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Abstract
The JavaScript language was originally designed to help writ-
ing small scripts adding dynamism in web pages. It is now
widely used, both on the server and client sides, also for
programs requiring intensive computations. Some examples
are video game engines and image processing applications.
This work focuses on improving performance for this kind
of programs. Because JavaScript is a dynamic language, a
JavaScript program cannot be compiled efficiently to na-
tive code. For achieving good performance on such dynamic
programs, the common implementation strategy is to have
several layers handling the JavaScript code, starting from in-
terpretation, up to aggressive just-in-time compilation. Nev-
ertheless, all existing implementations execute JavaScript
functions using a single thread. In this work we propose to
use the polyhedral model in the just-in-time compilation
layer to parallelize compute-intensive programs that include
loop nests. We highlight what are the scientific challenges,
resulting from the dynamism of the language, for integrating
automatic polyhedral optimization. We then show how to
solve these challenges in the JavaScriptCore implementation
of Apple.

Keywords JavaScript, Engine, Automatic parallelization,
Polyhedral Optimization, Just-in-time compilation.

1 Introduction
JavaScript is a high level, prototype-based, object-oriented,
dynamic language. Strictly speaking, JavaScript is not the
specification of the language itself, but the initial language
and its implementation developed by Netscape. The standard
name for the language is ECMAScript whose first version
was released in June 1997 and the last one in June 2017. For
simplicity purposes and to use the widespread "wrong" term
as anywhere else, we will refer in the following to JavaScript
instead of ECMAScript to mention the language itself.
Because JavaScript is a dynamic language, a JavaScript

source program cannot be compiled efficiently to native code.
Instead, JavaScript programs are handled by a JavaScript
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implementation referred to as JavaScript engine in the fol-
lowing. This engine is in charge of executing the JavaScript
source program given as input.

JavaScript was used historically on the client web-browser
side to enable dynamic web pages. A large number of appli-
cations are now using JavaScript also for running compute-
intensive tasks such as image processing routines or video
games engines. JavaScript is also now widely used as server
side language. Because of its widespread usage, all the major
internet companies and open source communities have their
own JavaScript engine. Google has its V8 Engine [6], Apple
has JavaScriptCore [2], Mozilla has SpiderMonkey [16] and
Microsoft has Chakra [15]. For many years, these companies
and open source communities have optimized their engines
in the context of the so-called "browser war".
To efficiently execute JavaScript programs, all these en-

gines use a layered approach often starting from interpre-
tation of JavaScript source code and ending in aggressive
just-in-time compilation to native code. Surprisingly, even
if the engines themselves are parallel applications, none of
them are able to execute JavaScript code in parallel. The
sequential nature of the language itself is probably one ex-
planation. In other words, because the language does not
allow to express parallelism and because of the dynamism
it provides, it is very challenging to identify and exploit
parallelism in JavaScript applications.
Even if none of the widespread JavaScript engines men-

tioned above are able to execute JavaScript code in parallel,
recent researches have started to study this question [9, 13,
14, 17]. Relying either on speculation, language extensions
or on automatic loop parallelization, these proposals have
shown that parallelism can be exploited in JavaScript bench-
marks and real applications.

Independently of JavaScript, the polyhedral model [5] has
proven to be very useful to optimize and parallelize compute
intensive application kernels written in non dynamic lan-
guages such as C. More recently, polyhedral optimization
has also been applied by just-in-time compilers [11, 12, 19].
In the latter case, the optimization and parallelization are
performed dynamically during the execution of the applica-
tion.
Motivated by these first results regarding JavaScript par-

allelization and by the growing usage of polyhedral tools in
just-in-time compilers, we study in this work the possibility
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of using the polyhedral model for automatic optimization
and parallelization of JavaScript. As we show in the paper,
the main challenges are related to the management of the
dynamism allowed by the language. The growing usage of
JavaScript for compute-intensive applications is a motivating
indicator for the application of polyhedral optimization.

In this work, we make the following contributions:
• Identification of scientific challenges to integrate poly-
hedral optimization in JavaScript;
• Proposition of solutions for these challenges in the
context of a state-of-the-art JavaScript engine;
• Demonstration of the benefits of doing polyhedral op-
timization on a matrix multiplication JavaScript kernel
• Identification of perspectives allowing to handle more
JavaScript programs with the polyhedral model.

The rest of the paper is organized as follows. Section 2
describes the architecture of a layered JavaScript engine
along with some basics regarding the polyhedral model. Sec-
tion 3 presents the scientific challenges that must be handled
to enable polyhedral optimization in a layered JavaScript
engine. Section 4 proposes solutions for these challenges.
Section 6 presents preliminary results on a matrix multipli-
cation kernel. Finally, Sections 7 and 8 present related work
and conclude this preliminary work.

2 Background And Objective
JavaScript is a very dynamic language. This dynamism has a
strong impact on the way JavaScript programs are executed.
The language allows to dynamically load piece of code during
execution. This feature itself is hardly compatible with static
compilers. Static compilation is also not an optimal solution
because of the lack of information in the source code, e.g.,
no type information. For these reasons, JavaScript programs
are executed by a JavaScript engine. This engine handles
dynamism and can offer good performance by observing the
execution of the program and then by optimizing it based
on its observation.
Using the polyhedral model in the context of JavaScript

implies to take into account this dynamism. This section
gives an overview of what kind of dynamism is allowed by
JavaScript, before describing how state-of-the-art JavaScript
engines handle it. Finally, a brief introduction of the polyhe-
dral model is given.

