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Introduction 



Introduction 

 

• (Mobile) systems use more artificial neural networks 

– Artificial vision 

– Image processing 

– Speech recognition 

 

 

• Large amount of data accesses 

 

 

• Can be improved by code transformations 
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Current possibilities and extensions 

 

• Tiling 

 

 

• Fusion 

• Distribution  

 

 

• Recomputation/overlapped tiling 

– Allows for better paralellism 

– Reduces memory traffic 
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This paper 

 

 

• An example CNN application which includes recompute 

 

• Extension of Polly 

 

• Demonstration of the effectiveness of recomputation 
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Related Work 



Automated polyhedral optimization frameworks 

 

• Greatly reduce the effort of translating the original network 

description into an optimized form 

 

• Automatically verifying the validity 

 

• Different options: Polly, R-Stream-TF, and PPCG 

 

• None of these frameworks provides a method of including 

recomputation in the optimization space 
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Why do we use Polly 

 

 

• Uses the Polyhedral model for optimizations 

 

• Direct integration with the LLVM compiler framework 

 

• Adjustable 

– Add extra functionality 

– User defined schedules 

– Automate the process 
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Optimizing 

Through 

Recompute 



System Architecture 
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Educational Example 
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Inter Tile Reuse 
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Stored Part of the intermediate image 



Inter Tile Reuse 
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Stored Part of the intermediate image 



Inter Tile Reuse 
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Inter Tile Reuse 
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Other Dimensions 
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Methods to handle overlap 

 

• Store the overlap globally 

 

• Store the overlap locally 

 

• Recompute the overlap 
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Global Method 

 

• Pixels are stored externally 

 

• Small buffer size 

 

• Expensive memory accesses 
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Local Method 

 

• Pixels are stored locally 

 

• Larger buffers required 

 

• Cheaper accesses 
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Recomputation Method 

 

• Recomputes the pixels 

 

• No extra memory required 

 

• No extra accesses required 

 

• More computations are required 

21 



Recomputation Tradeoffs 
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Recomputation Tradeoffs 
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Recomputation Tradeoffs 
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Storing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 



Recomputation Tradeoffs 
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Recomputing the overlap 

Storing the overlap 



Polyhedral 

Modeling 



The Polyhedral Model and Recomputation 

 

• Execution order is defined by the schedule 

 

• Schedule is singular valued 

– One execution time per statement 

– One statement per execution time 

 

• Recomputation: 

– Statements are executed multiple times 

– Non-singular valued schedules are required 
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Including Recomputation 

 

• Support for non-singular valued schedules 

 

• Transforming non-singular valued schedules to singular valued 

schedules 
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Example 
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Including Recomputation: location 
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Jscop Implementation 
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Conv[i0,i1,i2,i3] → [i0,i1,i2,i3] 



Jscop Implementation 
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Conv[i0,i1,i2,i3] →[t0,i1,t1,i2,i3] : 
0 <= t0 < no_tiles and 
0 <= t1 < tilesize and 
i0 = tilesize ∗ t0 + t1 



Jscop Implementation 
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Conv[i0,i1,i2,i3] →[t0,i1,t1,i2,i3] : 
0 <= t0 < no_tiles and 
0 <= t1 < tilesize + overlap and 
i0 = tilesize ∗ t0 + t1 



Dependencies 
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Experimental 

Results 
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Results for different tile sizes 
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Results for different tile sizes 
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Results for different tile sizes and several kernel sizes 
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Conclusion 

 

 

• An example CNN application which includes recompute 

 

• Extension of Polly 

 

• Demonstration of the effectiveness of recomputation 
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Future Work 

 

 

• Legality Checks 

 

• Model of the effects 

 

• More applications 
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And Finally… 

 

 

• Questions? 

 

• Remarks? 

 

• Suggestions? 
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