proposed
parallelization techniques are mainly static and involve task
parallelization where several recursive calls or invocations
are run simultaneously.
Rugina and Rinard [18] present a compiler to parallelize

divide-and-conquer recursive functions using pointer anal-
ysis and symbolic analysis to detect independent recursive
calls and generate code that executes these calls concurrently.
Also, for divide-and-conquer implementations, Gupta et al.
[9] propose a compile-time framework that uses interpro-
cedural symbolic array section analysis to detect the inde-
pendence of multiple recursive calls of divide-and-conquer
algorithms. It also proposes a speculative run-time paral-
lelization technique when static analysis is not sufficient. Be-
sides, a tool called Huckleberry [7] automatically parallelizes
sequential recursive divide-and-conquer implementations
for multi-core platforms.
Another approach [17] proposed by Morihata and Mat-

suzaki is an automatic parallelization method for recursive

functions using quantifier elimination, where the input struc-
ture is partitioned into chunks that are run in parallel. In
addition, Mizutani et al. [16] propose a different strategy to
parallelize recursive functions where programmers decide
on using simple or dynamic load balancing depending on
the workload of the recursive functions and on the threshold
up to which each call is executed in parallel. Saougkos et al.
[19] propose an automatic fine-grained parallelism extrac-
tion method for recursive functions having integer variables
updated in a systematic way.

DECAF [10] is a technique to optimize recursive task par-
allel programs by reducing the task creation and termina-
tion overheads. Tetzlaff and Glesner [23] propose a machine
learning based approach to statically predict the recursion
frequency of functions used to guide various hot spot opti-
mizations.

Sundararajah et al. [22] propose recursion twisting trans-
formations for nested recursions that improve data locality.
However, their technique is solely devoted to specific shapes
of recursions where data is organized in two trees, called
inner and outer trees, and where recursive calls are nested.
A different approach for optimizing recursive implemen-

tations is recursion elimination. In this context, the work
presented by Bird [3] proposes recursive elimination meth-
ods for some forms of recursions using stacks. Cohen [6]
presents four types of redundancy in recursive functions and
suggests a solution for each of these types by eliminating re-
cursion without using a stack. Another recursion elimination
technique is tackled by Bird [4], so-called tabulation, which
addresses repetitive (redundant) evaluation of certain values
by only computing values for once and, then, storing them
for later uses. Also, Liu and Stoller [13] describe a method
for transforming some recursive programs into programs
using the dynamic programming design technique. Stitt and
Villarreal [20] propose recursion flattening that can elimi-
nate many instances of recursion by determining recursion
depth, and then inlining recursive calls. However, it cannot
eliminate all recursions.
Adriadne [15] is a compiler that extracts directive-based

parallelism from recursive function calls. It extracts three
forms of parallelisms and a transformation for each one: (1)
recursion elimination: converting recursive function to iter-
ative one, (2) parallel-reduction eliminating recursion and
distributing workload into independent tasks, (3) thread-safe
parallelizing recursive functions that contain independent re-
cursive calls. So, Adriadne for one of its approaches performs
recursion-to-iteration transformation, but it only supports
recursive functions whose parameters remain unchanged
among recursive calls, except for one integer parameter, the
so-called index variable, participating in all the conditions
and the termination of the recursive function.

Furthermore, some compilers today (e.g. clang/LLVM [12])
implement an optimization pass for transforming recursive
functions into loops, however limited to tail recursions, i.e.,

The Polyhedral Model Beyond Loops IMPACT 2019, January 21-23, 2019, Valencia, Spain

to recursive functions where the recursive call is the last
instruction of the function. Additionally, this transforma-
tion is not incremental and, thus, is not able to transform
several nested recursive calls which would become tail af-
ter its application. Other well-known recursion elimination
and recursion-to-loop transformation techniques are not yet
automated in these compilers.