2.1 JavaScript Dynamism
To illustrate several forms of dynamism of JavaScript, let us
consider the simple function shown in Figure 1.

First of all, the language is dynamically typed. In our exam-
ple, it means that neither the type of the function parameter
nor the type of the property of this parameter, accessed
through a numerical index, are known and they can change
over time. As a consequence, to safely execute this function,
the JavaScript engine must first look at each iteration where

f(img, width, height) {
for (var i = 0; i < width; i++) {
for (var j = 0; j < height; j++) {
var v = img[i*width + j];
v = v + 41;
v = v * 7;
img[i*width + j] = v;

}
}

}

Figure 1. Simple JavaScript function iterating over an image.

is located the property i*width + j of the img parameter.
Then the engine must look what is the meaning of the + and
* operators for the v variable, according to its type.

Another important concern for engines, revealed indi-
rectly by this example, is JavaScript numbers. From the pro-
grammer point of view, the specification tells that numbers
are all double precision floating point numbers. This has a
strong impact on the performance of the engine that must
implement such semantics. Nevertheless, JavaScript engines
use cheap 32 bits integer instructions when programs manip-
ulate small integer values. But because JavaScript numbers
must behave as double precision floating point numbers, us-
ing 32 bits integer instructions is semantically correct only if
the numbers fit in 32 bits. As a consequence in our example,
considering that img contains only integers, the engine has
to check that v fits in 32 bits when using the processor 32
bits integer instructions to perform the + and * operations.
The language is also very permissive regarding arrays.

This is not shown in our example, but in JavaScript, it is
possible to write outside the bounds of an array. For example,
a function scaling up an image could have statements writing
outside the image. In this case, the semantics of the language
is to extend the array up to the index that has been written.
Slots in the array between the previous last element and the
one just written are then considered as holes.

2.2 Layered JavaScript Engine
For efficiently handling all forms of dynamism present in the
language, all JavaScript engines rely on a layered architec-
ture [6, 15, 16]. Figure 2 depicts the architecture of JavaScript-
Core [2], the engine that we use in this work. JavaScriptCore
is a-state-of-the-art JavaScript engine developed by Apple
and used in the WebKit project. Webkit being itself used,
among other, by the Safari web browser. Depending on the
engine itself, some of the layers depicted on this figure may
not be present, but the global architecture is the same for
all the JavaScript engines in use. These engines work on a
function basis. Each time a function is called, it is executed
by a given layer depending on the context. The main idea
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is to execute the time consuming functions in the most ef-
ficient layers, in which the engine can afford to spend time
for optimizing.

f.js

Bytecode compiler

f.bc

1. LLInt

2. Baseline JITf-v1.native

f.prof

3. DFG JIT - Speculativef-v2.native

4. FTL JIT - Speculativef-v3.native

Figure 2. The layered architecture of JavaScriptCore.

We now describe this layered architecture by showing
how our example function of Figure 1 is handled, focusing
on the + and * operators. The first time the engine must
execute a given function, it compiles it to its own bytecode
representation. Then the function is handled by the first layer,
an interpreter, whose source code can be summarized in a
simplified way by the code depicted in Figure 3. As already
mentioned, the interpreter must take care of the types of the
operands and dispatch to the appropriate implementation.
Then, on some next invocation or inside the current in-

vocation of the function, the engine may decide to switch
to the next layer, labeled Baseline JIT in Figure 2. This layer
compiles the function bytecode to native code. This is done
in a very naive way by replacing each bytecode instruction
with the corresponding assembly sequence of the interpreter.
Figure 4 shows the generated binary code for the two con-
secutive instructions that compute the new value of v in our
example function. This first compilation step removes the
overhead of dispatching instructions. In the generated code,
compared to the interpreter, there is no more any switch on
the type for the current instruction.
Then, again on some next invocation of the function or

inside the current invocation of the function, the engine
may decide to switch to the next layer called DFG (DataFlow
Graph) JIT. Compared to the interpreter and the Baseline
JIT layers, the execution enters the speculative part of the
JavaScript engine. In this layer, JavaScriptCore relies on as-
sumptionsmade by looking at profiling information gathered

while(i = next_instruction()) {
switch(i->opcode) {

case add:
switch (type_pair(i->operand1->type(),

i->operand2->type())):
case integer_integer:
i->dest = i->operand1->as_int() +

i->operand2->as_int();
case object_integer:
...

case mul:
switch (type_pair(i->operand1->type(),

i->operand2->type())):
...

case ...
}

}

Figure 3. Extract of the source code of a typical JavaScript
interpreter.

...

