
Load Balancing with Polygonal Partitions
Aniket Shivam

Department of Computer Science
University of California, Irvine, USA

aniketsh@uci.edu

Priyanka Ravi
Department of Computer Science

University of California, Irvine, USA
priyanr1@uci.edu

Alexander V. Veidenbaum
Department of Computer Science

University of California, Irvine, USA
alexv@ics.uci.edu

Alexandru Nicolau
Department of Computer Science

University of California, Irvine, USA
nicolau@ics.uci.edu

Rosario Cammarota
Qualcomm Research, San Diego, USA

ro.c@qti.qualcomm.com

Abstract
In this work we propose a new dynamic scheduling tech-
nique for DOALL loops with non-uniform reuse patterns.

Dynamic scheduling of a DOALL loop with non-uniform
reuse patterns partitions the loop into chunks of iterations
that exhibit poor locality at runtime - dynamic scheduling al-
gorithms do not factor in locality. This results in suboptimal
completion time even if the load imbalance is bounded by
the chosen scheduling algorithm, e.g., guided self-scheduling.
Partitioning a DOALL loop for maximizing locality produces
chunks of sizes that depend on the reuse patterns in the loop
and do not account for load imbalance at runtime. Hence,
even though locality in each chunk is maximized, the per-
formance achieved during parallel execution is suboptimal.

The proposed technique starts with partitioning a DOALL
loop with a polyhedral framework to create partitions that
maximize locality, and then re-tiles these partitions to achieve
load balance at runtime. The proposed re-tiling and schedul-
ing technique shows a performance speedup up to 2x against
PLuTo.

Keywords Polygonal Partitions, Shape and Size Indepen-
dent Tiling, Workload Balancing

1 Introduction
Dynamic scheduling techniques for DOALL loops aim to
allocate chunks of iterations to parallel computing cores in
ways tominimize load imbalance[9, 12]. Dynamic scheduling
techniques can be classified as follows: (a) forward looking;
(b) profile-based; (c) adaptive. In forward looking techniques
[6, 9, 12], given the number of iterations and the number of
computing cores the sequence of chunks can be allocated
ahead of the loop execution. For example, given a number
of iterations N = 1000 and a number of parallel cores P = 4,
then the guided self-scheduling[12] will generate the follow-
ing set of 21 chunks: C = {c1 = 250, c2 = 188, c3 = 141, c4 =

IMPACT 2018

January 23, 2018, Manchester, United Kingdom
In conjunction with HiPEAC 2018.
http:// impact.gforge.inria.fr/ impact2018

106, c5 = 79, c6 = 59, c7 = 45, c8 = 33, c9 = 25, c10 = 19, c11 =
14, c12 = 11, c13 = 8, c14 = 6, c15 = 4, c16 = 3, c17 = 3, c18 =
2, c19 = 1, c19 = 1, c20 = 1, c21 = 1}, in which c1 includes
iteration 0 to 249, c2 includes iteration from 250 to 437 etc.
in the lexicographic order. Techniques such as guided-self
scheduling guarantee tight bounds on load imbalance, e.g.,
within one minimum chunk of iterations (1 in the example
above), when the standard deviation on the average iter-
ation execution time is constant. Profile-based techniques,
e.g., [8] perform a step of profiling to partition the loop in
a way to cope with variability in the execution time due to
caching effects and irregular shape of the iteration space, e.g.,
triangular iteration spaces in matrix transposition and lower-
upper decomposition - even in this case, iterations within a
chunk execute in the lexicographic order. Finally, adaptive
techniques profile chunks completion time at run-time to
establish the size of the next chunk to form and schedule
[1, 10], or it finds a more suitable set of static chunks across
DOALL loop executions [3, 4].
Dynamic scheduling techniques do not factor in infor-

mation about locality. In DOALL loops with uniform reuse
patterns, loop tiling finds the size of tiles with uniform shape
- e.g., rectangles or parallelograms, to improve locality. Then
chunks of tiles can scheduled according to a dynamic schedul-
ing algorithm to bound load imbalance at run-time and max-
imize locality. However, in DOALL loops with non-uniform
reuse distance, traditional loop tiling does not help with im-
proving locality, and other techniques that partition the loop
by following the reuse patterns in the loop need to be applied
to ensure that locality is maximized in each tile [11, 14].