To sum up, recursive implementationsmay take advantage
of parallelism and other optimizations as described in the
studies above. However, the finest parallelism granularity is
usually one recursive function invocation where data local-
ity optimization cannot be handled very accurately. When
transformations of recursive functions into loops are pro-
posed, the resulting loops are generally too complicated for
taking advantage of efficient compilers loop optimizations,
thus not providing significant performance improvement
regarding their recursive counterpart. This is mostly due to
the employed static approaches that try to build a generic
equivalent loop program, where either the call stack is simu-
lated using a dedicated data structure, or the generated loops
are while-loops with dynamic termination conditions, or the
loop bodies embed many conditional branches to mimic the
original cases of recursive calls.

In this paper, we show that dynamic analysis of recursive
functions and guided modeling of the runtime actual behav-
ior enable the generation of simpler equivalent loops that
may be affine, i.e. polyhedral-compliant.

3 From Recursive Functions to Optimized
Loops

In this section, we present a prototype of the implemen-
tation of our approach as a proof of concept for modeling
recursive functions as affine loops and applying polyhedral
optimizations.

Our framework involves the steps schematized in Figure 1
which can be summarized as three main phases: (1) Recur-
sive control and memory behavior analysis, (2) Recursion
to affine loop modeling and (3) Code generation and poly-
hedral optimizations. In the input recursive program, we
distinguish two kinds of instructions:

1. Instructions whose role is exclusively dedicated to di-
rect the control flow. In the case of recursive functions,
such instructions are used to decide about function
invocations and the setting of some parameters related
to further potential (recursive) calls.

2. Instructions that participate in the computation and
memory store of the final result of the program. Such
instructions act directly or indirectly for the updating
of the data structure that stores the final result. They
constitute the minimal set of instructions of the origi-
nal recursive program that, if conveniently scheduled
and instantiated, have to be run to reach the (correct)

Figure 1. General View of the Framework

final result. We call such instructions impacting in-
structions.

Our framework is aimed at handling recursive programs
whose control and memory runtime behavior can be charac-
terized as follows:

• Basic blocks of the LLVM intermediate representation
that contain impacting instructions are scheduled at
runtime as if they would belong to nested loops whose
respective unique index has affine loop bounds depend-
ing on the surrounding loop indices.

• The target addresses of memory accesses regarding the
main input and output data structures can be modeled
as affine functions of surrounding loop indices;

• The general affine loop structure modeling the control
and memory behavior must be independent of the
processed input. By “input-independent”, we mean
that the number and depths of the loop nests remains
the same regardless of the input, while only some loop
bounds and some coefficients of the memory reference
functions may change accordingly.

We describe in details the steps of our framework in the
following subsections. As illustrating example, we use a re-
cursive implementation of the matrix product shown in List-
ing 1.

IMPACT 2019, January 21-23, 2019, Valencia, Spain Salwa Kobeissi and Philippe Clauss

1 vo id M a t r i xMu l t i p l i c a t i o n (i n t A[N] [N] , i n t B [N] [N
])

2 {
3 s t a t i c i n t row=0 , column =0 , index =0 ;
4

5 i f (row >= N)
6 r e t u r n ;
7

8 i f (column < N) {
9 i f (i ndex < N) {
10 C[row] [column]+=A[row] [index] ∗B[index] [

column] ;
11 i ndex ++ ;
12 Ma t r i xMu l t i p l i c a t i o n (A , B) ;
13 }
14 i ndex =0 ;
15 column ++;
16 Ma t r i xMu l t i p l i c a t i o n (A , B) ;
17 }
18 column =0 ;
19 row++;
20 Ma t r i xMu l t i p l i c a t i o n (A , B) ;
21 }

Listing 1. Recursive Matrix Multiplication C Function

3.1 Recursive Control and Memory Behavior
Analysis

In this first phase, we execute the original recursive program
given a relatively small input. If the recursion’s behavior
is affine, then the analysis result of the execution can be
used to build a structure of equivalent loop nests. However,
we may need to analyze several executions of the program
to predict some loop bounds with respect to the input. The
analysis results are then used for extrapolating the program’s
behavior for larger inputs. This phase involves several steps
that are detailed in the following subsections.

