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Abstract
Many modern (mobile) systems involve memory intensive
computations. External memory accesses are costly when
it comes to the execution time and energy consumption
of a program. To overcome this, we usually apply tiling to
improve data locality and data reuse in internal memories. In
the research reported in this paper we add the possibility to
recompute data rather than storing temporary results, and
demonstrate that this can have a positive effect on the overall
application performance.

To achieve this we represented recomputation in the Poly-
hedral model by extending Polly. We experimentally verified
the effectiveness of recomputation on a pair of Convolu-
tional Neural Network layers, when applying loop tiling,
loop fusion, and recompute.

Keywords Loop optimization, recompute, Polly

1 Introduction
Speed and energy consumption of program execution is im-
portant for all information processing systems, but they
are of primary importance for mobile embedded systems
with limited energy sources. Modern (mobile) systems in-
creasingly exploit artificial vision, image processing, speech
recognition, and similar data intensive processes that often
involve artificial neural networks for their implementation.
Recent examples are Google’s Project Tango which enabled
real-time 3d mapping from camera sensor data on a mobile
phone and Apple’s FaceID technology introduced in its latest
iPhone models. Their algorithms involve a relatively large
amount of memory accesses compared to the performed com-
putations. Loop transformations are a powerful optimization
∗Also with Eindhoven University of Technology.
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technique enabling to substantially reduce the execution
time and energy consumption of such memory intensive
applications. Several popular transformations, such as loop
tiling, fusion, and distribution, have already been modeled as
transformations in the Polyhedral model. This allows for a
more formal description of the transformations and usage of
the Polyhedral transformation tools to ensure an optimized
implementation without the risk of errors introduced by
manual transformations.
So far the considered optimizations mainly focus on re-

ordering of memory access patterns to increase the data
locality, and thus cache performance or scratchpad utiliza-
tion, of the target application. Polyhedral code generators
such as CLooG [3] and isl [11] usually assume that statement
schedules are single-valued, that is, any statement instance
is executed only once in the transformed program. However,
in some cases it has been shown that recomputing the re-
sult of a statement at a later time, as opposed to saving and
reloading the result stored in memory, can be beneficial for
the overall program performance [1]. In [9] an example of
this recomputation has been demonstrated for data intensive
applications such as Convolutional Neural Networks (CNN).
The authors demonstrate that the energy consumption of
running a CNN algorithm on a customized hardware accel-
erator architecture can be reduced by recomputing interme-
diate results. More recently [2] found that recomputation as
optimization for CNNs is most effective for networks with
small convolution kernels and the special class of recurrent-
CNNs, both of which are becoming increasingly popular. A
similar approach can be found in [6, 7], where the authors in-
troduce overlapped tiling as a technique to enable improved
parallelization of stencil computations over multi-core sys-
tems by introducing recomputation which is then distributed
over the cores. In essence this technique applies the same
transformation as we present here. Our focus however is
the application of re-computation in single-core hardware
accelerators where this technique can also help improving
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external memory access counts and local memory buffer
requirements.
Currently usage of domain specific languages or man-

ual code transformations are required to exploit recomputa-
tion, which hinders wide application and automated explo-
ration of these design points. In order to enable automatic
exploration of recomputation we modelled the recomputa-
tion transformation in the polyhedral model. However, the
current loop transformation frameworks such as Polly [5]
strongly build upon libraries like isl and have difficulty to
work with statement schedules that include recomputation.

Our contributions in this paper are the following:
1. Formulate part of the polyhedral model representa-

tion of an example CNN application which includes
recompute.

2. Extension of Polly to enable the automatic transforma-
tion of an imported schedule with recomputation into
a single-valued variant, such that Polly can apply the
transformation using the current infrastructure.

3. Demonstration of the effectiveness of recomputation
on a single-core hardware accelerator to optimize the
example application, by comparing against the opti-
mized versions without recomputation and showing
improved results.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief overview of the related work. Section 3
presents the example application and a short introduction to
recomputation. Section 4 presents the modeling in the poly-
hedral model and the transformation of a schedule which
includes recomputation into a single-valued schedule such
that the existing transformation framework can be used.
Section 5 presents the experimental evaluation of the work.
Section 6 concludes the paper.

