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Abstract
This paper studies the Handelman’s theorem used for poly-
nomial scheduling, which resembles the Farkas’ lemma for
affine scheduling. Theorems from real algebraic geometry
and polynomial optimization show that some polynomi-
als have Handelman representations when they are non-
negative on a domain, instead of strictly positive as stated in
Handelman’s theorem. The global minimizers of a polyno-
mial must be at the boundaries of the domain to have such
a representation with finite bounds on the degree of mono-
mials. This creates discrepancies in terms of polynomials
included in the exploration space with a fixed bound on the
monomial degree. Our findings give an explanation to our
failed attempt to apply polynomial scheduling to Index-Set
Splitting: we were precisely trying to find polynomials with
global minimizers at the interior of a domain.

1 Introduction
The polyhedral model provides a concise and powerful ab-
straction of computations that fit the class of affine recur-
rences over polyhedral domains. The mathematical repre-
sentation provides access to the rich set of linear algebraic
properties, enabling powerful analyses and transformations.
One of the most frequently used property is the Affine

form of Farkas’ lemma that gives necessary and sufficient
condition for an affine function to be positive on a polyhe-
dron. The application of this lemma to characterize the space
of legal schedules [3] is still the core engine for exploring
the space of transformations in the polyhedral model.

The more general characterizations of the positive polyno-
mials on semi-algebraic sets, so called Positivstellensatz, are
an extensively studied topic in real algebraic geometry [16].
A theorem by Handelman [9] gives a characterization of pos-
itive polynomials on a polyhedron that resembles the Farkas’
lemma. Feautrier proposed polynomial scheduling [5] based
on this result.
The extension of the schedule space from affine func-

tions to polynomials is exciting, but also raises an impor-
tant question: when do we need polynomials? In fact, multi-
dimensional affine schedules [3, 4] already include a chunk
of polynomial schedules decomposed into multi-dimensional
affine functions. We also found it challenging to find loop
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programs with polynomial controls or polynomial depen-
dences. Although irregular code (e.g., with indirection ar-
rays) is common, it is difficult to find regular but non-affine
programs. There is also the problem of generating efficient
code reflecting the polynomial schedules [6]. Moreover, the
characterization of positive polynomials is similar but not
a direct generalization of the Farkas’ lemma. The practical
implications of the differences are not fully clear.
In this paper, we first present an attempt to use polyno-

mial scheduling for Index-Set Splitting (ISS) [8]. How to find
the right split is the key question for ISS, and existing ap-
proaches find promising split planes by analyzing the depen-
dences [1, 8]. Our attempt is based on the observation that
some computations that do not have any valid affine sched-
ules without ISS (or piece-wise affine schedules) have legal
polynomial schedules. Our goal was to have a framework to
reason about ISS that unifies existing heuristics through the
additional expressive power of polynomial schedules.

Unfortunately, our attempt did not succeed due to various
reasons, including those coming from inherent limitations
of Handelman’s theorem. We discuss the limitations of Han-
delman’s theorem (and other related theorems on positive
polynomials) with concrete examples that explain why we
struggle to find a class of schedules in our approach for ISS.
The main conclusion is that these theorems cannot be used
to find a class of polynomials, which was exactly what we
tried to find in our approach for ISS. The primary reason is
that these theorems cannot exactly express polynomials that
have global minimizers at the interior of the domain.

2 Background
In this paper, the readers are assumed to be familiar with the
basic concepts of the polyhedral model [7].

2.1 Index Set Splitting
Index-Set Splitting is a transformation that aims at enlarg-
ing the legal schedule space of polyhedral computations [8].
Affine scheduling assigns an affine function as a schedule to
each statement. However, there are cases where it is neces-
sary to use two or more different schedules for a statement,
depending on the specific instances of the statement. ISS can
be applied as a pre-processing step to split the statements
into multiple statements such that the scheduler can assign
different scheduling functions.
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ISS is a recurring concept with different motivations. For
systolic array synthesis, ISS is used to localize affine depen-
dences [21] where the objective is to only have uniform de-
pendences in the scheduled space after split. Iteration space
folding for tiling periodic stencils [1] share similarity with
localization where the objective is to allow fully permutable
schedules after split. The work by Griebl et al. [8] study cases
where ISS gives better affine schedules in terms of latency.