...
switch (type_pair(v, 41)):
case integer_integer:

v = v->as_int() + 41;
case object_integer:

...
switch (type_pair(v, 7)):
case integer_integer:

v = v->as_int() * 7;
case object_integer:

v = v->obj_to_int() * 7;
...
...

op_add v 41 v;

op_mul v 7 v;

Figure 4. Native code generated naively for the + and *
instructions of the example function.

by the previous layers. This profiling information contains
for example the effective types that have been encountered
up to now. Considering that our function has been only
called with arrays of integers fitting on 32 bits, JavaScript-
Core creates a new representation of the program taking
into account this information, as shown in Figure 5. In the
case of speculation failing, JavaScriptCore must go back to
the last non speculative layer in order to correctly execute
the function according to the JavaScript semantics. Starting
from this new representation, that does no more contain
any instruction devoted to handling the dynamism, typical
compiler optimization may be performed, before generating
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new native code far more efficient than the one generated
by the naive Baseline JIT layer.

f(img, width, height) {
if (img is array of 32 bits integers) {
for (var i = 0; i < width; i++) {

for (var j = 0; j < height; j++) {
var v = img[i*width + j];
v = v->as_int() + 41;
v = v->as_int() * 7;
img[i*width + j] = v;

}
}

}
else {
return to Baseline JIT;

}
}

Figure 5. Internal representation of the DFG JIT speculative
layer for the example function.

Finally, the FTL JIT layer which is also speculative, consist
in applying more aggressive and thus more time consuming
transformations. To that end, JavaScriptCore compiles the
dataflow graph intermediate representation to LLVM-IR and
then to native code. Using LLVM allows to leverage most of
its transformations and its backend.
The general idea of this design is to remove as much dy-

namism as possible by profiling the code behavior. Final
layers can then apply aggressive optimization since they do
not need to handle dynamism. In case of bad predictions, the
execution rollbacks to the first layers.

Existing JavaScript engines are not able to execute JavaScript
code in parallel. Said differently, the interpreter code and
the different versions of native code generated dynamically
are all sequential. Nevertheless, the just-in-time compila-
tion process itself is often done in parallel of the execution
in the previous layer. Other tasks of the JavaScript engine,
e.g., garbage collection, are also done in parallel in existing
engines.

2.3 The Polyhedral Model
The polyhedral model [5] is a mathematical model devoted
to the analysis and transformation of loop nests. In order to
be optimized by the polyhedral model, a loop nest must be
compliant with what is called a Static Control Part (SCoP). A
SCoP is a loop nest where loop bounds, memory accesses and
branches conditions are all affine functions of parameters
constant in the nest and of enclosing loop iterators. Based on
this model, classical loop transformations such as skewing,
interchange and others can be expressed in a common simple
formalism.

Historically, polyhedral tools were implemented as source-
to-source compilers. More recently, polyhedral optimization
have been implemented at the level of compilers interme-
diate representations. It has been successfully deployed in
production compilers such as GCC and LLVM respectively
by the GRAPHITE [20] and the Polly [7] frameworks. The
main challenges for performing optimization on intermedi-
ate representation are the identification of SCoPs and the
granularity choice of what would be considered as a schedule
unit by the polyhedral optimizer, i.e., a statement in the poly-
hedral terminology. In this work, we do not address these
challenges but rely on existing proposals and tools. The ad-
dressed challenges are related to the objective of having the
JavaScript engine last optimization layers generating code
which can be handled by polyhedral tools.

2.4 Objective
The final objective of this work is to integrate polyhedral
optimizations in JavaScript engines. This can only be done in
the last speculative layer of the engine, when the dynamism
has been entirely removed, such that the code is in the closest
shape to what can be handled by polyhedral tools. To reach
this goal, we present in this paper what are the challenges
to merge both the world of advanced static optimization and
the world of just-in-time compilation for a dynamic language
such as JavaScript.

3 Challenges For Polyhedral Optimization
Of JavaScript Programs

This section brings to light the challenges for integrating
polyhedral optimization inside a JavaScript engine to gener-
ate native code that is more efficient than the one generated
by state-of-the-art engines. Additional performance comes
from parallelization and data locality optimization provided
by the polyhedral model. In Section 4, we propose solutions
to these challenges in the context of the JavaScriptCore en-
gine developed by Apple.

3.1 Issue 1: SCoPs Detection
As stated in Section 2.3, the first challenge of polyhedral tools
working on intermediate representations is to identify SCoPs.
In the context of intermediate representation generated by a
JavaScript engine, this detection is made even more difficult
because of the shape of the code. This code is quite different
from the one generated by front-ends for static languages
such as C or C++.

3.1.1 Single Entry Single Exit Regions
Section 2.3 introduced the three constraints a loop nest must
satisfied to be a SCoP. The constraint on the conditionals
leads to the fact that the control flow of the loop must be
statically known. In practice, polyhedral tools operating on
intermediate representations add the constraint that the loop
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nest must form a Single Entry Single Exit (SESE) region. This
means that all the basic blocks of the loop nest must be in a
region of code with only one entry point and one exit point.
In the context of code generated by a JavaScript engine,

this requirement is not met, because of the handling of spec-
ulation. For each speculation check, the engine inserts a
jump back to the previous layer as shown previously in
Figure 5. This jump is implemented in intermediate code
representations by blocks jumping to a particular address of
the runtime, which is responsible to follow up the execution
in the previous layer.

for.j.header:
...
idx = i*width + j
idx > img_size

T F
out.of.bounds:
handleSpecFail()

get.address:
...
isHole(img[idx])

T F
load.from.hole:
handleSpecFail()

add:
...
res = add op1 op2
doesOverflow(res)

T F
overflow:
handleSpecFail()

mul:
..
res = mul op1 op2
doesOverflow(res)

T F
overflow:
handleSpecFail()

inc:
j = j + 1
j < width

F T

Figure 6. Engines speculation leads to non-SESE regions in
the control flow graph of the intermediate representation.