2 Related work
Convolutional neural networks have been gaining in strength
over the past years and are now capable of handling many
deep leaning tasks. However, the current generation of deep
neural networks poses high requirements on the available
memory bandwidth. Fortunately, the structure of these net-
works is often reasonably regular and is dominated by loop
nests with static control [9]. Such static control parts (SCoPs)
can be optimized reasonably well through modeling in the
polyhedral model [10]. Considering recompute [2, 9] during
the transformation can further improve the performance
of the network, especially when it needs to run in an en-
vironment with reduced memory such as on an embedded
platform.

Automated polyhedral optimization frameworks, such as
Polly[5], R-Stream-TF [10], and PPCG [12] greatly reduce
the effort of translating the original network description into
an optimized form. Since these optimizations often require
good bookkeeping of where data is stored they can actually

Figure 1. Two consecutive image filters. Tiling is illustrated
at the top of the figure, indicated by the blue and green
rectangles, and the orange 3x3 kernel. Fusion is illustrated in
the bottom in red, where increasingly larger tiles are required
in the preceding images to produce a tile in the output image.

guarantee the transformation is correct by automatically
verifying the validity. Currently, none of these frameworks
provides a method of including recomputation in the opti-
mization space that we are aware of.

For example, recent work in Polly has focused on improv-
ing tiling optimization heuristics based on local memory
hierarchy information using the modeling from [8]. As a
result Polly achieved a high performance increase on the
generic matrix-matrix multiplication (GEMM) optimization
getting much closer to the performance of hand optimized
code.
In parallel to its own optimization heuristics, Polly also

offers the ability to import a user-defined schedule for the
application. This allows for the implementation of external
optimization frameworks such as Pluto [4]. With the work
presented here we aim at extending the polyhedral optimiza-
tion frameworks with recomputation, initially by including
recomputation as a possibility while importing externally op-
timized schedule through this interface. Finally, another key
reason for selecting Polly over ClooG is its direct integration
with the LLVM compiler framework which is used for our
own low-power processor architectures (e.g. [13]). As such,
choosing Polly allows for a stronger interaction between the
optimization heuristics and final code generation parts of
the compiler.

3 Optimizing through recompute
This section introduces the concept of recomputation, and
explains how it can be useful. First an educational example is
presented in Section 3.1. This example will be used through-
out the work, and will be evaluated in more depth in the
experiments presented in Section 5. Section 3.2 explains in
more detail how the proposed recomputation compares to a
method without recomputation.

3.1 Educational example
Instead of using a full-blown neural network with many
dimensions, a reduced image processing pipeline is chosen
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to explain and verify the concept of recomputation.1 In this
processing pipeline, two image filters are applied to an input
image in sequence, as shown in Figure 1. For the example in
this section, the image filters are assumed to be 3x3. In the
experiments in Section 5 different sizes will also be used. The
observant reader might note that two consecutive convolu-
tions can be mathematically combined into a single larger
convolution. However, in convolutional networks this can
not be done, because there usually are non-linear operations
in between the convolution layers. Therefore we will have
to assume that the convolutions can not be mathematically
merged in our CNN example application and the algorithm
itself will need to be optimized through loop fusion.
When this example application is to be mapped to an ac-

celerator with limited local memory, the first strategy would
be to tile the input. This is illustrated at the top of Figure 1.
Tiling already improves the locality, but it can be improved
even further by fusing the loop-nests of the two operations.
Fusion matches the production of the intermediate image
with it’s consumption. Therefore the intermediate image
does not need to exist completely at any point in time, al-
lowing it to be kept in local buffers instead of larger external
memories. This is illustrated using the red tiles in the lower
half of Figure 1.
When fusion is applied, the tiles that are produced for

the intermediate image can be kept in small local buffers,
reducing accesses to higher memory levels. However, there
will be some overlap between tiles in the intermediate layer
depending on the kernel size. For this overlap there are two
options. The pixels can either be stored in main memory
for later use in a next tile, or they can be recomputed when
they are needed for a later tile. Depending on the cost of
accessing the external memory and the size of the internal
buffer memory it can be beneficial for performance and/or
energy consumption to recompute these pixels rather than to
store them. This trade-off will be discussed in the remainder
of this section.
There is one dimension that does not suffer from the tile

overlap problem, which is the dimension the tiles “move”
in. I.e., if two tiles that are adjacent in some dimension D
are processed right one after the other, the overlap between
the tiles will still be in the buffer when the second tile is
processed. Hence the overlap does not need to be stored
or recomputed. We refer to this dimension as the inter tile
dimension. This effect is described in more detail by Peemen
et al. [9]. The authors reason that because of this effect, the
tile size in one selected dimension can be set to the full size
of the input without increasing the required buffer space. In
effect, any reuse in this dimension is obtained “for free”, as
there is no cost in extra storage space nor computations. In