Although these techniques have similarities, they greatly
differ and are tailored for their respective context. Our origi-
nal motivation was to use polynomial schedules as the com-
mon framework to unify these techniques.

2.2 Positivity Certificates
The core of the scheduling algorithms in the polyhedral
model is the characterization of positive (non-negative) func-
tions. In the following, we give a brief recap of the Farkas
scheduling algorithm [3], Farkas’ lemma, and Handelman’s
theorem for polynomial scheduling [5].

Given two statements S and T , and their respective sched-
uling functions fS and fT , a legal schedule must satisfy
fS (⃗i ) > fT (i⃗ ′) for all pairs of statement instances where S⟨⃗i⟩
depends on T⟨i⃗ ′⟩, expressed as a polyhedral set [⃗i, i⃗ ′] ∈ D.
This can be rewritten as fST (⃗i, i⃗ ′) > 0, [⃗i, i⃗ ′] ∈ D, where
fST (⃗i, i⃗ ′) = fS (⃗i ) − fT (i⃗ ′). The problem of testing for legality
of schedules can now be viewed as testing for positivity of
affine functions within the domain D.

Then the Farkas’ lemma (restated below) can be applied to
characterize the space of legal affine schedules. The Farkas
algorithm proceeds by exploring the solution space with ILP.

Theorem 1 (Affine From of Farkas’ Lemma [3]). Let D be
a nonempty polyhedron defined by n affine inequalities:

ak .x + bk ≥ 0, k = 1,n

Then an affine formψ is nonnegative everywhere in D iff it is
a positive affine combination:

ψ (x ) ≡ λ0 +
∑
k

λk (ak .x + bk ), λk ≥ 0

The polynomial scheduling is based on the same idea, but
using the theorem by Handelman about positive polynomials
on a polyhedron.

Theorem 2 (Handelman’s Theorem [9]). Let D be a com-
pact nonempty polyhedron with interior defined by n affine
inequalities (denoted as functions p):

pk (x ) ≥ 0, k = 1,n

Then a polynomial f is strictly positive everywhere in D iff it
is a positive linear combination of the monomials in D:

f (x ) ≡
∑
k ∈Nn

λkp
k1
1 · · ·p

kn
n , λk ≥ 0 (1)

where not all λs are zero.

Although it is similar to the Farkas’ lemma, there are some
important differences:
• It is characterizing strictly positive functions.
• The domain D must be compact, i.e., bounded.
• Most importantly, the positive combination is over
monomials obtained as products of the constraints
with unbounded degree. Thus, the application of this
theorem requires a finite subset to be considered. Typ-
ically, the degree of the monomials are restricted by a
parameter, calledM , such that |k | =

∑
ki ≤ M .

Note that there is a variant by Schweighofer [18] that
allow arbitrary polynomials to be used as constraints on D
provided that a subset of the constraints satisfy the same
condition as Handelman. Sincewe only discuss computations
with purely polyhedral domains and affine dependences, we
use Handelman’s theorem in this paper.

3 Polynomial Scheduling Guided ISS
In this section, we discuss our original motivation to use
polynomial scheduling for index-set splitting. We first illus-
trate a possible use of polynomial scheduling for ISS with an
example, and then describe a modified polynomial schedul-
ing algorithm that focuses on finding simpler polynomials.

3.1 Simplified Floyd-Warshall
We use a simplified (2D version) of the Floyd-Warshall short-
est paths algorithm to illustrate our idea. Floyd-Warshall
requires ISS to be tiled using the commonly used sufficient
condition for legal tiling (fully permutable). The computa-
tion before split can be tiled, but the tiles do not have a legal
affine schedule, and prior work has used it as an example for
dynamic scheduling of tiles [13].

The FW algorithm can be expressed as a single recurrence:

D (k, i, j ) =min

*......
,

D (k − 1, i, j ),

*....
,

k ≥ (i, j ) : D (k − 1, i,k ) + D (k − 1,k, j )
j ≤ k < i : D (k − 1, i,k ) + D (k,k, j )
i ≤ k < j : D (k, i,k ) + D (k − 1,k, j )
k < (i, j ) : D (k, i,k ) + D (k,k, j )

+////
-

+//////
-

defined over a cubic domain: {k, i, j : 1 ≤ (i, j,k ) ≤ N }. The
boundaries, D (0, i, j ), provide the initial values.
We simplify the above in two ways:
• The dimension is reduced to ease visualization. The
important property is the dependence on the diagonal
values, which can be preserved in 2D.
• The dependences across the k dimension are modi-
fied to always refer to k − 1 to remove the cases. The
different accesses becomes irrelevant after tiling.