In this work we propose a new dynamic scheduling tech-
nique for DOALL loops with non-uniform reuse patterns.
Techniques to partitions DOALL loops with non-uniform
reuse patterns use the polyhedral framework [11, 14] to re-
order the iterations and arrange them in chunks with max-
imum locality. However, the shape of such chunks is non-
uniform and unique to the DOALL loop - as the partitioning
algorithm follows the reuse pattern in the loop. Hence, the
sizes and shape of the polygons do not conform with the

1

http://impact.gforge.inria.fr/impact2018

IMPACT 2018 , January 23, 2018, Manchester, United Kingdom Shivam et al.

schedule of known scheduling algorithms, e.g., guided self-
scheduling. Hence, dynamic scheduling of such polygons
produces load imbalance during parallel execution.

Shape and size of the the polygonal partitions are created
for maximizing data locality by capturing data reuse patterns,
which vary across the entire iteration space, and with the
size of the iteration space. For example, there exist partitions
with iterations with no data reuse, other partitions with iter-
ations with data reuse with one or more than one iterations.
The application of a dynamic scheduling algorithm, which
is agnostic of the properties of the polygonal partitions, ulti-
mately results in suboptimal parallel execution time as the
size of the partitions (chunks, in the terminology of dynamic
scheduling), as locality is compromised. Furthermore, since
the partition sizes do not adhere to the schedule of any of
the dynamic scheduling algorithms, e.g., [6, 9, 12], executing
each partition on specific thread creates massive workload
imbalance.
In this work, we propose re-tiling, a technique for sched-

uling non-uniform partitions such that parallel execution
load imbalance is bounded and each chunk of execution pre-
serves a certain amount of locality. The proposed technique
provides scalability for processors with many cores. The
heuristics for the scheduling of these re-tiled partitions is
based on the careful analysis of the sizes and scaling factors
of each type of the generated polygonal tiles. The proposed
technique is implemented using the integration of source-
to-source optimizer PLuTo[2] with Polylib library1.

The remainder of the paper is organized as follows. Section
2 describes the approach to define the optimal scheduling
strategy. Section 3 discusses the experiments and their re-
sults. Section 4 presents and comments on prior and related
work. Finally, Section 5 summarizes the benefits of the tech-
nique.

2 Orchestrating Polygonal Partitions
In this section, we first give an overview of the loop trans-
formations to generate polygonal partitions. Then, we jus-
tify the need for workload balancing when executing these
polygonal tiles across multiple threads. Lastly, we explain the
technique and the scheduling strategy to balance workload,
which also allows the parallel execution to scale with the
workload and the number of cores.

2.1 Polygonal Partitioning Technique
The technique for generating polygonal partitioning of iter-
ation space[14] can be summarized as follows:

Each instance of a statement enclosed in a loop-nest may
be defined by an iteration vector I for the multi-dimensional
iteration space. If the enclosed statement accesses the data in
a multi-dimensional array A, the exact location of the data
(A(I)) can be calculated as: A(I) = R × I + r. R (reference

1Polylib - A library of polyhedral functions, http://www.irisa.fr/polylib/

matrix) is based on the coefficient of the iteration variables
in the subscript representing the data access inA. Whereas, r
(offset vector) represents the constant from the subscript. For
a D-dimensional arrayA, with N being the depth of the loop-
nest, R will be a D ×N matrix and r will be a D-dimensional
vector identifying an offset in each dimension. For exam-
ple, consider a loop-nest of depth 2 with a single statement
X [i, j] = Y [i, i + j + 3] + Y [i + j, j]. For reference Y[i,i+j+3],

R will be a 2 × 2 matrix
(
1 0
1 1

)
. Each row of R represents

the projection of the reference along each dimension of the
array, i.e., the value of subscript in each dimension (i and
i+j+3). The column represents the coefficient associated with
each iteration variable (i and j) of the loop-nest. The offset

vector r is a column vector,
(
0
3

)
, representing the offset

for reference along every dimension, i.e., the constants in
the subscript. An iteration I can be substituted using a col-
umn vector (i j). Therefore, each reference to the array is an
unique combination of (R, r). The pair can be represented
as Γ to compute the image of a polyhedron and locate the
accessed data point by an iteration using Γ = R × I + r . Us-
ing two different functions Γα for Y [i, i + j + 3] and Γβ for
Y [i + j, j], a temporal reuse relation T can be formulated
such that substituting a particular iteration (Iα) in the rela-
tion yields another iteration (Iβ) that reuses the same data.
In the above statement, iteration (2,1) using Γα have reuse
with iteration (-4,6) using Γβ .