1This reduced image processing kernel is mainly used to increase the clarity
of the presented method, the recompute optimization itself is not impacted
by the simplification.

this work the tile size of the inter tile dimension is there-
fore always set to the full size of the input, and the storage
versus recompute trade-off will be made for the remaining
dimensions.

3.2 Recomputation tradeoffs
In this paper, three strategies of handling this overlap will
be discussed:

1. Global: In the global strategy, the pixels overlapping
between tiles are stored in external memory. This leads
to a very small required local buffer size, but it also
results inmultiple expensive accesses to themainmem-
ory.

2. Local: The local strategy also stores the overlapping
pixel, just like the global strategy. In the local strategy
these pixels are stored in local buffers however, which
results in larger internal buffers.

3. Recompute: The recompute strategy does not store
the overlapping pixels, but rather recomputes them.
This allows it to use the smaller internal buffers if the
global strategy, combined with the reduced external
accesses of the local strategy. This comes at a cost of
an increased number of computations.

For each of these methods the code is restructured to
create new intermediate buffers in the program, these buffers
can then be mapped into either the global or local memory.
This assignment process is currently part of our hardware
modeling and is expected to be performed as part of the code
generation. Careful matching of both the used local memory
space and the actually available storage is performed as part
of the hardware accelerator synthesis which allows for a
fine-grain tuning of the provided amount of local storage.
The local method requires the least amount of external

memory accesses, as every pixel only needs to be read once.
The difference in external accesses for the other two strate-
gies is more complex, and will be explained in more detail.

To better explain the trade-off between recomputation and
store/load, a small example will be used which is illustrated
using Figures 2 and 3. Figure 2 describes the situation when
storing and loading the intermediate values and Figure 3
shows the situation when using recomputation. A kernel
size of 3 will be used, and the output tile size is denoted as n.
Both figures show the number of memory accesses required
for the computation both from the local (cache or scratchpad)
memory and from the external (global) memory.
When storing and loading the intermediate values, the

first tile is larger than the other tiles. This is caused by the
overlap between the tiles. This overlap is used by the first
tile, and then no longer needs to be computed for the second
tile. Both example figures show three tiles on the horizontal
axis, for which the middle tile is most representative of the
steady state of the loop-nest.
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Figure 2. Traditional tiling of a fused loop-nest with storing
of intermediate values. Tile size n, number of memory ac-
cesses shown, accesses in bold are from/to the global storage.
Tiling requires storing of the intermediate value, memory
access counts are otherwise equal
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Figure 3. Tiling a fused loop-nest with recomputation of
intermediate values. Tile size n, number of memory accesses
shown, accesses in bold are from the global storage

In the case of traditional tiling (Figure 2), the first input tile
has a size ofn+4. This is used to calculate an intermediate tile
of n + 2 data values, which is subsequently used to calculate
the first output tile. Next to the calculation of the output tile,
the last 2 values of the intermediate tile need to temporarily
be saved to memory for later usage. For subsequent tiles, the
input tile moves to the right and only n + 2 elements are
loaded from the input tile asn new elements are computed for
the intermediate layer, combining thesen elements with the 2
previously stored values provides us with enough input data
to compute the next n values of the output tiles. Combining
this gives us n + 4 loads for each computed output tile and 2
stores for saving the intermediate values (except for the last
tile), in totaln+6 accesses to the global storage for traditional
tiling.

When using recomputation, every tile will have the same
size, and perform the same computations.n+4 input elements
are loaded per tile, which are each time used to compute an
intermediate tile of n + 2, which is then directly used to
compute a output tile of size n. Since no elements are stored
or loaded except for the input, only n+4 elements are loaded
per tile in total.
From this example it can be concluded that fewer main

memory accesses are required when using recomputation.
Extrapolating for different kernel sizes shows us that the
number of memory accesses saved will increase with in-
creasing kernel sizes. This can be explained by the increased
overlap between subsequent tiles (which need to compensate
for the kernel dimension) and the related storage traffic in
the traditional tiling scenario. This is counteracted by an
increase in the number of instructions as the intermediate

values now need to be recomputed. However, since main
memory accesses can take thousands of cycles, recomputa-
tion can still result in a substantial performance increase, as
will be shown in Section 5, even when complex computations
are required to reproduce the intermediate results.