This gives a much simpler recurrence:

X (k, i ) =min (X (k − 1, i ),X (k − 1,k − 1))

and its dependences are illustrated in Figure 1.
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Figure 1. Dataflow dependences of the simplified FW. Fig-
ure 1a depicts the dependences across statement instances
and Figure 1b show inter-tile dependences with 2 × 2 tiles.

3.2 Scheduling the Tiles
The original dependences do not satisfy fully permutability,
but tiling is legal—inter-tile dependences are acyclic—when
restricted to square tiles that are symmetric about the diag-
onal; the key property is that the sources of broadcast-like
dataflow must be in a single tile for the broadcast dimen-
sions (i and j). However, tiling introduces vertical inter-tile
dependences that makes the resulting tiles to not have any
legal affine schedule. For each column of tiles, the diagonal
tile must execute first before other tiles, which is due to the
broadcast-like dataflow from the diagonal.

There are multiple static schedules for these tiles. The fol-
lowing is an example of a possible piece-wise affine schedule:

θ (k, i ) =



i = k : (k, 0)
i , k : (k, 1)

It can also be given a polynomial schedules without pieces:
θ (k, i ) = kN 2 + (i − k )2 (2)

3.3 Polynomials to Splitting Planes
The key idea behind our approach is to use the expressiveness
of the polynomials to extract information about profitable
piece-wise decomposition of the original domain. Affine
functions are uni-directional and are incapable of expressing
schedules that increase in multiple directions, which is why
the diagonals in FW pose problems.
This particular limitation does not apply to polynomials,

e.g., quadratic functions increase in two directions. Thus, the
main intuition is that the pieces necessary for piece-wise
affine schedules may be found by analyzing the polynomials,
scheduled without any ISS. For the polynomial (i − k )2, the
partial derivatives give the equality i = k hinting the desired
partitioning of the domain.
Our approach models the piece-wise decomposition in

terms of hyperplanes that define the boundary of two pieces,
called splitting planes. Given an affine hyperplane of the
form h(x ) = 0, the domain is decomposed into three pieces:

h(x ) = 0, h(x ) > 0, and h(x ) < 0. The objective is to find a
set of splitting planes such that the pieces can be scheduled
with affine functions.

We do not have a concrete algorithm for inferring splitting
planes from polynomials. The basic steps of a potential al-
gorithm are: (i) perform polynomial scheduling, (ii) analyze
the polynomials to obtain splitting planes, and (iii) perform
affine scheduling on the resulting piece-wise domain.
The analysis of polynomial schedules is the step that re-

mains vague in our approach. The intuition is that if all the
partial derivatives of the polynomial schedule do not change
signs within a piece, then this piece should have a valid affine
schedule. For the univariate case, this can be achieved by
partitioning the domain into intervals defined by critical
points of the polynomial. How the intuition generalizes to
multivariate polynomials is unclear. A single critical point in
a 2D space does not unambiguously define a splitting plane.
For a polynomial in d dimensional space, the critical points
must span a d − 1 dimensional subspace to define a splitting
plane. Moreover, critical points are overkill; the important
property is that for each partition of the original domain, all
partial derivatives do not change signs. The schedule (Eqn. 2)
in the example above has no critical point due to the mono-
mial kN 2—the partial derivative with respect to k is always
positive, but the partial derivative with respect to i is zero
on the line i = k .

Our original plan was to apply polynomial scheduling on
a few examples to have a better understanding of what needs
to be done in this step. As a first attempt, we seek for poly-
nomials that have a specific format, (a − b)2, which trivially
exposes equalities forming a hyperplane. We consider it a
success if we are able to find the schedule (i − k )2 for the 2D
case, and (i − k )2 + (j − k )2 for the 3D case.

3.4 Tweaking the Scheduling Algorithm
We take the polynomial scheduling algorithm by Feautrier [5]
and make a few modifications to better suit our goal. We
have no intention to use the resulting schedule as is, and
are only interested in finding the splitting planes on com-
putations that do not have legal affine schedules. Thus, the
focus is on obtaining polynomial schedules that are easier
to analyze and to extract splitting planes.

