
Optimization Through

Recomputation in the

Polyhedral Model

By Mike Jongen,

Luc Waeijen,

Roel Jordans,

Lech Jóźwiak,

Henk Corporaal.

1

Contents

• Introduction

• Related work

• Optimizing Through Recompute

• Polyhedral modelling

• Experimental Results

• Conclusion and future work

2

Introduction

Introduction

• (Mobile) systems use more artificial neural networks

– Artificial vision

– Image processing

– Speech recognition

• Large amount of data accesses

• Can be improved by code transformations

4

Current possibilities and extensions

• Tiling

• Fusion

• Distribution

• Recomputation/overlapped tiling

– Allows for better paralellism

– Reduces memory traffic

5

This paper

• An example CNN application which includes recompute

• Extension of Polly

• Demonstration of the effectiveness of recomputation

6

Related Work

Automated polyhedral optimization frameworks

• Greatly reduce the effort of translating the original network

description into an optimized form

• Automatically verifying the validity

• Different options: Polly, R-Stream-TF, and PPCG

• None of these frameworks provides a method of including

recomputation in the optimization space

8

Why do we use Polly

• Uses the Polyhedral model for optimizations

• Direct integration with the LLVM compiler framework

• Adjustable

– Add extra functionality

– User defined schedules

– Automate the process

9

Optimizing

Through

Recompute

System Architecture

11

Processor

Local Memory

Global Memory

Educational Example

12

Inter Tile Reuse

13

Stored Part of the intermediate image

Inter Tile Reuse

14

Stored Part of the intermediate image

Inter Tile Reuse

15

Inter Tile Reuse

16

Other Dimensions

17

Methods to handle overlap

• Store the overlap globally

• Store the overlap locally

• Recompute the overlap

18

Global Method

• Pixels are stored externally

• Small buffer size

• Expensive memory accesses

19

Local Method

• Pixels are stored locally

• Larger buffers required

• Cheaper accesses

20

Recomputation Method

• Recomputes the pixels

• No extra memory required

• No extra accesses required

• More computations are required

21

Recomputation Tradeoffs

22

Recomputation Tradeoffs

23

Storing the overlap

Recomputation Tradeoffs

24

Storing the overlap

Recomputation Tradeoffs

25

Storing the overlap

Recomputation Tradeoffs

26

Storing the overlap

Recomputation Tradeoffs

27

Storing the overlap

Recomputation Tradeoffs

28

Recomputing the overlap

Recomputation Tradeoffs

29

Recomputing the overlap

Recomputation Tradeoffs

30

Recomputing the overlap

Recomputation Tradeoffs

31

Recomputing the overlap

Recomputation Tradeoffs

32

Recomputing the overlap

Recomputation Tradeoffs

33

Recomputing the overlap

Storing the overlap

Polyhedral

Modeling

The Polyhedral Model and Recomputation

• Execution order is defined by the schedule

• Schedule is singular valued

– One execution time per statement

– One statement per execution time

• Recomputation:

– Statements are executed multiple times

– Non-singular valued schedules are required

35

Including Recomputation

• Support for non-singular valued schedules

• Transforming non-singular valued schedules to singular valued

schedules

36

Example

37

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Example

38

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Old Schedule

Example

39

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Old Schedule

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 1]

Lexicographical
Minimum

Example

40

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Old Schedule

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 1]

Lexicographical
Minimum

Example

41

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

Old Schedule

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 1]

Lexicographical
Minimum

Example

42

Rest of
Schedule

[1, 0]Stmt[1]

Stmt[0]

Stmt[1]

Stmt[2]

[0, 0]

[0, 1]

[1, 1]

Lexicographical
Minimum

Stmt[0, 0]

Stmt[1, 0]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 1]

Example

43

New Schedule

Rest of
Schedule

[1, 0]Stmt[1]

Stmt[0, 0]

Stmt[1, 0]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 1]

Example

44

New Schedule

Lexicographical
Minimum

[1, 0]Stmt[1]

Stmt[0, 0]

Stmt[1, 0]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 1]

Example

45

New Schedule

Lexicographical
Minimum

[1, 0]Stmt[1]

Stmt[0, 0]

Stmt[1, 0]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 1]

Example

46

New Schedule

Lexicographical
Minimum

[1, 0]Stmt[1]

Example

47

Lexicographical
Minimum

[1, 0]Stmt[1]

Stmt[0, 0]

Stmt[1, 0]

Stmt[2, 0]

[0, 0]

[0, 1]

[1, 1]

[1, 0]Stmt[1, 1]

New Schedule

Including Recomputation: location

48

Jscop Implementation

49

Conv[i0,i1,i2,i3] → [i0,i1,i2,i3]

Jscop Implementation

50

Conv[i0,i1,i2,i3] →[t0,i1,t1,i2,i3] :
0 <= t0 < no_tiles and
0 <= t1 < tilesize and
i0 = tilesize ∗ t0 + t1

Jscop Implementation

51

Conv[i0,i1,i2,i3] →[t0,i1,t1,i2,i3] :
0 <= t0 < no_tiles and
0 <= t1 < tilesize + overlap and
i0 = tilesize ∗ t0 + t1

Dependencies

52

Before After

OR

Experimental

Results

54

Results for different tile sizes

55

Results for different tile sizes

56

Results for different tile sizes and several kernel sizes

Conclusion

and Future

Work

Conclusion

• An example CNN application which includes recompute

• Extension of Polly

• Demonstration of the effectiveness of recomputation

58

Future Work

• Legality Checks

• Model of the effects

• More applications

59

And Finally…

• Questions?

• Remarks?

• Suggestions?

60