Finally, the presented recomputation can also be used for
algorithms with higher dimensionality. However, the bene-
fits of doing so can be expected to reduce significantly for
each added dimension beyond 2d inputs as the number of re-
computation steps will start increasing. Where for 1d inputs
all inter tile overlap can be solved implicitly and in 2d input
scenarios the amount of recompute scales approximately
linearly with the kernel size. Extending this into 3d results in
a quadratic relation between the kernel size and the amount
of recomputation, thus reducing the expected benefits of
recomputation.

4 Polyhedral modeling
Modeling recomputation in the polyhedral domain requires
multiple executions of the statement computing the values
for the intermediate layer within the tile overlap. This sec-
tion introduces our method for modeling this recomputation
within the polyhedral domain and how Polly was adapted to
enable the exploration of recomputation as part of its code
transformations.

4.1 The polyhedral model
The polyhedral model represents a program as a set of state-
ments operating on data, the order of these statements is
determined by their schedule. For example the map of state-
ment:

Stmt[i0]→ [i0]
implies that the statement Stmt with domain i0 is executed
according to the increasing order of [i0]. This notation can
be extended to multi-dimensional schedules to represent
nested loops by introducing new variables to the domain
and extending the schedule tuple.
Changing the schedule restructures the program execu-

tion similarly to applying a loop transformation. Legality
of this transformation can be checked by verifying the data
dependencies between the statement executions and opti-
mized code may automatically be generated based on the
transformed schedule. As a result, complex loop transfor-
mations can be reduced to schedule transformations in the
polyhedral domain which helps ensuring the correctness of
the transformed code.

4.2 Including recomputation
The main problem with recomputation however is that its
simplest representation requires the assignment of multi-
ple execution times to the computations of the intermediate
results, such a schedule is known as a non-singular valued
schedule. A non-singular valued schedule is a schedule for
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Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Figure 4. A graphical representation of the schedule of Stmt
showing statements on the left and their schedule time on
the right. Stmt[1] is clearly showing a non-singular valued
schedule entry as it is assigned two executions.

which one or more statement instances have multiple execu-
tion times assigned to them. The current polyhedral trans-
formation tools currently explicitly avoid handling these
kind of schedules, in both CLooG and ISL duplicates are
automatically removed when an union of schedules is not
disjoint.
There are two main solutions to this problem. Either the

tools should be adjusted to be able to handle non-singular
valued schedules, or the schedules themselves should be
adjusted by introducing new statements, so that they are
no longer single valued. Like Polly, many of the polyhedral
transformation tools build upon the ISL library in order to
handle the math behind the models. Within ISL there are a
great number of mathematical functions that can be used
but several of them assume a singular valued schedule. Sim-
ply inspecting them all and adjusting them to make them
all work with non-singular valued schedules would be a
huge undertaking, and, since the choice of ISL to provide
no support for non-singular valued schedules is likely done
on purpose, one would encounter a number of difficult (or
maybe even impossible) mathematical problems. Therefore,
it is better to stick to single-valued schedules. The remaining
solution then is to implement a method to transform non-
singular valued schedules to single valued systems when
recomputation is found in the schedule.

To create single valued schedules, every iteration of every
statement needs to be assigned an unique execution time.
However, schedules using recomputation have statement
iterations that have multiple execution times. For example,
take the following (non-singular valued) schedule (which is
visualized in Figure 4):

Stmt[i0]→[t0, t1] :
0 ≤ t0 < 2 and 0 ≤ t1 < 2 and i0 = t0 + t1

Here the statement instance Stmt[1] has two execution
times ([0, 1] and [1, 0]), making the schedule non-singular
valued. To create a single valued version of this schedule
(without changing the execution order of the schedule of
course), Stmt[1] should be executed at both [0, 1] and [1, 0].
This can be done by making a copy of Stmt , and assigning

Stmt[0, 0]

Stmt[1, 0]

Stmt[1, 1]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Figure 5. A graphical representation of the transformed
schedule of the example showing the extended execution
domain and resulting single valued schedule.