Multi-Dimensional Schedule The polynomial schedul-
ing is used as an extension to the multi-dimensional Farkas
algorithm [4]. The scheduler explores multi-dimensional
affine schedules until the remaining dependences cannot be
satisfied by any affine schedule. The scheduler then explores
polynomial schedules for all remaining dependences.

Minimizing Number of Monomials The cost function
for polynomial scheduler is set to minimize the number of
monomials. The sum of absolute values of monomial coeffi-
cients is minimized. The monomials are weighted differently
as a function of the monomial degree in the parameters.
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3.5 Discussion
The FW example is obviously not the only situation where
ISS is useful. The examples in the work by Griebl et al. [8] il-
lustrate cases where the computations admit affine schedules,
but ISS improves the latency. The attempt in this section is
unlikely to be useful for ISS aiming at latency improvement,
because affine schedules (with sub-optimal latency) exist.

The approach presented above also depends on heuristic
reasoning over polynomial schedules found by the scheduler.
One may say that it is merely shifting where the heuris-
tic is applied to with respect to prior work on ISS. This is
definitely true when the only example considered is FW—a
simple heuristic to split the space by identifying the source
of broadcast dependences is sufficient for handling this exam-
ple. The original goal was to extend the approach to handle
other uses of ISS, notably for periodic stencils [1], in a single
framework, but we abandoned the idea since it does not even
work for FW.

4 Results on Floyd-Warshall
In this section, we discuss the schedules found for FW exam-
ples with the modified polynomial scheduler. The scheduler
was implemented with SAGEMath1, which provides support
for symbolic manipulation of polynomials and an interface
for LP solvers (we used GLPK2 as our backend).

4.1 Simplified Floyd-Warshall
The algorithm first finds an affine schedule, θ0 (k, i,N ) = k ,
to strongly satisfy all the dependences that span different
values of k . The remaining dependences do not admit an
affine schedule, and hence polynomial scheduling is used
for the second dimension. We seek for a polynomial θ1 that
satisfies the following:

θ1 (k, i,N ) > θ1 (k,k,N ) : k > i ∧ D

θ1 (k, i,N ) > θ1 (k,k,N ) : k < i ∧ D

where D = {k, i |1 ≤ (k, i ) ≤ N }. This gives θ1 (k, i,N ) =
−2ki + i2 whenM = 2; recall thatM is the upper bound on
the degree of monomials considered.
Observe that the value of θ1 is negative when k > i > 0.

This is because the above formulation did not include the
positivity constraint. Adding the constraint θ1 (k, i,N ) > 0
in D gives θ1 (k, i,N ) = N 2−2ki + i2. Note that the scheduler
does not find (k − i )2 even though it is a valid schedule with
better cost since the monomial involving N has a higher cost
than k2. In fact, the polynomial (k − i )2 cannot be expressed
for the domain D using Handelman representation (Eqn. 1)
whenM = 2.

There are two possible ways to force the scheduler to find
the desired schedule. The first one is to use a non-parametric
domain, i.e., set N to some constant. The scheduler may be
1http://www.sagemath.org/
2https://www.gnu.org/software/glpk/

reformulated to test for existence of schedules of a certain
form. When the schedule is constrained to take the form
(k − i )2 + c where c is the constant that is minimized with
LP, the scheduler finds (k − i )2 + 16 whenM = 2. This is (k −
i )2+N 2, which is simply the earlier polynomial N 2−2ki + i2
plus the forced monomial k2. As the degreeM is increased,
the constant c can be reduced. For instance, the scheduler
gives (k − i )2 + 3.2 when M = 8. However, (k − i )2 is not
expressible with anyM , although the constant continues to
approach zero. The reasons are discussed in Section 5.
Another way to force the scheduler to find the desired

schedule is to formulate the positivity constraint in a piece-
wise manner. That is, if we replace the positivity constraint
with the following:

θ1 (k, i,N ) > 0 : k > i ∧ D

θ1 (k, i,N ) > 0 : k < i ∧ D

then the scheduler have no problems finding θ1 (k, i,N ) =
(k − i )2 with M = 2. The reason why this works is also
discussed in Section 5.