For a pair of references represented by Γα and Γβ to an
array in a statement in the loop-nest, the primary step is to
partition the iteration space (D) into four sets denoted by
L, D1, D2 and C.
• D1 iterations reference the data using Γα that is only
accessed by Γβ of another iteration.
• D2 iterations reference the data using Γβ that is only
accessed by Γα of another iteration.
• C contains iterations that reference data using Γα and
Γβ which are referenced in other iterations too.
• The rest of the iterations in D i.e. the iterations that
reference the data which is not referenced by another
iteration are denoted by L. Hence, D = D1 ∪ D2 ∪ C
∪ L.

Partitions (DCk and Ck) of iterations are generated to max-
imize the temporal locality based on the reuse pattern, as
shown in figure 1. The partitioning algorithm generates the
partitions at the kth step as follows:

• DCk partitions:D1 iterations that link to the chain of
k − 1 C iterations and at the end link to a D2 iteration
by relation Tk .
• Ck partitions: The remaining C iterations that are
linked to themselves by Tk forming a cyclic-link of
kC iterations.

2

Load Balancing with Polygonal Partitions IMPACT 2018 , January 23, 2018, Manchester, United Kingdom

Figure 1. Set Representation and Classification of iterations
for DC1, C1, DC2, C2 and DC3.

However, the algorithm needs to be halted at an optimal
point, which has been described as follows in prior art [14]:
• If after the kth repetition, the entire iteration space
(D) is completely partitioned.
• If the value of kmax is too high, then it is critical to find
an optimal value of k to protect gained speedup from
increasing control statement overhead for managing
the partitions. From the experimental results, it was
determined that the algorithm must be halted if the
number of iterations in generated partitions is below
625.

The application of the algorithm is extended to the Multi-
Reference statements using following rules:

1. Eliminate pair of references that link iterations to them-
selves by either T or T 2.

2. Eliminate pair of references that create a single parti-
tion for the entire iteration space.

3. Select the best-pair based on the amount of reuse in
the partitions using the reuse count function:

Reuse (Γα , Γβ) =
k∑
i=1

i × |DC0i | +
k∑
i=1

i × |C0i | (1)

Therefore, to exploit reuse while distributing workload
across multiple threads, iterations belonging to a certain type
of partition (either a DCk type or a Ck type) and accessing
the same data need to be executed on the same thread.L type
of partition consists of independent iterations with no such
reuse of data, hence its iterations can be either distributed
equally across dispensable threads or the iterations can be
executed together, considering the L as a partition.

2.2 Determining the Size and Scaling factor of a
Partition

In case study 1 - two dimensional irregular reuse pattern (List-
ing 1), later analyzed in section 3.1: On scaling the dataset,

f o r (i = −N; i <= N ; i ++) {
f o r (j = −N; j <= N ; j ++) {

X[i] [j] = Y [i] [i + j +3] + Y [i + j] [j] ;
}

}
Listing 1. Loop-Nest with 2-D Non-Uniform Reuse

the number of iterations in partition C6 increases at the same
rate as the dataset, whereas DC1 and DC4 grow at half the
rate of the dataset (Table 1). For example, on increasing N
from 1024 to 2048, the iteration space/dataset is increased 4
times, since the loop bounds are -N to N for both inner and
outer loop. C6 will grow 4 times (same rate as the dataset)
andDC4 will grow 2 times (half the rate of the dataset). The
size of DC3 remains constant for any dataset. The size of
L partitions does not affect the process the workload bal-
ancing since these iterations have no data reuse and can be
computed independently of any other iteration in the space.
Table 2 shows the scale of irregularity in the iteration count
per partition, which eventually causes workload imbalance.
The loop bounds for the partitions that scale are dependent
on the size of the iteration space and for the ones that do not
scale are based on a constant value. This is the reason for
this extent of irregular scaling of the partitions. The scaling
factors too, vary from partition to partition depending on the
number of faces of the polyhedron, representing a partition,
that are dependent on the iteration space size.

2.3 Parallel Execution of the Partitions
2.3.1 Re-tiling
Inconsistent geometries of the polygonal tiles for each in-
dividual partition can be noticed in figure 2. This property
makes it hard to find a generalized solution for splitting every
polyhedral geometry into chunks with equal workload.