3.1.1 Compile-Time Classical Optimizations
First of all, given an input recursive source code, we let
the LLVM compiler apply some classical optimizations (e.g.,
promote memory to register) to prepare the intermediate
representation (IR) of our input program for the later steps.
We do not activate the tail call elimination pass which trans-
forms tail recursive calls into loops for two reasons: (1) the
way the target recursive function is transformed may not
result in an affine loop and (2) if there are several recursive
calls in the target code, only one tail call may be eliminated.

Example 3.1. Consider again the matrix product shown
in Listing 1. The recursive function is direct and invokes
three recursive calls to itself. Notice that the last recursive
call, on line 17, is a tail call. When this function is compiled
with the tail call elimination pass activated, the tail call is
removed and a loop is created. Nevertheless, there are still
two remaining recursive calls, where the second one is now

main

f

g

h

i jk

Figure 2. Example of a Call Graph of an Arbitrary Recursive
Program

a tail call. However, since the tail call elimination pass is
not applied incrementally by the compiler, these remaining
calls are not eliminated. Thus, we do not activate this pass
in order to let our framework handle all the three recursive
calls in the same way.

3.1.2 Compile-Time Recursion Detection
At this step, our framework checks, at compile time, if the
program involves any recursions, and, if so, identifies these
recursions and the functions participating in them. In order
to detect recursions, it uses the call graph corresponding to
the IR of the program. The call graph is a directed graph
representing relationships between functions in a program,
where a node represents a function and an edge from one
node to another represents a call such that the source node
constitutes the caller function and the destination is the
callee. Figure 2 shows an example of a call graph of a program
made up of seven functions:main, f , д, h, i , j, k such that:

• functionmain calls f
• f invokes itself, h and д
• д calls back f , k and i
• i calls j

In this example, we notice that function f is in a direct recur-
sion with itself and an indirect recursion through function д.

After obtaining the call graph, we search for strongly
connected components (SCC) in it such that an SCC is a sub-
graph where every node is reachable from every other node.
In this context, a cycle in SCC implies that a recursion exists
among the functions represented by the nodes involved in
this cycle. If the cycle is made up of only one node (loop),
then it is a direct recursion. Else, it is indirect. In our example
of Figure 2, we have an SCC involving the two gray nodes of
functions f and д such that we have a loop over f signifying
a direct recursion and a cycle from f to д and д back to f ,
implying an indirect recursion among f and д.

The Polyhedral Model Beyond Loops IMPACT 2019, January 21-23, 2019, Valencia, Spain

3.1.3 Recursion Reachability Recognition
Eventually, we need to trace the control and memory behav-
ior of recursions and find out if they act as static control parts.
Thus, we are interested in tracking basic blocks containing
impacting instructions, whether they are executed directly
or indirectly by the recursive functions. For this reason, in
addition to the recursive functions themselves, our tool also
determines their reachability in the program. By reachability,
we mean all the functions that can be reached by a sequence
of calls initiated by the recursive functions themselves. In
Figure 2, the reachability of the recursive functions f and д
includes:

• h (directly called by f)
• k and i (directly called by д)
• j (indirectly called by д through i)

Example 3.2. In the matrix product example, function mul-
tiplyMatrix is the only recursive function, and it does not
call any other function than itself.

3.1.4 Impacting Instructions
We identify impacting instructions in the following way. In
the IR of the program, our framework marks the writes to
the data structure which is the final output of the recursion
and their corresponding reachable functions. Then, for every
write instruction of this kind, it marks all instructions lead-
ing and contributing to it, i.e., their backward static slices
(BSS). A backward static slice, is a set of instructions existing
in the code of a program that may affect a certain value, i.e.,
in our case, a value of the data structure which is the final
output of the recursion. Slicing the important parts of a given
recursive program (i.e., recursive functions and their reach-
ability functions) is essential for the analysis phase of our
implementation since it helps keeping track of the elemental
parts of recursions that must be taken into consideration for
further transformations and optimizations.

Example 3.3. In the LLVM IR of the recursive matrix prod-
uct, the memory writes related to matrixC in function multi-
plyMatrix, as well as their backward static slices are marked.
These backward static slices include the memory reads re-
lated to matrices A, B and C , and the computations related
to the updates of i , j and k , since they are involved in the
computations of the memory addresses referenced by the
memory instructions.