4.2 Floyd-Warshall
The scheduler behaves in a similar manner for the original
Floyd-Warshall. The causality conditions are:

θ1 (k, i, j,N ) > θ1 (k,k, j,N ) : k , i ∧ D
θ1 (k, i, j,N ) > θ1 (k, i,k,N ) : k , j ∧ D

and the scheduler finds i2+ j2−2ik−2jk withM = 2without
the positivity constraint. Adding the positivity constraint
gives 2N 2 + i2 + j2 − 2ik − 2jk , and the scheduler can be
forced to find the desired schedule, (i − k )2 + (j − k )2, by the
same trick of making the positivity condition piece-wise as
discussed above.

4.3 Discussion
The tweaks to the scheduling algorithm was effective in pro-
ducing polynomials that are much easier to understand. It is
interesting to note that a prototype scheduler by Feautrier [5]
gave a schedule3 with better latency, but with many mono-
mials. The schedule achieved better latency by parallelizing
across columns of tiles in Figure 1b, which only manifests
when the number of tiles per column is six or more. Since we
are not interested in this parallelism, the modified scheduler
better suits our purpose.
However, the scheduler was unable to find the target

schedules without modifying the problem formulation such
that the positivity condition is given in a piece-wise manner.
Inspecting the partial derivatives of the schedules does reveal
the target hyperplanes, and hence they may be considered
as acceptable results for these examples. Nonetheless, the

3The schedule found by Feautrier’s implementation for the simplified FW,
which he kindly provided us through email exchanges, is kN 2 + 2k2N +
4kN + 3i2 − k3 − 2k2 − 6ki − 2k .

http://www.sagemath.org/
https://www.gnu.org/software/glpk/
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fact that the addition of positivity conditions prevents the
scheduler from finding the desired schedule is alarming.

In fact, the piece-wise workaround is essentially exposing
the i = k boundary to the domains, which is the splitting
plane that we are seeking for. The causality conditions al-
ready had the i = k boundary to represent the broadcast
dependence from diagonal tiles. Thus, the root of the prob-
lem is that the polynomial (k−i )2 does not have a Handelman
representation in D = {k, i |1 ≤ (k, i ) ≤ N } with small M .
Understanding why this is the case is the main subject of
next section.

5 Understanding the Limits
Our attempt to apply polynomial scheduling to ISS led us to
a case where a desired polynomial cannot be found with a
reasonably small4 bound on the degree of base monomials.

The main reason is the limitation of Handelman’s theorem
(or its ability to relax polynomial problems to LP) that there
is no finite bound onM for certain polynomials. Lasserre [11]
showed, in the context of polynomial optimization, that this
is the case when a global minimizer of the polynomial is
at the interior of the domain. Unfortunately, this is exactly
the case when we seek to find splitting planes through poly-
nomial scheduling: if the polynomial is minimized at the
boundaries, then there is no domain to split.

5.1 LP Relaxation of Polynomial Optimization
Polynomial optimization is the minimization of a polynomial
on a domain—polyhedron in our case. The problem definition
(borrowed from Lasserre [11]) is to find p∗ in the following:

p∗ = min
x ∈Rd
{д(x ) |pi (x ) ≥ 0, i = 1,n} (3)

where the feasible set {x ∈ Rd |pi (x ) ≥ 0, i = 1,n} is denoted
byD. In this paper, we are interested in the case whenD is a
polyhedron, but pi are polynomials in the original definition.

The LP relaxation applies Handelman’s theorem (or other
variants) to show the function

д(x ) − p∗ + ϵ (4)

is strictly positive on the domain in question (ϵ is an arbitrary
small number so that the function is strictly positive). The
main intuition is that the Handelman representation with
sufficiently highM can represent Eqn. 4. The lower bound
steadily improves asM increases and eventually converges
to the exact solution [11, 20].

The LP relaxation is not using the Handelman’s theorem
per se; it was developed separately and the connection was
later established. The LP relaxation uses products of con-
straints (the exact same ones as in Handelman’s theorem)
where each product gives an additional constraint since the
products are all non-negative. All the monomials obtained

4For (k − i )2 in {k, i |1 ≤ (k, i ) ≤ N }, we tried up to M = 16.

through products of constraints are replaced with new vari-
ables such that the target polynomial is expressed as a linear
function of the new variables. This results in some loss of in-
formation; for instance, the monomials x and x2 are replaced
with new variables, a and b, without expressing the relation
a2 = b. The intuition is that the products of constraints adds
more and more (valid) constraints to these variables as M
increases, eventually constraining the variables to respect
polynomial relations that cannot be encoded.