Partition Approx. Scaling Factor w.r.t. Dataset
C6 1x

DC1, DC4 0.5x
DC3, C1 0x
Table 1. Irregular scaling of partitions based on type

Size |DC4| |C6| Ratio (|C6|/|DC4|)
128 1860 47250 26
256 3780 192786 52
512 7620 778770 103
1024 15300 3130386 205
2048 30660 12552210 410
4096 61380 50270226 820

Table 2. Iteration counts in C6 and DC4 partitions

3

IMPACT 2018 , January 23, 2018, Manchester, United Kingdom Shivam et al.

l bp = c e i l d (−N− 3 1 , 3 2) ;
ubp=−1;
pragma omp p a r a l l e l f o r s ch edu l e (dynamic) p r i v a t e (lbv , ubv , t2 , t3 , t 4)
f o r (t 1 = l bp ; t1 <=ubp ; t 1 ++) {

f o r (t 2 =0 ; t2 <=min (f l o o r d (N−4 ,32) , − t1 − 1) ; t 2 ++) {
f o r (t 3 =max(−N, 3 2 ∗ t 1) ; t3 <=min (3 2 ∗ t 1 +31 , −32 ∗ t2 − 4) ; t 3 ++) {

l b v =32 ∗ t 2 ;
ubv=min (3 2 ∗ t 2 +31 ,− t3 − 4) ;
f o r (t 4 = l bv ; t4 <=ubv ; t 4 ++) {

x [t 3] [t 4] = y [t 3] [t 3 + t 4 +3] + y [t 3 + t 4] [t 4] ;
x[− t4 −3] [t 3 + t 4 +3] = y[− t4 −3] [t 3 +3] + y [t 3] [t 3 + t 4 + 3] ;
x[− t3 −t4 −6] [t 3 +3] = y[− t3 −t4 −6][− t 4] + y[− t4 −3] [t 3 + 3] ;
x[− t3 −6][− t 4] = y[− t3 −6][− t3 −t4 −3] + y[− t3 −t4 −6][− t 4] ;
x [t4 −3][− t3 −t4 −3] = y [t4 −3][− t3 −3] + y[− t3 −6][− t3 −t4 − 3] ;
x [t 3 + t 4][− t3 −3] = y [t 3 + t 4] [t 4] + y [t4 −3][− t3 − 3] ;

}
}

}
}

Listing 2. Re-Tiled code for C6 partition

I

J

Figure 2. Polygonal Partitions for Case Study 1

Since it is not feasible to find equal splitting for every kind
of partition, we go back to basic rectangular (re)tiling of the
polygonal tiles. For re-tiling a type of partition, we consider
each partition as an independent iteration space and since we
can derive index for iterations in the same type of partitions
as shown in the loop body of listing 2, re-tiling is required

only for one partition. From here forward, partitions will
refer to the polygonal partitions and tiles will refer to the tiles
generated after re-tiling a polygonal partition. The benefit
of generating rectangular tile is that during execution only a
block of data is cached that could fit in the low level caches
like L1-cache or L2-cache. If the outermost dimension of
a partition is parallelized without tiling, data required for
computation for an iteration overflows the capacity of the
cache and hence locality is lost even with code optimizations.
An important benefit of re-tiling is that these tiles allow

scalability of distributing partitions while keeping the local-
ity optimizations intact. But rectangular tiling over the polyg-
onally tiled code (with enabled optimizations like wavefront
execution) presents various challenges such as loop-nests
with MIN() and MAX() calls in both dimensions, example
DC4 partitions in figure 2.

2.3.2 Splitting Partitions across the Outermost Loop
The concepts of splitting a partition from [14] and split do-
mains from Razanajato et. al.[13] contribute towards reduc-
ing the control statement overhead. The latter work con-
tributes to this by finding chambers that reduce the over-
head and getting rid of MIN()/MAX() functions in the loop
bounds. Getting rid of these functions also make loop bounds
for some partitions turn into Static Control Parts or SCoPs
on which tiling can be applied using PLuTo. In cases where
it is not possible to transform loop bounds into SCoPs, we
parallelize the outer-most loop using OpenMP directives.

4

Load Balancing with Polygonal Partitions IMPACT 2018 , January 23, 2018, Manchester, United Kingdom

Listing 2 presents an illustration of re-tiled polygonally
tiled code for C6 type of partition. We add the schedule di-
rective for OpenMP since along the outermost dimension
of the partition, the number of tiles can vary as we move
along. To resolve this issue and balance workload inside the
partitions too, we dynamically schedule these tiles such that
the threads more or less execute similar number of re-tiles.