Figure 6 shows the control flow graph generated by the
JavaScriptCore engine for the innermost loop of Figure 1.
This diagram clearly reveals a non-SESE nature. The four
blocks on the left are jumps to the previous layer of the
engine, which make this loop nest non conform to a SESE
region. As stated in Section 2.2, these checks are required
to ensure that the speculations made by the engine on past

profiling results are still valid. In this particular example,
the checks ensure that the code does not perform an access
outside the bounds of the array, that it accesses an element of
the array that has been already allocated, i.e., not a hole, and
that the result of the integer operations fit on 32 bits. This
32 bits size has been chosen by the engine when generating
native code, because all the profiled values were fitting on
32 bits.

3.1.2 Detection Of Affine Accesses To Arrays
As described in the previous sections, JavaScript arrays are
complex objects. They can be extended and are not typed.
One array can store various types of data simultaneously in
its cells. Nevertheless, for an array of primitive types without
holes, JavaScript engines will use contiguous memory.
The successful detection of affine accesses to these con-

tiguous arrays of primitive types strongly depends on the
structure of the code that is generated by the JavaScript en-
gine. This structure must comply with a code shape that can
be successfully parsed by polyhedral tools. Section 4.1.2 will
show why code generated by JavaScriptCore does not enable
detection of affine accesses.

3.1.3 Two Dimensional Arrays And Arrays Of
Objects

Two-dimensional arrays do not exist in JavaScript. To declare
a two-dimensional array, the programmer has to create a
first one-dimensional array, and then a second one in each
cell of the first array. Because of that lack of two dimensional
arrays in the language, JavaScript engines cannot store two-
dimensional arrays in contiguous memory. Also, because
of the nature of JavaScript arrays that can contain different
types of elements, arrays of objects are actually implemented
as arrays of pointers. As a consequence, the following ex-
pressions both imply two memory accesses:
• t_ints[i][j]=17;

• t_objs[i].foo=17;

In both cases, the first memory access is a load from an array.
In the first case, the second access is also a load from an
array while in the second case it is a load from a property
by its name foo.
These two loads in generated code, prevent polyhedral

tools to represent JavaScript loop nests iterating over such
arrays. Indeed, by analyzing the code, it is impossible to
know whether the successive loads of the i integer property,
or of the foo named property, are affine functions of loop
iterators and constant parameters. The target locations for
these memory accesses depend on the location of the objects
refereed to by arrays t_ints and t_objs.

3.1.4 Alias Analysis
As it is for many compiler transformations, polyhedral opti-
mization requires precise information about pointer aliasing.
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For a given transformation to be safe, the optimizer must
ensure that arrays accessed by different names are actually
different arrays. In our example function, there is no such
alias issue. Such problems typically occur, as it is the case
for compilers of C programs, for example in a matrix multi-
plication function defined as shown in Figure 7.

matmul(left, right, res, left_nblines,
left_nbcols, right_nbcols) {

for (var i=0; i<left_nblines; i++) {
for (var j=0; j<left_nbcols; j++) {
var idx_left = i * left_nbcols + j;
for (var k=0; k<right_nbcols; k++) {
var idx_res = i*right_nbcols + k;
var idx_right = j*right_nbcols + k;
res[idx_res] = res[idx_res] +

left[idx_left] *
right[idx_right];

}
}

}
}

Figure 7. Matrix multiplication function leads to alias anal-
ysis issues. The compiler cannot know whether or not the
res matrix will alias with the left or with the right one.

3.2 Issue 2: Parallel Speculation Failure
After an automatic optimization and parallelization of the
JavaScript code by a polyhedral optimizer has been per-
formed, several threads run in parallel a single loop nest.
Because the engine applies polyhedral optimization in its
last layers, optimization is done on speculative code. As a
consequence, the parallel code generated includes jumps
back to the previous layer in case of speculation failure.

At runtime, if such a jump is triggered in one of the threads
executing the loop nest, the current state of the system may
be wrong. In a sequential execution, the speculation check
is always performed before executing the code relying on it.
Nothing can go wrong and the dynamism that appears again
in the code is handled by the previous layer. In case of parallel
execution, several threads may already have performed some
wrong computations when a particular thread encounters
a speculation failure. All threads must then be stopped and
the execution is potentially incorrect. The jump must be
handled properly and the loop has to be restarted from the
beginning in sequential mode where speculation failure will
be properly handled.