3.1.5 Profiling
Finally, printing statements are added to the IR to collect the
IDs of executed basic blocks that include impacting instruc-
tions, and that would be enough to run to reach the final
result if they are well initiated. Other blocks that are only
dedicated to the recursive control are not instrumented. Ad-
ditionally, writes to memory and reads from memory are to
be instrumented to collect the corresponding target memory

addresses, with the final purpose of building affine reference
functions.
The program executes for a first time, and the output

expected is the memory and control trace of recursions in
the program. Subsequently, we investigate if this trace can
be modeled as affine loop nests. For this purpose, we use
the Nested Loop Recognition (NLR) algorithm originally
presented in [11].

3.1.6 Nested Loop Recognition (NLR) Algorithm
The NLR algorithm takes as input a trace of a program exe-
cution and constructs a sequence of loop nests that produce
the same original trace when run. The applications of this
algorithm include: (1) program behavior modeling for any
measured quantity such as memory accesses, (2) execution
trace compressing and (3) value prediction, i.e, extrapolating
loops under construction (while reading input) to predict
incoming values.
In our tool, not only do we use NLR to model memory

accesses, which is one of its original goals, but also to model
sequences of basic blocks IDs, which is more singular. Given
our trace of a target recursive program, generated thanks to
our instrumentation, if NLR builds affine loop nests including
the interesting basic blocks IDs and memory addresses inter-
polated by the constructed loop indices, then the generation
of equivalent affine loops may be performed.
An initial NLR model is built from running the instru-

mented code with small data input. Then, additional runs
with different data inputs are performed and their associ-
ated NLR models are compared to the initial one, in order
to find out if (1) the general affine loop structures are main-
tained across the models and (2) if the differences between
the models can be identified as being solely loop bounds
or coefficients of memory reference functions. Then, their
respective values are interpolated relatively to some input
parameters, as typically the problem size. Constant parts of
the affine functions modeling memory references may obvi-
ously vary across the models, since they mostly represent
base addresses of data structures.

Example 3.4. Listing 2 offers a shortened view of the result
of NLR. The runtime behavior of function multiplyMatrix is
modeled by NLR as two affine loop nests including memory
accesses that are expressed as affine combinations of the
loop indices. The first loop nest is obviously dedicated to the
main computations of the matrix product, while the second
loop nest models the returns of the recursive calls. Note that
loop bounds and some memory reference coefficients are set
to their generic value related to the problem size N , thanks
to polynomial interpolation resulting from comparing the
modeling of several runs with different problem sizes. Items
MEM1, MEM2 and MEM3 represent the base addresses of
matrices A, B and C respectively.

IMPACT 2019, January 21-23, 2019, Valencia, Spain Salwa Kobeissi and Philippe Clauss

1 f o r i 0 = 0 to N−1
2 f o r i 1 = 0 to N−1
3 f o r i 2 = 0 to N−1
4 v a l M a t r i xMu l t i p l i c a t i o n : : i f . then4 / / IR

b a s i c b l o ck
5 . . .
6 l o ad / / memory read
7 v a l MEM1 + 4 ∗N∗ i 0 + 4 ∗ i 2 / / memory add r e s s in

terms o f l oop s i n d i c e s
8 . . . / / r e p e t i t i v e memory a c c e s s p a t t e r n s
9 l o ad
10 v a l MEM2 + 4 ∗ i 1 + 4 ∗N∗ i 2 / / 4 i s the s i z e o f

an i n t e g e r
11 . . .
12 v a l l o ad
13 v a l MEM3 + 4 ∗N∗ i 0 + 4 ∗ i 1
14 v a l s t o r e / / memory wr i t e
15 v a l MEM3 + 4 ∗N∗ i 0 + 4 ∗ i 1
16 . . .
17 v a l M a t r i xMu l t i p l i c a t i o n : : i f . end15
18 . . .
19 v a l M a t r i xMu l t i p l i c a t i o n : : i f . end17
20 . . .
21 f o r i 0 = 0 to N∗N−1
22 f o r i 1 = 0 to N−1
23 v a l M a t r i xMu l t i p l i c a t i o n : : i f . end17
24 . . .
25 v a l M a t r i xMu l t i p l i c a t i o n : : i f . end15
26 . . .
27 v a l M a t r i xMu l t i p l i c a t i o n : : i f . end15
28 . . .