2.3.3 Tile Alignment along the Wavefronts
We also preserve the concept of wavefront execution from
[14] since it helps reduce, both, the control statement over-
head and the size of the generated code. Since the partitions
in a wavefront follow certain patterns, as seen in figure 5,
partitions can be coalesced under an outer loop that iterates
from one wavefront to the other.

2.3.4 Load Balancing across Partitions
Scheduling the re-tiled code requires attention to an impor-
tant factor i.e. each tile in the re-tiled code performs different
number of operations/computations based on the type of
polygonal partition. This issue is handled by computing one
type of partition across all threads at a time. The illustration
of this scheduling of partitions can be seen in Listing 3. This
keeps the workload across threads balanced. As discussed
earlier, the workload balance inside partitions is handled by
dynamic scheduling.

3 Experiments and Analysis
Experiments were performed on Intel Xeon Phi Knights
Landing CPU 7210 @ 1.30GHz (64 cores, 1MB L1-cache,
32MB L2-cache). The re-tiling on the polygonally tiled code
was performed using PLuTo[2] with following flags: --tile
--parallel --noprevector. For the performance analysis
of the kernels described later in the section, the polygonally
tiled code with re-tiling was compared against PLuTo tiled
code (Tile-Size = 32x32). Both codes were compiled with Intel
ICC v18.0.0 with following flags: -O3 -xHost -fopenmp and
executed with following affinity settings: OMP_PROC_BIND =
spread and OMP_PLACES = threads. The comparison is not
performed against [14] since the strategy proposed in that
work doesn’t scale to the extent which is evaluated in this
work. The two case studies represent two different classes
of loop-nests exhibiting non-uniform reuse pattern. The ker-
nels are tested with three different dataset sizes (N), each
with different timing loop (T) configuration: Small Dataset
(N=1024, T=1000), Medium Dataset (N=2048, T=400) and
Large Dataset (N=4096, T=100).

3.1 Case Study 1: Two dimensional irregular reuse
pattern

In this kernel (Listing 1), the reuse pattern varies across
both dimensions of the iteration space. In figure 3, partitions
belonging to the same type are represented with the same

Figure 3. Re-Tiling of Polygonal Partitions for Case Study 1

color. Each tile in the figure represents the re-tiling of the
partition. White space represents void space with no iter-
ations. L partitions are not tiled since they have no reuse
with any other iteration and hence each such iteration can
be executed irrespective of any other iteration in the space.
The performance improvement can be seen in figure 6a. The
speedup reaches up to 2x over PLuTo tiled code.

Since the iterations in the partitions exhibiting same reuse
pattern are linked by the temporal reuse relation T , we can
generate code to compute all linked iteration in the loop
body of a partition. As shown in Listing 2, for computing
all iterations in C6 partitions, only the loop-nest computing

#pragma omp p a r a l l e l f o r s ch edu l e (dynamic)
Loop−Nest : Re− t i l e d C6 p a r t i t i o n s
#pragma omp p a r a l l e l f o r s ch edu l e (dynamic)
Loop−Nest : Re− t i l e d DC4 p a r t i t i o n s
#pragma omp p a r a l l e l f o r s ch edu l e (dynamic)
Loop−Nest : Re− t i l e d DC3 p a r t i t i o n s
#pragma omp p a r a l l e l f o r s ch edu l e (dynamic)
Loop−Nest : Re− t i l e d DC1 p a r t i t i o n s
#pragma omp p a r a l l e l f o r s ch edu l e (dynamic)
Loop−Nest : Re− t i l e d C1 p a r t i t i o n s
#pragma omp p a r a l l e l f o r
Loop−Nest : L p a r t i t i o n s
Listing 3. Scheduling pattern using OpenMP directives for
Case Study 1

5

IMPACT 2018 , January 23, 2018, Manchester, United Kingdom Shivam et al.

C06 is re-tiled and thereafter the index for iterations having
data reuse in C16 , C26 , C36 , C46 and C56 is derived (in the same
order in the loop body). This process of index derivation
for iterations having data reuse can be performed for all
partitions in this kernel without increasing size of code too
much, since no more than 6 iterations can be linked by the
temporal reuse relation.
The result of improving data locality optimization i.e.

polygonal partitions can be seen in figure 4. L2 Hit Rate per-
centage, gathered using Intel Vtune Amplifier 2018, shows
the improvement in data reuse at L2-cache level.