3.3 Issue 3: Gain Versus Overhead
Considering that we are able to perform polyhedral opti-
mization of JavaScript programs inside a JavaScript engine

by solving issues 1 and 2 described above, the last challenge
is to ensure that it is worth to do so. As for any runtime
optimization, the time spent in performing the optimization
must be counterbalanced by the reduction of execution time
provided by the optimized version of the code.

In the context of polyhedral optimization, this gain versus
time overhead dilemma is directly related to the performance
of tools implementing the optimization. Even if these tools
have an exponential complexity in the number of statements
of the target loop nest, it has also been shown [11, 19] that
they can still be used successfully at runtime. So the question
to answer is whether the time required by polyhedral opti-
mization is acceptable in the context of JavaScript engine.
This question leads to the question of the configuration of
the polyhedral tools used inside a JavaScript engine that may
strongly impact optimization time.

4 Solutions Proposals
We now propose solutions to the challenges described in
the previous section. Our proposal is to integrate polyhedral
optimization in the last layer of JavaScriptCore, the FTL JIT.
At this stage, all JavaScript dynamism has been removed.
Also, as described in Section 4.3, integrating polyhedral opti-
mization in the last layer helps in answering issue 3 about
gain versus overhead. Moreover, because this step relies
on LLVM1, our engine can leverage its mature polyhedral
framework called Polly [7]. Polly first builds a polyhedral
representation of the LLVM-IR. Then some polyhedral trans-
formations are performed on the polyhedral representation.
Finally a new version of the LLVM-IR is generated back from
the optimized polyhedral representation.

4.1 Solution To Issue 1 : SCoPs Detection
As stated in Section 3.1, the LLVM code of a loop nest gener-
ated by JavaScriptCore must be in a SESE region and must
form a SCoP to be optimized with polyhedral tools such as
Polly.

4.1.1 SESE Regions
The solution to this problem is related to the solution of par-
allel speculation failure described in Section 4.2. The main
idea is to remove all terminal blocks that jump back in the
previous layer leading to non SESE regions. We can do this
because if such a block is executed during the parallel ex-
ecution, we need to re-execute again the whole loop. As
a consequence, the generated parallel code is semantically
correct only if no such terminal block is executed.

More precisely, our solution proposal is as follows:

1Starting from version 2.12, JavaScriptCore is no more using LLVM but a
custom low level intermediate representation along with a custom back-
end called B3. The solutions proposed in this section are nevertheless all
applicable to this custom representation excepted the one for the issue of
detecting affine accesses to arrays.
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1. Remove all terminal blocks that jump back in the pre-
vious layer;

2. Insert metadata information for each instruction that
can trigger a jump back in the previous layer, along
with information about the condition of the jump.
These instructions are the branching instructions at
the bottom of each basic block shown in Figure 6;

3. Apply Polly transformations on this simplified SESE
version of the code;

4. Using the metadata information, insert back after Polly
transformations the blocks jumping back to the previ-
ous layer. Section 4.2 presents the detailed content of
these blocks.

This solution allows to apply Polly optimization while still
properly detecting engines speculation failures.

4.1.2 Detection Of Affine Accesses To Arrays

In JavaScriptCore, for an access such as t[index]=17;
where t is an array of numbers being all 32 bits integers,
JavaScriptCore originally generated the code in Figure 8.
First, the offset into the array is computed. The index is
multiplied by the size of one element in the array. This size
is always 64 bits even for an array of 32 bits integers. This
is due to the way the engine internally represents objects
and primitive types through a technique called NaN boxing2.
The second step is to add the integer value of the pointer on
the array’s base and this offset. Since LLVM is a typed IR, the
conversion from integer to pointer is done by the inttoptr
instruction. Finally the store is performed. All these steps
are complex from a compiler point of view and are hard to
track for a tool like Polly.

%offset = shl i64 %index, 3
%cell_as_int = add i64 %base_as_int, %offset
%cell_ptr = inttoptr i64 %cell_as_int to i64*
store i64 %boxed_17, i64* %cell_ptr

Figure 8. Original LLVM-IR generated by JavaScriptCore
for a write in an array of integers.

To expose array accesses in a way handled by Polly, our
engine replaces these instructions performing pointers arith-
metic by the getelementptr instruction that takes a variable
number of parameters. The first one is the type of the array
that allows LLVM to know the size of each element with
optionally the number of elements. The second one is the
accessed array, i.e., a pointer whose type must be conformed
to the type described by the first parameter. The following
parameters, whose number depends on the number of di-
mensions of the array, indicate which element is targeted.
2http://www.redditmirror.cc/cache/websites/blog.mozilla.
com_cwn0q/blog.mozilla.com/rob-sayre/2010/08/02/
mozillas-new-javascript-value-representation/index.html

There is no conceptual difference between the getelement-
ptr instruction and manual computation of an address with
pointer arithmetic. Nevertheless, the first method allows to
have all information in only one instruction and simplifies
the work for polyhedral tools.

Figure 9 presents the modified LLVM-IR that is equivalent
to the first form but that allows Polly to perform its analysis.
The first step is to convert the integer value of the pointer
to a real LLVM pointer. The variable base_ptr is now a
pointer to the array’s base. The following getelementptr
instruction internally performs pointer arithmetic to get the
cell pointer3.