LLVM IR LLVM IRPolyhedral
SCoP

SCoP Detection

JSCoP | scoplib

Transformations

Manual Optimization / External Optimizers

Dependence
Analysis

SIMD

OpenMP

ImportExport

Code Generation

(PoCC/PLuTo)

Figure 6. Structure of Polly within LLVM (from [5])

the original and the copy to [0, 1] and [1, 0] respectively.
Resulting in the following schedules:

Stmt[i0]→ [0, t1] : t0 = 0 and t1 = i0
Stmt ′[i0]→ [1, t1] : t0 = 1 and t1 = i0

However, when considering multiple recomputation in-
stances of a single statement this can result in a large num-
ber of copied statements. This clutters the SCoP and makes
analysis difficult. Therefore, the choice was made to add an
iteration dimension to the execution domain:

Stmt[i0, t0]→[t0, t1] :
0 ≤ t0 < 2 and 0 ≤ t1 < 2 and i0 = t0 + t1

Every execution time that lacks a unique iteration then
is assigned a unique iteration using this dimension. This
would work similarly to copying the statements, but keeps
the “copies” organized in a single statement. For the example
schedule, the result is given by Figure 5.
After the schedule modification method is chosen, the

location of the transformation needs to be decided. Figure 6
shows the structure of Polly. Since Polly’s JSCoP importer2
itself already uses functions which requires singular-valued
schedules, it is not possible to locate the transformation later
than the importer itself. It would be possible to perform
it earlier, and let the transformation be done during the
adjustment of the JSCoP files. However, this would require
2Exported and imported schedules are stored in a JSON format by Polly.
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more work in keeping the connection between the copied
statements and the code they represent within the original
program to perform the transformations correctly, which
is not ideal. Moreover, it would still require adjustments to
the importer, which currently cannot handle these kind of
adjustments. Hence, the transformation was implemented
in the JSCoP importer itself.

4.3 JSCoP Implementation
The first step in applying the transformations is to rewrite
the SCoP of the input program so that it can be imported into
Polly. Adding recomputation to a JSCoP schedule is done
by assigning statement instances multiple execution times.
For the examples in this paper, a convolution is tiled with
overlapping tiles. This process works as follows, assume that
an (untiled) 2D convolution has the following schedule:

Conv[i0, i1, i2, i3]→ [i0, i1, i2, i3]

The dimension i0 of this convolution is then tiled with
a specified number of tiles no_tiles and tilesize , using two
extra variables: t0 for the outer loop and t1 for the inner
loop:

Conv[i0, i1, i2, i3]→[t0, i1, t1, i2, i3] :
0 <= t0 < no_tiles and
0 <= t1 < tilesize and
i0 = tilesize ∗ t0 + t1

Recomputation is added to the schedule by increasing the
domain of t1, without changing the definition of i0:

Conv[i0, i1, i2, i3]→[t0, i1, t1, i2, i3] :
0 <= t0 < no_tiles and
0 <= t1 < tilesize + overlap and
i0 = tilesize ∗ t0 + t1

For t0 = i and tilesize <= t1 < tilesize + overlap, and
for t0 = i + 1 and 0 <= t1 < overlap, i0 has the same value.
This causes these elements to be computed multiple times.
This method is used to add recomputation to a schedule by
the examples in this paper, but all methods that add multiple
execution times to an instance should be handled correctly
by Polly.

4.4 Polly Implementation
After parsing through the JSON file, the JSON importer im-
ports four parts: context, arrays, accesses and schedule. For
the proposed extension, only the schedule part is relevant
for detecting the recomputation. Polly uses the original (pre-
transformation) SCoP when importing the new schedules.
It checks if this new schedule satisfies the dependences of
the old SCoP, and then adjusts the schedule of the old SCoP.

Stmt[0] Stmt[1] Stmt[2]

[0, 0] [0, 1]

[1, 0]

[1, 1]

Figure 7. Lexicographical minimum of the example (high-
lighted in blue) demonstrating that Stmt[1] has a non-
singular valued schedule which requires adjustment.