Small Dataset Medium Dataset Large Dataset
0

20

40

60

80

100

Case Study 1 (64 threads)

L2
H
it
Ra

te
(%
)

PLuTo
Polygonal+Retile

Figure 4. Improvement in Cache Locality

3.2 Case Study 2: One dimensional irregular reuse
pattern

In the following kernel (Listing 4), the reuse pattern only
varies across one-dimension, hence contributing towards
regularity or similarity between the generated partitions.
f o r (i = −N; i <= N ; i ++) {

f o r (j = −N; j <= N ; j ++) {
X[i] [j] = Y [i] [j] + Y [i] [i + j +N] ;

}
}

Listing 4. Loop-Nest with 1-D Non-Uniform Reuse

The illustration of the effects of re-tiling the polygonal
partitions while preserving the wavefront execution can be
seen in figure 5. In this kernel too up to 2x speedup can be
seen over PLuTo tiled code (figure 6b).
The code generated for this kernel is executed in wave-

fronts so that to reduce control statement overhead and
reduce the size of code. Since in this case the partitions be-
ing created keep on reducing in size as we moved along

Figure 5. Re-Tiling of Polygonal Partitions for Case Study 2

the −I direction, we stop generating partitions as soon as
the iteration count in the partitions is reduced below 625,
same as proposed in [14]. The rest of iteration are executed
as part of the C partition. As we move along −I direction
the distance between iterations having data reuse keep on
reducing resulting in closer, smaller and increasing number
of partitions of similar type.

4 Prior Art
Distributing equal workload across a many core processor
is challenge, especially when the amount of computation
across the iteration space is not homogeneous. For a loop
executing a non-uniform iteration space, load balancing re-
quires careful partitioning of the loop. Static loop scheduling
is not successful since only the outermost dimension of the
loop is evenly partitioned and generated chunks are non-
uniform. To solve this problem, scheduling approaches were
proposed in [5, 7] that are based on profiling but require
(re)analysis if the workload or dataset is changed.

Dynamic scheduling strategies provide a solution here
since they schedule either iterations or chunk of iterations
during runtime to the an idle processor. Dynamically sched-
uling large chunks of iteration create load imbalance whereas
scheduling small chunks require more synchronization over-
head. Different dynamic scheduling strategies manage chunk
sizes to trade-off load balancing and scheduling overhead.
Guided Self Scheduling (GSS)[12] which uses techniques
like implicit coalescing of the loops followed by the schedul-
ing where the size of chunks assigned to the processors are
decreasing with time.

6

Load Balancing with Polygonal Partitions IMPACT 2018 , January 23, 2018, Manchester, United Kingdom

32 64 128

0.5

1

1.5

2

Threads

Sp
ee
du

p
ov
er

PL
uT

o
til
ed

co
de

Small Dataset Medium Dataset Large Dataset

(a) Case Study 1: Performance

32 64 128

0.5

1

1.5

2

2.5

Threads

Sp
ee
du

p
ov
er

PL
uT

o
til
ed

co
de

Small Dataset Medium Dataset Large Dataset

(b) Case Study 2: Performance

Figure 6. Speedup of Polygonal Tiles after Re-Tiling over
PLuTo tiled code

Although the strategies mentioned above are very effec-
tive in many applications, they do not fit the requirement of
polygonal tiles. Reason being the complex geometries of the
partitions and also the complex loop bound calculations that
do not allow precise static analysis.

5 Conclusions
This work presents an extension for scaling the execution
of irregular polygonal tiles across multiple threads without
compromising the data locality focused optimizations. This
approach balances the workload across threads for the polyg-
onal tiles by distributing the re-tiled partitions evenly across
all available threads. The re-tiling code faces certain chal-
lenges due to the complex loop bounds which are addressed
in the paper. Then, strategic scheduling of these partitions

is performed to reduce the synchronization overheads in-
curred by OpenMP implementations. Experimental results
show that re-tiling allows scaling and workload distribution
of the polygonally tiled code with significant performance
improvements.

References
[1] H. Bast. 2000. Provably optimal scheduling of similar tasks. Ph.D.

Dissertation. Saarland University, Saarbrücken, Germany.
[2] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.