%base_ptr = inttoptr i64 %base_as_int
to [1000 x i64]*

%cell_ptr = getelementptr [1000 x i64],
[1000 x i64]* %base_ptr,
i32 0,
i32 %index

store i64 %value, i64* %cell_ptr

Figure 9. Enhanced LLVM-IR for a write in an array of
integers allowing Polly to compute affine functions.

4.1.3 Two Dimensional Arrays And Arrays Of
Objects

We currently do not support optimization of loop nests in-
cluding accesses to two dimensional arrays and arrays of
objects. We focus on single dimension arrays of primitive
types. Regarding two dimensional arrays of primitive types,
this is not a strong concern because JavaScript programmers
are used to avoid them and polyhedral tools are capable
of recovering dimensions [8, 11]. JavaScript programmers
already linearize arrays because JavaScript engines are far
more efficient with single dimension arrays leading to a
single memory load compared to multi dimensional ones
as described in Section 3.1.3. Our example function in Fig-
ure 1 and the matmul function in Figure 7 show examples
of two dimensional arrays that have been linearized by the
programmer.

A possible solution to handle two dimensional arrays and
arrays of objects would be to modify the memory allocator
to force them to be contiguous. This would require either
a new construct in the language, or new analyses during
profiling ensuring that the engine can reallocate the array
in a contiguous way. That would also imply to modify the
garbage collector to maintain this property even if the arrays
are copied in another location of the heap.

3See the LLVM documentation to understand why there is an additional 0
parameter before the index one https://llvm.org/docs/GetElementPtr.html#
what-is-the-first-index-of-the-gep-instruction.
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An other possible solution consists in studying how static
analyses developed for other languages [21] without native
multi dimensional arrays could be applied to JavaScript.

4.1.4 Alias Analysis
In the context of JavaScriptCore, the alias problem is al-
ready mitigated by custom analyses. The main idea already
implemented in the engine is type-based analysis relying
on the JavaScript objects type hierarchy. In the LLVM-IR
code generated by the engine, the object oriented nature of
JavaScript has been removed. This is a requirement, since
LLVM-IR has no such high level concepts. Nevertheless, be-
cause LLVM is not only used to compile low level languages
such as C but also object oriented languages, mainly C++,
the LLVM-IR provides mechanisms to allow specifying high
level typing information. This is done through a particular
type of metadata information. This metadata specifies both
a type hierarchy in the form of a tree and the type being
accessed by each store and each load instruction. Based on
this information, LLVM provides alias analyses that can en-
sure that two memory operations will not access the same
address if they access different branches of the type tree.
The alias analysis problem is also mitigated by runtime

solutions proposed recently [1] and implemented in Polly.
The idea is to compute at compile time, required conditions
ensuring that pointer based accesses will not alias. Two ver-
sions of the code guarded by a check implementing these
conditions are then generated.

4.2 Solution To Issue 2 : Parallel Speculation Failure
To bypass this problem we are currently investigating two
solutions. The first one proposed recently in [17] leverages so
called idempotent regions, and the second one uses rollbacks
and checkpoints.
An idempotent code region [3] is a region that can be in-

terrupted in the middle of its execution and then re-executed
from the beginning while still providing the same result. In
other words, the region does not modify its inputs. A matrix
multiplication producing a resulting array is an example of
an idempotent region. Exploiting this property, a JavaScript
polyhedral optimizer would only handle idempotent loops
to be able to re-execute them with the correct sequential
non speculative layer. This solution is simple and has only
a small cost consisting in detecting idempotent regions. On
the other hand, not all loops can be parallelized with this
solution.
The rollback solution implies to make a checkpoint of

the memory state before starting parallel execution of a
loop. When a speculation failure is triggered, the memory
state is first restored from the checkpoint. Then, as in the
previous solution, the execution starts again with the correct
sequential non speculative layer. In our polyhedral context,
the cost of saving the memory state to create the checkpoint
could be greatly reduced. Relying on proposals of speculative

just-in-time polyhedral optimizers [10], we could exploit the
affine memory accesses functions to only save the part of the
memory which is known to be updated by the loop nest. The
main difference with existing work is that the speculation
does not concern the polyhedral nature of the loop, but the
removal of JavaScript dynamism. Nevertheless, the solution
of only saving what would be modified is the same.

For both solutions, when a speculation failure is triggered
in one of the parallel thread, our engine must jump to a cus-
tom handler. This handler stops all threads and re-executes
the loop from the beginning using the non speculative se-
quential layer. For the rollback based solution, the custom
handler must also restore the memory state.

4.3 Solution To Issue 3 : Gain Versus Overhead
Our proposal first relies on the layered architecture of the
JavaScript engine to ensure that spending time in polyhe-
dral optimization is acceptable. JavaScriptCore already has
a configurable cost model, which is based on the number
of bytecode instructions executed by a function and on the
number of invocations. This model ensures that functions op-
timized by the FTL JIT layer are functions where the program
spends most of its execution time.