5.2 Scheduling View vs Minimization View
We take Example 2.4 by Lasserre [11] to illustrate the differ-
ences between the two uses of Handelman’s theorem. In the
following, we say scheduling-view to refer to the use of Han-
delman’s theorem in polynomial scheduling [5], although it
is applied to the minimization problem.
We are interested in minimizing a polynomial x2 − x for

x ∈ [0, 1]. Thus, we have:
• д(x ) = x2 − x ,
• p0 = x , and
• p1 = 1 − x .

The solution p∗ is − 1
4 .

WithM = 2, all possible products of the constraints up to
degree 2 are considered:

[1,x , 1 − x ,x2,x (1 − x ), (1 − x )2]

and withM = 3 the following constraints are considered in
addition to those forM = 2:

[x3,x2 (1 − x ),x (1 − x )2, (1 − x )3]

Scheduling View
The scheduling-view considers the positive combination of
the products by introducing λ coefficients:

λ0 + λ1x + λ2 (1 − x ) + λ3x2 + λ4x (1 − x ) + λ5 (1 − x )2

factorizes the expression by the monomials:

(λ0 + λ2 + λ5) × 1
+(λ1 − λ2 + λ4 − 2λ5) × x

+(λ3 − λ4 + λ5) × x
2

and solves the following LP problem:

max − (λ0 + λ2 + λ5)

such that λ1 − λ2 + λ4 − 2λ5 = −1
λ3 − λ4 + λ5 = 1

where the polynomial is forced to be x2−x , and the objective
gives the lower bound on p∗.

The solution withM = 2 is x2−x > − 1
2 when λ3 = λ5 =

1
2 .

WithM = 3, it becomes − 1
3 ;

1
3 (x

3+ (1−x )3) = x2−x + 1
3 > 0.

Higher values ofM enable new possibilities to express the
target polynomial with smaller constant.
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Minimization View
The minimization-view takes the products of constraints:

[1,x , 1 − x ,x2,x − x2,x2 − 2x + 1]
replaces the monomials with variables (x = y1 and x2 = y2):

c⃗ = [1,y1, 1 − y1,y2,y1 − y2,y2 − 2y1 + 1]
and solves the following LP problem:

min y2 − y1

such that c⃗ ≥ 0⃗
where the objective function directly expresses the polyno-
mial in terms of new variables.
The solution with M = 2 is 1

2 when y1 = 1
2 and y2 = 0.

With M = 3, the additional constraints on new variables
(including those for x3 = y3) are added:

[y3,y2 − y3,y3 − 2y2 + y1,−y3 + 3y2 − 3y1 + 1] ≥ 0⃗
making y1 = 1

2 no longer feasible due to the last constraint.
The new solution is − 1

3 when y1 = 1
3 and y2 = y3 = 0.

Additional constraints on y are added as higher values ofM
are considered, making the solution converge towards p∗.

Duality
The scheduling-view is a more direct application of Han-
delman’s theorem, and it strictly looks at valid Handelman
representations. The minimization-view can be explained by
Handelman’s theorem, but is focused on the minimal value
of a polynomial. In fact, the two views are duals of each other.
The scheduling-view is an LP where the variables are the
coefficients of the positive combination in Handelman repre-
sentation, and the LP constraints corresponds to monomials.
The minimization-view is the other way around.

5.3 Exactness of the Relaxation
The main result by Lasserre [11] (restated below) we borrow
is Theorem 3.1 that state that the Handelman representation
cannot give exact solution to theminimization problemwhen
a global minimizer is at the interior of the domain. In other
words, Handelman representation with ϵ = 0 (recall Eqn. 4)
exists only if the global minimizers of the polynomial are at
the boundaries of the domain.

Theorem 3 (Theorem 3.1 by Lasserre [11]). Consider the
problem in Eqn. 4 and the LP relaxation of the problem with
the degree of monomials bounded byM . Let pM be the optimal
value of the relaxed problem. Then,
(a) For everyM , pM ≤ p∗ and

д(x ) − pM =
∑
|k | ≤M

λkp1 (x )
k1 · · ·pn (x )

kn ,x ∈ Rd (5)

for some non-negative scalars {λk }. Let x∗ be a global min-
imizer of the problem in Eqn. 4 and let I (x∗) be the set of
active constraints at x∗. If I (x∗) = ∅ (i.e., x∗ is in the inte-
rior of D) or if there is some feasible, nonoptimal solution

x ∈ D with pi (x ) = 0,∀i ∈ I (x∗), then pM < p∗ for all M ,
that is, no relaxation can be exact.

