
Toward a Polynomial Model, Season III
Polynomial Code Generation

Paul Feautrier1 Albert Cohen2 Alain Darte3

1Ecole Normale Supérieure de Lyon

2Equipe INRIA Parkas

3Xilinx and CNRS

January 15, 2018

1 / 11

Polynomials Everywhere

I The polyhedral model deals only with affine forms i.e.
polynomials of degree one.

I Polynomials are needed:
I If present in the source e.g. when computing distances
I After evalation of induction variables
I After linearization of arrays
I When counting messages, operations, memory cells

2 / 11

Mathematical Background
Needed: an equivalent of Farkas lemma for building positivity
certificates.

I Semi-algebraic sets:

S = {x ∈ Rn|pi (z) ≥ 0, i = 1, n}

where the pi are polynomials.

I Theorems by Handelman, Schweighofer, Putinar:

I Schweighofer products:

gα(x) = p1(x)α1 ...pn(x)αn .

I P(x) is stricly positive in S iff it is a positive linear
combination of Schweighofer products

I Minor conditions: S must be compact and the gi must
generate all polynomials.

I Note that there is no integral version of these theorems.

3 / 11

Mechanics

Expand the master equation:

P(x) =
∑
α

λαgα, λα ≥ 0,

I Equate coefficients of like monomials

I The result is a linear system of equations in the λs to be
solved in positive unknowns by any linear program solver.

I Linear solvers are very powerful and can tackle problems with
thousands of constraints and unknowns.

I Since one must limit the number of Schweighofer products,
the problem is only semi-decidable.

4 / 11

The OpenStream Language
reset

writer task

stream

reader task

read pointer

write pointer

synchronization

stream s, t;

task reset{

write once into s; //theta() = 0

}

for(i=0;;i++)

task writer{ //theta(i) = i+1

read once from s;

write once into s;

write once into t;

}

for(i=0;; i++)

task reader{ //theta(i) = i+2

read once from t;

}

I A stream is a potentially infinite one dimensional array, with a write
pointer and a read pointer.

I At each read or write, the corresponding pointer is increased by a
non negative amount, the burst.

I The read pointer cannot overtake the write pointer :
synchronization.

I Analogy with Unix files and hardware channels.

5 / 11

Dependences and Scheduling

I If the control program is polyhedral, one can obtain closed
form formulas for pointers by counting task creations using
ISCC. The results are polynomials, hence the dependence
relation is semi-algebraic.

I One can obtain polynomial schedules using Handelman or
Schweighofer theorems.

I See IMPACT 2015, 2016.

6 / 11

Code Generation Basics

thread

barrier

I Each thread execute
sequentially all
instances of one task.

I After each instance, the
thread execute some
barriers.

I The number of barriers
from the begining of
the stream to a given
instance must be equal
to the schedule of the
instance.

7 / 11

The Problem of the Decreasing Schedule

Since the number of barriers can only increase, task instances must
be created in order of increasing schedule. Let � be the execution
order of the control program, and θ be the schedule of a task.

I If the system of constraints

u � v , θ(v) < θ(u)

is unfeasible, the schedule is increasing.

I If
u � v , θ(u) < θ(v),

is unfeasible, the schedule is decreasing, the execution order
must be reversed.

I If both systems are feasible, the schedule is non monotonic.
Index set splitting?

I If both system are unfeasible, the schedule is constant.

8 / 11

Target Languages: X10 / Habanero

clocked finish{

clocked async{

T1;

}

clocked async{

T2;

}

clocked async{

advance;

T3;

}

clocked async{

advance;

T4;

}

}

T1 T2

T3
T4

9 / 11

Related Work

I Counting Algorithms: Barvinok, Brion, Clauss and the
Strasburg school, Ehrhart, Verdoolaege. Note that to the best
of my knowledge, there is no equivalent for semi-algebraic
sets.

I Delinearization, CART, CRP: avoiding polynomials.

I Achtziger and Zimmerman on quadratic schedules.

I Groesslinger on cylindrical algebraic decomposition.

I Clauss et. al. on inverting schedules.

10 / 11

Conclusion and Future Work

I An implementation is under way.

I Needs to be extended: data parallelism, non monotonic
schedules, task body.

I OpenStream is an interesting language: hiding non polyhedral
code in the task body, HLS.

I A small step beyond the polyhedral model
I Missing tools:

I A projection algorithm (CAD ?) and a transitive closure
algorithm

I A counting algorithm
I A polynomial version of the Cousot-Halbwachs algorithm.

I Other Models ??

11 / 11