Secondly, relying on Polly, our proposal also leverage an-
other cost model. Polyhedral optimization, even in a static
context, must not be applied blindly because in some cases
it may hurt performance instead of improving it. As a con-
sequence, Polly includes its own cost model which checks
some conditions on the loop nest before optimizing it. Thus,
Polly will not even try to optimize the LLVM-IR code gen-
erated by our JavaScript engine if it believes that it will not
benefit from polyhedral optimization.

Last, integrating a state-of-the-art JavaScript engine such
as JavaScriptCore allows us to benefit from the parallel com-
pilation mechanisms that are already at work. In JavaScript-
Core, the generation of the LLVM-IR and the compilation of
this code representation to native code is already achieved by
a parallel thread. As a consequence, the additional time spent
by Polly to perform polyhedral optimization only delays the
time when the optimized native code is ready for execution.

5 Prototype Implementation
Our implementation is a modified version of JavaScriptCore
including the solutions proposed in Section 4 and including
the run of Polly passes in the FTL JIT layer. The implemen-
tation regarding non SESE region and parallel speculation
failure as described in Section 4.1.1 and in Section 4.2 is not
yet completed. Nevertheless, as described in the next section,
this baseline prototype allows us to assess the validity of our
approach, at least on carefully chosen examples.
We also modified Polly for different purposes. First, we

added the support of the inttoptr instruction that caused
our matmul function to be rejected by Polly SCoP detection

8
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pass. This instruction is widely used by the engine to create
LLVM-IR pointers from constant locations known by the
FTL JIT compiler.

We also added the support of sext and trunc instructions
in Polly arrays delinearization algorithm. These instructions,
previously not handled by the algorithm, are widely used
by JavaScriptCore. This is related to the NaN boxing trick
used by the runtime to internally store JavaScript objects
and primitive types. Both of them are represented by a 64
bits value where the first bits indicate the type. For 32 bits
integers, a trunc instruction is required to remove these first
bits to get the effective 32 bits value.

6 Experimental Results
To assess the validity of the proposed solutions, we now
review preliminary results obtained with the matrix multi-
plication function shown in Figure 7. This function satisfies
the requirement of our implementation handling only single
dimension arrays of primitive types as stated in Section 4.1.3.
The matrices provided as parameters are single dimension
arrays which size is the number of elements in the matrix.

We ran the following experiments on a desktop machine
with an Intel XeonW3520 processor with four physical cores
and hyperthreading disabled. The machine is running Linux
4.4.0 and we used LLVM and Polly version 4.0.0.

Thanks to these modifications both on the LLVM-IR gen-
erated by JavaScriptCore and on Polly, Polly is able to handle
the loop of the matrix multiplication function. We run Polly
with only the --parallel option. Figure 10 shows that after
optimization, as reported in a pseudo code fashion by Polly,
the matrix multiplication loop has been made parallel and
tiled.

Regarding aliasing issues, Figure 10 shows that JavaScript
type based alias analysis has not been effective because Polly
generates a runtime test guarding the execution of the paral-
lel version of the code. Because the three matrices provided
as parameters to the matmul have the same type, i.e., arrays,
it is impossible, looking at their type only, to ensure that
they will not alias.

The content of the alias checks also reveals that Polly was
able to recover the two dimensional nature of the memory
accesses in the three matrices, internally called Mem5, Mem6
and Mem7 by Polly.
Because our prototype implementation is not yet com-

pleted regarding the handling of speculation failure as stated
in Section 5, we must ensure that no such failure can happen
in our evaluation. To that end, we use input matrices guar-
antying that the matmul function always write inside the
bounds of the result matrix, that the result matrix does not
contain any hole and that integer operations never overflow.
To fairly evaluate our version of JavaScriptCore including
polyhedral optimization where blocks handling speculation
failure have been removed but not re-introduced, we created

if(
(&Mem6[p0-1][p1] <= &Mem5[0][0]
||
&Mem5[max(0,p2-1)][p1] <= &Mem6[0][0])

) &&
(&Mem7[max(0,p2-1)][p0] <= &Mem5[0][0]
||
&Mem5[max(0, p2-1)][p1] <= &Mem7[0][0])

){

#pragma omp parallel for
for(c0=0; c0<=floord(p2-1,32); c0+=1)
for(c1=0; c1<=floord(p1-1,32); c1+=1)
for(c2=0; c2<=floord(p0-1,32); c2+=1) {
for(c3=0; c3<=min(31,p2-32*c0-1); c3+=1)
for(c4=0; c4<=min(31,p1-32*c1-1); c4+=1)
for(c5=0; c5<=min(31,p0-32*c2-1); c5+=1)
Stmt_68(32*c0+c3, 32*c2+c5, 32*c1+c4);

}

else {
original code version

}

Figure 10. Optimized code generated by Polly for the matrix
multiply function in Figure 7. Tiling and parallelization have
been performed and a runtime check is required for aliasing
issues.

a modified version of the classic JavaScriptCore where these
blocks are also removed.

Size of Execution time Execution time Speedup
left matrix without Polly (s) with Polly (s)

50x3000 0.08 0.06 1.33
500x3000 0.85 0.22 3.86
2000x3000 3.3 0.87 3.79

Figure 11. Speedups resulting from polyhedral optimization
for the matmul function with different matrices size.