(b) If all the pi are linear, that is, if D is a convex polytope,
then Eqn. 5 holds and pM ↑ p∗ asM → ∞. If I (x∗) = ∅ for
some global minimzer x∗, then in Eqn. 5,∑

k

λk → 0 as M → ∞ (6)

The above is given in the polynomial optimization con-
text, but the results are equally applicable to the scheduling
context through the duality (the dual problem is used as part
of Theorem 3.1).

5.4 Relation to Strict Positivity
The result by Lasserre [11] has direct links to the strict pos-
itivity in Handelman’s theorem. In fact, the cases where
the exact solution to the minimization problem cannot be
reached is exactly where strict positivity is required. In other
words, Handelman representation can express polynomials
that are non-negative on a polyhedron if the global minimiz-
ers of a polynomial are not at the interior.

Observe that in Handelman’s theorem (Eqn. 1) the target
polynomial is represented as a linear combination of prod-
ucts of constraints where each constraint is non-negative.
Intuitively, such a representation should be able to describe
non-negative polynomials in some cases. It is easy to find
examples where a polynomial that is non-negative in a poly-
hedron has a corresponding Handelman representation. For
instance, x2 for x ∈ [0, 1] gives a trivial example. There
are also many examples where non-negative polynomials
cannot be expressed with Handelman’s theorem. A simple
example is x2 for x ∈ [−1, 1]. Lasserre’s result gives a clear
characterization of when non-negative polynomials can be
represented by Handelman’s theorem.
Note that showing x2 is non-negative for x ∈ [−1, 1] is

trivial once the domain is split into two: [−1, 0] and [0, 1].
This is essentially the same “workaround” as the piece-wise
specification of positivity constraint. The global minimizers
are now at the boundaries introduced by the piece-wise split.

5.5 Constant Matters
The minimization-view of Handelman’s theorem directly
reveals an implication for scheduling: the constant matters.
Given a polynomial f (x ), the difficulty of expressing f (x )+b
with Handelman representation increases as b shrinks.

For instance, expressing x2 + 1 for x ∈ [−1, 1] requires
M = 2, but x2 + 0.5 on the same domain requiresM = 3, and
x2 + 0.25 requiresM = 5. Enlarging the domain also has the
same effect: x2 + 1 for x ∈ [−2, 2] requiresM = 5.
Known bounds on the degree for other variants of Posi-

tivstellensatz include a metric of how close the polynomial
is to zero as an important component, along with degree of
the polynomial and dimensionality of the space [14, 19].
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5.6 Parametric Domains
One important difference between Farkas’s lemma and Han-
delman’s theorem is that Handleman’s theorem is limited
to convex polytopes. In other words, parametric polyhe-
dra, which are frequently used in polyhedral compilation,
are technically not satisfying an assumption of the theorem.
However, experiences with polynomial scheduling show that
some polynomials have Handelman representations even
when the domain is parametric. The results by Lasserre [11]
also shed some light to the treatment of parametric domains.
As briefly mentioned during the discussion of constants,

expressing x2 + 0.25 for x ∈ [−1, 1] is no different from ex-
pressing x2 + 1 for x ∈ [−2, 2], since one is simply a scaled
version of another. This also means that the difficulty of find-
ing a Handelman representation for a polynomial increases
as the domain enlarges. The lack of exact solution to the
minimization problem also implies that there is no Handel-
man representation for a parametric polyhedron when the
polynomial has global minimizers at the interior. (For larger
domains, infinitely higher degree monomials are required.)

We use an example where we seek x2 + 1 for x ∈ [−N ,N ]
to illustrate what happens. We have two constraints:

[x + N ,N − x]

when N = 1 the Handelman representation can be found
with M = 2: 1

2 (x + 1)2 + 1
2 (1 − x )2. An alternative view

of the above, which may be more friendly for humans, is
that a polynomial b (x2 + 1) where b is a constant is first
constructed with some combination of the integer multiples
of the constraint products. In the above, (x + 1)2 + (1−x )2 =
2x2 + 2, and dividing all the coefficients by two gives the
desired polynomial. However, it becomes more and more
complicated with larger values of N . The solution when
N = 2 is:

1
1024

*........
,

32(x + 2)3+
8(x + 2) (2 − x )3+

3(x + 2)5+
5(x + 2)4 (2 − x )+
7(x + 2) (2 − x )4+

5(2 − x )5

+////////
-

which is already much more complicated, and it only gets
worse for larger values of N . As stated in the latter half of
Theorem 3.1 [11], the λ coefficients converge toward zero.