Listing 2. Recursive Matrix Multiplication NLR model

3.2 Recursion to Affine Loop Transformation
This phase requires both the NLR model and the original re-
cursive program itself. Code generation and transformation
are achieved as follows. According to the loop nests pro-
vided by NLR, our framework extracts their structures and
generates corresponding loop nests in LLVM form using the
suitable basic blocks, taking into consideration changing the
accessed memory addresses to be in terms of the loop indices
as it is in the NLR model. Then, they are inserted into the
LLVM IR of the program replacing the targeted recursions.

3.3 Polyhedral Optimizations Application
The final resulting affine loop nests replacing the original
recursive functions may already take advantage of standard
compiler loop optimizations (loop invariant code motion,
constant propagation, common subexpression elimination,
etc.). However, they are also potential candidates for polyhe-
dral optimizing and parallelizing transformations. For this
purpose, our framework applies Polly [1] on the LLVM IR of
the affine loop nests.

Figure 3. Performance results with the matrix product

4 Experiments
In this section, we show the results of our experiments by ap-
plying the described approach to the matrix product that was
used as illustration all along the paper. The computer used
is an Intel(R) Core(TM) i7-7Y75 CPU @ 1.30GHz running
Ubuntu 16.04.5 LTS. We use Polly with llvm/clang version
8.0.0.
We compare the execution of the original recursive code

against the iterative code, either handled solely by clang
with flag -O3 or also handled by Polly. Our measures are
represented by the curves in Figure 3 using a logarithmic
scale for the execution times, and by varying the matrix
sizes from 100 to 1,000. It clearly shows that the iterative
code outperforms the recursive one, and particularly when
polyhedral optimizations have been applied by Polly.

5 Conclusion and Perspectives
We have shown that recursive functions may act at run-
time as affine loops, and hence be also good candidates for
polyhedral optimizations. A dedicated automatic recursion-
to-affine-loop transformation made of static and dynamic
analysis and transformation passes could be applied when-
ever possible, on any program embedding recursive func-
tions. Such an approach brings handled recursive functions
to a higher level of optimizations, compared to what has been
achieved until now regarding recursive functions in compiler
research. It also extends the polyhedral model applicability
to non-loop control structures.

Yet, our work is still a proof of concept for this approach,
and we aim at investigating more in this promising idea
to implement an efficient specialized compiler for this sake
covering many more and complicated recursive programs.
Some of the future works, that should be done in order to
achieve this purpose, include:

The Polyhedral Model Beyond Loops IMPACT 2019, January 21-23, 2019, Valencia, Spain

1. Performing dynamic analysis for recursive behavior
at runtime on-the-fly, instead of analyzing an early
program execution with a smaller input. This is be-
cause some recursive functions might not completely
behave as affine loop nests. Instead they might involve
non continuous large static control parts during their
execution. Thus, at runtime, we keep checking for lin-
ear behavior and, accordingly, transform the code for
executing these certain parts.

2. Inducing verification features to the framework so
dynamic analysis can be possible and the iterative
model constructed can be considered predictive.

3. Tackling input dependent recursive codes.

References
[1] Polly - llvm framework for high-level loop and data-locality optimiza-

tions. https://polly.llvm.org/index.html.
[2] J. Arsac and Y. Kodratoff. Some techniques for recursion removal from

recursive functions. ACM Trans. Program. Lang. Syst., 4(2):295–322,
Apr. 1982.

[3] R. S. Bird. Notes on recursion elimination. Commun. ACM, 20(6):434–
439, June 1977.

[4] R. S. Bird. Tabulation techniques for recursive programs. ACMComput.
Surv., 12(4):403–417, Dec. 1980.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A prac-
tical automatic polyhedral parallelizer and locality optimizer. SIGPLAN
Notices, 43(6):101–113, 2008.