However, transforming the schedule for recomputation re-
quires that both the domain and accesses of the recomputed
statements are also adjusted during cloning. When using
recomputation, the new schedule does not simply satisfy the
old dependencies. The cloned operations are placed on sev-
eral locations in the schedule, and statements that depend on
them require only one of these clones to be executed before
them. This results in a complex situation when verifying
the correctness of the transformation. Simply applying the
old dependencies to the new schedule would result in un-
satisfied dependencies, as not all of the cloned statements
are executed before the statements that depend on them.
Therefore, the duplication of operations requires the depen-
dencies between the cloned operations and the successors to
be updated. This has not yet been implemented, an therefore
this legality check is disabled in the current implementa-
tion. The correctness of the program is currently checked
by comparing the output to an unmodified execution of the
program. Next, a check is executed to see if the new schedule
is single valued. This way, single-valued schedules are not
influenced by this adjustment. Before the actual implemen-
tation, a check is performed if the schedule is bound. An
unbound schedule3 would require infinite extra statements,
and, since it does not represent an executable schedule, can-
not be intentional. The check will cancel the importation
if the schedule is unbound. The adjustment performs two
tasks:

1. Adjustment of the old SCoP, so it can handle the new
statement

2. Creation of the new schedule
The adjustments are performed statement by statement.

The lexicographical minimum is used on the schedule. This
gives us the lexicographically smallest execution time per
iteration. Figure 7 shows the lexicographical minimum for
the example schedule in blue. When a schedule is singular
valued, its lexicographical minimum4 is equal to the schedule
itself. When it is not singular valued, it will give a singular
valued map.

These properties are used to determine if the schedule of
a statement is singular valued. Also see the pseudocode in

3An unbound schedule could be the result of a parametric kernel size which
would require a compile time unknown amount of recomputation.
4Using the lexicographical maximum would give similar results.
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Algorithm 1. If the lexicographical minimum of the schedule
is equal to the original schedule, it is singular valued and it
requires no further adjustments. If they are not equal, a new
schedule needs to be created. At the start of creating this
new schedule, a new dimension is added to the statement.
Let us call this dimension i1 for now. The lexicographical
minimum is then added to the new schedule for i1 = 0. By
subtracting the lexicographical minimum from the original
schedule, we are left with the part which is not yet in the new
schedule. Of this part, the lexicographical minimum is taken
again. This is then added to the new schedule for i1 = 1. A
subtraction is performed, resulting again in the unscheduled
part. This is continued until there is no unscheduled part
left. The SCoP also needs to be adjusted. The domain of the
adjusted statements is changed, by using the domain of the
new schedule. The accesses are updated to work with the
updated schedule. Finally, the new schedule is applied to
the SCoP. This completes the transformation of the schedule
with recomputation into a single valued schedule.

Data: OriginalSchedule
Result: NewSchedule
set Lexmin to the lexographical minimum of
OriginalSchedule;
if OriginalSchedule is equal to Lexmin then

set newSchedule to OriginalSchedule;
else

add a dimension to newSchedule;
set i to 0;
RestofSchedule = OriginalSchedule - Lexmin;
while RestofSchedule is not empty do

add Lexmin to newSchedule with the new
dimension set to i;
i++;
set Lexmin to the lexographical minimum of
RestOfSchedule;
RestofSchedule = RestofSchedule- Lexmin;

end
end
Algorithm 1: How to make a schedule singular valued

5 Experimental results
This section described the experiments used to validate the
use of recomputation, and it demonstrates how the proposed
extensions of Polly are used to effectively explore the design
space of different tile sizes and the use of recomputation
versus storing the intermediate values either in global or
local memory context.

For the first experiment the motivational example of Sec-
tion 3.1 is taken. The input image is 480 × 320 pixels, and
the tested tile sizes are powers of two ranging from 1 to 512.
Because 480 is not a power of two, the tiles do not always
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Figure 8. Memory accesses vs Required local buffer size for
2 consecutive convolutions with 3x3 kernel and different tile
sizes

nicely fit in the full width of the image, but since Polly is
able with this, this does not pose a problem for our approach.
Besides testing various tile sizes, the 3 main strategies of
Section 3.2 are tested in this experiment.
Using the debug printing of Polly a trace of the memory

accesses is obtained for the various strategies and tile sizes.
By also printing the memory locations of all the relevant
arrays in the code, the loads and stores the all the arrays
can be counted and assigned to the appropriate global/local
memory ranges in the target architecture. Furthermore the
size of the arrays is known, so by virtually mapping arrays to
either local or global memory, it is possible to get the number
of external accesses for each design point. These are plotted
versus the buffer size in Figure 8 for a 3 × 3 kernel.