5.7 Implications for Scheduling
The main implication is that certain families of polynomials
are not expressible by Handelman’s theorem, restricted to
some fixed bound on the constraint products. Additionally,
it is important to keep in mind that constants play a major
role in determining the difficulty of expressing a polynomial.
This may lead to unintended consequences when scheduling
multiple statements where one should have a constant offset
with respect to another.

The polynomials with global minimizers at the interior of
a domain are essentially excluded from candidate schedules,
especially when the domain is parametric. This turned out
to be a major issue for our original goal of finding splitting
planes. How restrictive this limitation is for other uses of
Handelman’s theorem (and its variants) are not obvious. In
particular, those concerned on existence of a polynomial
schedule [2, 15] rather than finding a “good” schedule is
unlikely to be affected.

Moreover, for polynomials with global minimizers at the
boundaries, we can obtain non-negativity certificates with
Handelman representations. Since polynomials with global
minimizers at the interior are excluded from the solution
space, the strict positivity could be practically ignored, and
the scheduler may assume non-negativity.

6 Related Work and Discussion
In this section, we discuss other forms of positivity certifi-
cates and place our observations regarding Handelman’s
theorem into context.

6.1 Schweighofer’s Theorem
Schweighofer’s theorem [18] is a generalization of Han-
delman’s theorem that allows domains to be partially de-
fined by polynomial constraints. The results by Lasserre [11]
are slightly different when the domain is a general semi-
algebraic set: LP-relaxation converges to the optimal solu-
tion whenM → ∞ for convex polytopes, but this does not
hold for general semi-algebraic sets. This difference is not of
significant importance for the purpose of this paper; it does
not change the fact that polynomials with global minimizers
at the interior cannot be expressed with some finiteM .

6.2 Sum of Squares and SDP-Relaxation
There is a large body of work on positivity certificates of
polynomials using sum of squares representation. An ar-
ticle by Scheiderer [16] gives an overview of this subject,
including non-negativity certificates.

These alternate forms of positivity certificates can be used
to solve the polynomial optimization problem through re-
laxations to Semi-Definite Programming [10, 12]. The basic
procedure is similar to the LP-relaxation; the bounds on the
degree of monomials under consideration must be fixed. The
work by Lasserre [10] compares LP and SDP-relaxations with
the conclusion that SDP is better suited to the problem. The
various non-negativity certificates [16] as well as bounds on
the degree [14, 19] are also indirect evidences.

It would be interesting to see if the SDP-relaxation can be
used as an alternative approach to polynomial scheduling.
Sum of squares representation may allow for non-negativity
certificates for convex polytopes, which would remove one
of the main differences with Farkas’ lemma. However, recent
developments on Positivstellensatz essentially all rely on the
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domain to be compact, which was the important assump-
tion in Schmüdgen’s theorem [17] distinguishing it from
earlier ones. Thus, the problem with parametric domain still
remains. Note that the discussion in Section 5.6 only gives an
explanation for why Handelman representations do not exist
for polynomials with the global minimizers at the interior of
a parametric polyhedron; if the converse holds is still open.

7 Conclusion
In this paper, we describe a potential application of polyno-
mial scheduling to index-set splitting. Although ISS seems
like an interesting use of the additional expressive power
given by polynomials, we failed to obtain expected results.

Further study of Handelman’s theorem and related work
on positivity certificates gives some insights about the behav-
ior of our polynomial scheduler. The theorem by Lasserre [11]
explains why Handelman’s theorem characterize strictly pos-
itive polynomials, and describe a class of polynomials that
cannot be exactly expressed. The unfortunate conclusion is
that the kind of schedules we seek to find in the context of
ISS is not expressible with polynomial scheduling based on
Handelman’s theorem.

It appears that approaches based on SDP is the clear win-
ner (with respect to LP) when it comes to relaxation of poly-
nomial optimization problems. An interesting future work is
to apply the ideas from SDP-relaxation to scheduling, which
may finally provide a new approach for index-set splitting.
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