[6] N. H. Cohen. Characterization and elimination of redundancy in
recursive programs. In Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’79, pages
143–157, New York, NY, USA, 1979. ACM.

[7] R. L. Collins, B. Vellore, and L. P. Carloni. Recursion-driven parallel
code generation for multi-core platforms. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’10, pages
190–195, 3001 Leuven, Belgium, Belgium, 2010. European Design and
Automation Association.

[8] T. Grosser, A. Größlinger, and C. Lengauer. Polly – performing polyhe-
dral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(04), 2012.

[9] M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic parallelization
of recursive procedures. International Journal of Parallel Programming,
28(6):537–562, Dec 2000.

[10] S. Gupta, R. Shrivastava, and V. K. Nandivada. Optimizing recursive
task parallel programs. In Proceedings of the International Conference
on Supercomputing, ICS ’17, pages 11:1–11:11, New York, NY, USA,
2017. ACM.

[11] A. Ketterlin and P. Clauss. Prediction and trace compression of data
access addresses through nested loop recognition. In Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’08, pages 94–103, New York, NY, USA, 2008.
ACM.

[12] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[13] Y. A. Liu and S. D. Stoller. Dynamic programming via static incremen-
talization. Higher-Order and Symbolic Computation, 16(1):37–62, Mar
2003.

[14] J. M. Martinez Caamano, M. Selva, P. Clauss, A. Baloian, and W. Wolff.
Full runtime polyhedral optimizing loop transformations with the
generation, instantiation, and scheduling of code-bones. Concurrency

and Computation: Practice and Experience, 29(15), June 2017.
[15] A. Mastoras and G. Manis. Ariadne - directive-based parallelism extrac-

tion from recursive functions. J. Parallel Distrib. Comput., 86(C):16–28,
Dec. 2015.

[16] Y. Mizutani, D. Nakajima, N. Fujimoto, and K. Hagihara. Evaluation
of a compiler with user-selectable execution strategies for parallel
recursion. Systems and Computers in Japan, 35(9):92–103.

[17] A. Morihata and K. Matsuzaki. Automatic parallelization of recursive
functions using quantifier elimination. In Proceedings of the 10th Inter-
national Conference on Functional and Logic Programming, FLOPS’10,
pages 321–336, Berlin, Heidelberg, 2010. Springer-Verlag.

[18] R. Rugina and M. Rinard. Automatic parallelization of divide and
conquer algorithms. SIGPLAN Not., 34(8):72–83, May 1999.

[19] D. Saougkos, A. Mastoras, and G. Manis. Fine grained parallelism
in recursive function calls. In R. Wyrzykowski, J. Dongarra, K. Kar-
czewski, and J. Waśniewski, editors, Parallel Processing and Applied
Mathematics, pages 121–130, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[20] G. Stitt and J. Villarreal. Recursion flattening. In Proceedings of the 18th
ACM Great Lakes Symposium on VLSI, GLSVLSI ’08, pages 131–134,
New York, NY, USA, 2008. ACM.

[21] A. Sukumaran-Rajam and P. Clauss. The polyhedral model of nonlinear
loops. ACM Trans. Archit. Code Optim., 12(4):48:1–48:27, Dec. 2015.

[22] K. Sundararajah, L. Sakka, and M. Kulkarni. Locality transformations
for nested recursive iteration spaces. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’17, pages 281–295,
New York, NY, USA, 2017. ACM.

[23] D. Tetzlaff and S. Glesner. Static prediction of recursion frequency
using machine learning to enable hot spot optimizations. In IEEE 10th
Symposium on Embedded Systems for Real-time Multimedia, ESTIMedia
2012, Tampere, Finland, October 11-12, 2012, pages 42–51, 2012.

https://polly.llvm.org/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 From Recursive Functions to Optimized Loops
	3.1 Recursive Control and Memory Behavior Analysis
	3.2 Recursion to Affine Loop Transformation
	3.3 Polyhedral Optimizations Application

	4 Experiments
	5 Conclusion and Perspectives
	References