2008. A Practical Automatic Polyhedral Program Optimization System.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[3] J Mark Bull. 1998. Feedback guided dynamic loop scheduling: Algo-
rithms and experiments. In European Conference on Parallel Processing.
Springer, 377–382.

[4] Rosario Cammarota, Alexandru Nicolau, and Alexander V Veiden-
baum. 2012. Just in time load balancing. In International Workshop on
Languages and Compilers for Parallel Computing. Springer, 1–16.

[5] Ricolindo L. Cariño and Ioana Banicescu. 2008. Dynamic load balancing
with adaptive factoring methods in scientific applications. The Journal
of Supercomputing 44, 1 (01 Apr 2008), 41–63. https://doi.org/10.1007/
s11227-007-0148-y

[6] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. 1992.
Factoring: A Method for Scheduling Parallel Loops. Commun. ACM
35, 8 (Aug. 1992), 90–101. https://doi.org/10.1145/135226.135232

[7] A. Kejariwal and A. Nicolau. 2005. An Efficient Load Balancing Scheme
for Grid-based High Performance Scientific Computing. In The 4th
International Symposium on Parallel and Distributed Computing (IS-
PDC’05). 217–225. https://doi.org/10.1109/ISPDC.2005.14

[8] Arun Kejariwal, Alexandru Nicolau, Utpal Banerjee, Alexander V.
Veidenbaum, and Constantine D. Polychronopoulos. 2009. Cache-
aware Partitioning of Multi-dimensional Iteration Spaces. In Pro-
ceedings of SYSTOR 2009: The Israeli Experimental Systems Confer-
ence (SYSTOR ’09). ACM, New York, NY, USA, Article 15, 12 pages.
https://doi.org/10.1145/1534530.1534551

[9] C. P. Kruskal and A. Weiss. 1985. Allocating Independent Subtasks on
Parallel Processors. IEEE Transactions on Software Engineering SE-11,
10 (Oct 1985), 1001–1016. https://doi.org/10.1109/TSE.1985.231547

[10] Steven Lucco. 1992. A Dynamic Scheduling Method for Irregular
Parallel Programs. In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation (PLDI ’92). ACM,
New York, NY, USA, 200–211. https://doi.org/10.1145/143095.143134

[11] Benoît Meister, Vincent Loechner, and Philippe Clauss. 2000. The poly-
tope model for optimizing cache locality. Technical Report. Technical
Report RR 00-03, ICPS-LSIIT.

[12] C. D. Polychronopoulos and D. J. Kuck. 1987. Guided Self-scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers. IEEE
Trans. Comput. 36, 12 (Dec. 1987), 1425–1439. https://doi.org/10.1109/
TC.1987.5009495

[13] Harenome Razanajato, Vincent Loechner, and Cédric Bastoul. 2017.
Splitting Polyhedra to Generate More Efficient Code. In IMPACT 2017,
7th International Workshop on Polyhedral Compilation Techniques.

[14] Aniket Shivam, Alexandru Nicolau, Alexander V. Veidenbaum,
Mario Mango Furnari, and Rosario Cammarota. 2017. Polygonal It-
eration Space Partitioning. Springer International Publishing, Cham,
121–136. https://doi.org/10.1007/978-3-319-52709-3_11

Acknowledgments
This work was supported in part by NSF award XPS 1533926.

7

https://doi.org/10.1007/s11227-007-0148-y
https://doi.org/10.1007/s11227-007-0148-y
https://doi.org/10.1145/135226.135232
https://doi.org/10.1109/ISPDC.2005.14
https://doi.org/10.1145/1534530.1534551
https://doi.org/10.1109/TSE.1985.231547
https://doi.org/10.1145/143095.143134
https://doi.org/10.1109/TC.1987.5009495
https://doi.org/10.1109/TC.1987.5009495
https://doi.org/10.1007/978-3-319-52709-3_11

	Abstract
	1 Introduction
	2 Orchestrating Polygonal Partitions
	2.1 Polygonal Partitioning Technique
	2.2 Determining the Size and Scaling factor of a Partition
	2.3 Parallel Execution of the Partitions

	3 Experiments and Analysis
	3.1 Case Study 1: Two dimensional irregular reuse pattern
	3.2 Case Study 2: One dimensional irregular reuse pattern

	4 Prior Art
	5 Conclusions
	References
	Acknowledgments