It is clear from Figure 8 that the three strategies follow
the expectations. The global strategy requires only minimal
internal buffer space, but has a high number of external ac-
cesses. The local strategy is the opposite of this, while the
recompute strategy has the best of both worlds. In particular
for the same internal buffer space, the recompute strategy
can reduce the external accesses by almost 25% for small
buffer sizes. As the internal buffer size grows, so does the
size of the tiles that fit in it. The larger the tiles, the fewer tiles
are needed to cover the entire image, thus for larger inter-
nal buffers, there is less overlap and the recompute strategy
can gain less and less. This suggests recompute is particu-
larly useful for situations where the available internal buffer
space is relatively limited. This occurs for typical applica-
tions mapped to accelerators, or embedded platforms with
small lower levels of cache. However, for applications with
large input, such as big data processing, again many tiles
will be needed even if the internal buffer size is rather large.
Also in these cases recompute can reduce the accesses to
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Figure 9. Memory accesses vs Required local buffer size for
2 consecutive convolutions for different kernel and tile sizes

external memory, improving performance depending on the
characteristics of the application.
The amount of overlap between two tiles is determined

by the size of the convolutional kernel. In the educational
example, only a 3 × 3 filter is used, but often larger kernels
are used in real applications. Since the overlap increases for
larger kernel sizes, it is expected that the gain of recomputa-
tion over the local and global strategies will increase even
further. As a test, experiments were performed with 4 differ-
ent kernel sizes, i.e., 3 × 3, 5 × 5, 7 × 7 and 9 × 9. The results
of these experiments are summarized in Figure 9.

From Figure 9 it is clear the shape of the curves of different
kernel sizes matches those of the curves of the 3 × 3 kernel
in Figure 8. However, as expected the gains increase even
further for larger kernel sizes. Already for the 7 × 7 kernel,
the number of external accesses can be reduced by 29% in
the most extreme case.
Of course the gains in required internal memory and

external accesses come at the cost of increased computa-
tional workload. For modern platforms computation is orders
of magnitude faster and cheaper in energy than accessing
higher levels of memory, so it is a trade-off that can be very
interesting. To measure the impact of the recompute strategy,
the tool perf was used to measure the number of issued in-
structions of all strategies as executed on a PC platform. The
results are shown in Figure 10. Interestingly, the recompute
strategy does not consistently require more computations
than the other strategies in these measurements. Most likely
this is because the control flow of the recompute strategy
is less complex. When memory accesses are avoided, so are
the computations required to accesses them. This very well
might balance out the added cost of the increased computa-
tional work. It also would explain why the local strategy has
reasonably high instruction counts, since the addressing into
local buffers can be quite computational intensive. However,
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Figure 10. The number of external accesses vs the issued
instructions for a 3 × 3 convolution window as measured by
perf

more investigation is needed to confirm this is indeed why
the recompute strategy seems to have such a low cost in
overall computation compared to the other strategies.

6 Conclusion & future work
In this work we have modelled recomputation in the polyhe-
dral model. This modelling has been implemented in Polly,
to both verify the model and ultimately make this optimiza-
tion easily available to anyone using the LLVM compiler
framework. The functionality of our implementation is veri-
fied using an example vision pipeline, which by extension
can be turned into a complete convolutional neural network
to which our model also would apply. The benefits of re-
computation are shown in the experimental results section,
for various convolution kernel sizes, and different internal
buffer sizes. The ability to automatically generate code for
all these points enables developers to more quickly evaluate
the design space without the need for manual code transfor-
mations.
After this first proof-of-concept, still plenty of work re-

mains for future work. One of the key steps will be to re-
enable the legality checks Polly performs when importing a
modified SCoP, to give people more confidence in the trans-
formations, and enable acceptance of our modifications in
the main Polly release. Furthermore we plan to also model
the effects of the recomputation transformations before code
generation. Such a model can be used to automatically, and
very quickly, explore the design space, ultimately allowing
polly to automatically select an optimal transformation given
some cost function for a specific back-end target. Also more
applications need to be tested, including Deep Neural Net-
works which can potentially tremendously benefit from the
recompute versus store trade-off.
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