Our benchmark calls the matmul function twice. The first
call is handled by the LLINT, the Baseline JIT and the DFG
JIT layers while the second one is handled by the FTL JIT
layer. Our implementation currently only support polyhedral
optimization for the next invocation of a function even if
JavaScriptCore supports layer switching inside a function
call. The benchmark is executed three times with different
sizes for the left matrix. In the three cases, the right matrix
size is 3000x300. Figure 11 reports the speedup obtained
on the second execution of the matmul function using four
threads, i.e, one thread on each physical core of the machine.
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From these results, it is clear that the benefit of perform-
ing polyhedral optimization depends on the amount of com-
putation performed by the code. Nevertheless, as soon as
matrices are large enough, the polyhedral optimization leads
to a speedup which is almost the number of threads. In this
benchmark, because our engine performs polyhedral opti-
mization in parallel of the first execution of the function,
the additional compile time required by Polly is hidden. Said
differently, it is far longer to execute the function with the
LLINT, the Baseline JIT and the DFG JIT layers than compil-
ing the function with the FTL JIT.

7 Related work
We now review existing research works that recently ad-
dressed the parallel execution of JavaScript programs.

River Trail [9] is an extension of the language allowing the
programmer to indicate to the JavaScript engine where par-
allelism can be exploited. It mainly provides an application
programming interface allowing to express data parallelism.
This is done through the addition of a new special JavaScript
type called parallel array on which the programmer can ap-
ply parallel operations. River trail can be seen has a kind
of map reduce framework for JavaScript. Compared to the
goal pursued by the ongoing work presented in this paper,
programs source code must be changed to be used with River
Trail, and parallelization is not automatic.

More recently, additions towards concurrency in JavaScript
have been introduced in the language specifications [4]. The
main novelty is the capability to perform concurrent accesses
to the new SharedArrayBuffer type. The role of threads is
played by Web Workers in the browser environment. This
feature is already supported by JavaScriptengines and the au-
thors of JavaScriptCore started recently to investigate how
the thread concept could be added to JavaScript [18]. As
River Trail and compared to our proposal, these extensions
propose new constructs in the language and do not address
automatic parallelization.
Recently, Thread Level Speculation (TLS) systems have

been proposed in the context of JavaScript implementations.
Martinsen et al. [13] proposed to parallelize the execution of
different JavaScript functions by integrating standard TLS
mechanisms within the just-in-time compilation layer of
Google’s V8. Compared to our proposal, they cannot exploit
loop level parallelism because they only execute different
functions in parallel. TLS at loop level has also been pro-
posed [14]. Compared to us, this work adds a non negligible
speculation overhead. In addition to the JavaScript specu-
lation that must be handled by any JavaScript engine, such
systems must also dynamically check that the memory ac-
cesses performed in parallel by the different threads do not
break the sequential semantics of the program.

Finally, the closest work to our proposal, is also an exten-
sion of a JavaScript engine for automatic loop paralleliza-
tion [17]. Our proposal is an extension of this work which
only focused on so called DOALL loops. A DOALL loop does
not exhibit any dependency between its iterations. Using
the polyhedral model, thanks to its precise representation of
loop dependencies, our goal is to parallelize more loops and
perform complex optimizing loop transformations.

8 Conclusion
We have presented the challenges and solutions to make
polyhedral optimization work on JavaScript programs. We
integrated our proposal in the last layer of the JavaScriptCore
engine which uses LLVM to generate efficient native code.
We have modified the JavaScript engine to add more infor-
mation about loop nests and we integrated Polly to produce
optimized parallel code.
Our preliminary results demonstrate that polyhedral op-

timization could be beneficial in the context of JavaScript
programs. We now need to complete the implementation of
the mechanism handling parallel speculation failure. This
development is a large amount of work in the context of a
production engine such as JavaScriptCore. Its performance
comes at the price of a very large code base containing a
lot of corner cases. We also need to perform solid bench-
marking experiments to confirm with numbers, at least on
some standard benchmarks and applications, that polyhedral
transformations are effective in a JavaScript engine. Look-
ing at the benchmarks and applications from previous stud-
ies [14, 17], we are confident that polyhedral optimization
will be beneficial.

The techniques presented in this paper are specific to the
JavaScript language. Other dynamic languages like Python
or Ruby are not direct targets of this work. Nevertheless, we
believe that it could be very interesting to study polyhedral
opportunities also for these languages.

Regarding the perspective opened by this work, we believe
that it could be very interesting and challenging to merge
polyhedral speculation as proposed in static languages [11]
with JavaScript speculation. This polyhedral speculation con-
cerns the memory accesses performed by loop nests that
cannot be statically defined as SCoPs. At runtime, thanks to
memory profiling, the loop nests conform to SCoPs can be
optimized by polyhedral tools. In the context of JavaScript,
we want to study how to merge memory accesses profiling
in the first layer of the engine with the JavaScript profiling
mechanisms already at work. From this memory profiling
information, the JavaScript engine would construct mem-
ory accesses models. Finally, these models would be used in
the last layers to perform polyhedral optimization on code
that cannot be identified as SCoPs by tools like Polly or to
perform other parallelization transformations.
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