
Load Balancing
with

Polygonal Partitions
ANIKET SHIVAM
PRIYANKA RAVI

ALEXANDER V. VEIDENBAUM

ALEXANDRU NICOLAU

UNIVERSITY OF CALIFORNIA, IRVINE, USA

ROSARIO CAMMAROTA

QUALCOMM RESEARCH, SAN DIEGO, USA

1

Traditional Tiling vs Polygonal Tiling 2

Ø Single shape of tiles.
(not necessarily the size)

Ø Improves data locality for loop-
nests with uniform reuse pattern.

Ø Multiple tile sizes and shapes
based on reuse pattern.

Ø Improves data locality for loop-nests
with non-uniform reuse pattern.

Adapted from Bandishti, V., et al.: Tiling Stencil Computations to
Maximize Parallelism. In: SC ’12.

Varying
reuse
distances

Formulation of the Problem

• Walk-through example:

for (i = -N; i <= N; i++)
for (j = -N; j <= N; j++)

X[i,j] = Y[i,i+j+3] + Y[i+j,j];

• Representation of the references to characterize the reuse pattern:

Reference α = (i, i+j+3)

Reference β = (i +j, j)

𝜞i,i+j+3 = 1		0
1		1 𝐼 + 03 and 𝜞i+j,j = 1		1

0		1 𝐼 + 00

3

Formulation of the Problem
• Deriving the other iteration reusing the same data:

𝜞α= 𝜞β ⇔ RαIα + rα = RβIβ + rβ
• Temporal reuse relation:

𝑹
β
(𝟏𝑹αIα + 𝑹

β
(𝟏(rα− rβ) = Iβ ⇔ TαβIα + tαβ = Iβ

T =	(T	,	t)

• For the example:

T = 0		 − 11							1 and t = −3			3
• To find iteration reusing same data as (2, 1):

 0		 − 11							1
𝟐
𝟏 + −3			3 	 = −𝟒

			𝟔

4

Partitioning Technique
u Partitioning the iteration space (D) in four sets

using two references:

• D1 iterations share the data used by 𝚪𝛂.

• D2 iterations share the data used by 𝚪β.

• C iterations reference data using 𝚪𝛂 and 𝚪β
which are referenced in other iterations.

• L iterations have no reuse.

• Hence, D = D1∪ D2∪ C ∪ L.

5

Set Representation of the Classification

Partitioning Technique (contd.)

u After kth steps of the algorithm:

• DCk partitions: D1 iterations that link to k-1 C
iterations and at the end link to a D2 iteration.

• Ck partitions: The remaining C iterations that
are linked to themselves by T k.

6

Partitioning Technique (contd.)

u Halting condition for the algorithm:

a) If the entire iteration space (D) is completely

partitioned. (Tk = I)

b) If kmax is too high then find an optimal value of

k to protect gained speedup.

7

I

J

Adapted from Meister, B. et. al.: The Polytope Model for Optimizing
Cache Locality, Technical Report RR 00-03, ICPS-LSIIT (2000)

Code Generation

u First strategy:

a) Scan the first partition of each type.

b) Generate subscripts for other partitions of similar
type using reuse relation: I, T (I), T 2(I), etc.

8

Index calculation for DC4 using reuse relation (T).

Scanning DC4
0 to compute index for

DC4
1, DC4

2, DC4
3, DC4

4

I

J

for (i =−N; i <= −4; i++) {
for (j = MAX(−N+3,−i−N−3); j <= −i−N−1; j++) {

X[i][j] = Y[i][i+j+3] + Y[i+j][j];
X[−j−3][i+j+3] = Y[−j−3][i+3] + Y[i][i+j+3];
X[−i−j−6][i+3] = Y[−i−j−6][−j] + Y[−j−3][i+3];
X[−i−6][−j] = Y[−i−6][−i−j−3] + Y[−i−j−6][−j];
X[j −3][−i−j −3] = Y[j −3][−i −3] + Y[−i −6][−i−j −3];

}
}

Code Generation

u Second strategy:

Reduce high control statement overhead by re-
partitioning the partitions to reduce boundary
check overheads.

9

Wave-front Execution of the
Polygonal Partitions

Case 1: Two Dimensional Non-Uniform Reuse Pattern 10

Reuse Pattern

Polygonal Partitions for Two
Dimensional Non-Uniform Reuse

Pattern (kmax = 6)

Loop-Nest

for (i = -N; i <= N; i++)
for (j = -N; j <= N; j++)

X[i,j] = Y[i,i+j+3] + Y[i+j,j];

I

J

Irregular Scaling of Partitions
Size |DC4| |C6| Ratio (|C6|/|DC4|)
128 1860 47250 26
256 3780 192786 52
512 7620 778770 103

1024 15300 3130386 205
2048 30660 12552210 410
4096 61380 50270226 820

11

Iteration counts in C6 and DC4 partitions

Partition Approx. Scaling Factor w.r.t. Dataset
C6 1x

DC1, DC4 0.5x
DC3, DC1 0x

Re-Tiling of Polygonal Partitions

u Load Balancing
u C6 partitions execution time dominates the kernel execution time.

u Scalability
u Scheduling each type of partition on different thread, restricts parallelism.

u Solution for both problems:
u Re-Tiling the partitions with rectangular tiling.

u Executing all partitions type one-by-one.

u Dynamically scheduling re-tiles for a single partition.

12

Re-Tiling Partitions
with Reuse

u L partitions don’t have any reuse.

u Hence, all iterations can execute in
parallel.

u Scheduling partitions based on size.

13

#pragma omp parallel for schedule(dynamic)
Loop−Nest : Re−tiled C6 partitions
#pragma omp parallel for schedule(dynamic)
Loop−Nest : Re−tiled DC4 partitions
#pragma omp parallel for schedule(dynamic)
Loop−Nest : Re−tiled DC3 partitions
#pragma omp parallel for schedule(dynamic)
Loop−Nest : Re−tiled DC1 partitions
#pragma omp parallel for schedule(dynamic)
Loop−Nest : Re−tiled C1 partitions
#pragma omp parallel for
Loop−Nest : L partitions

Code Sample after Re-Tiling 14

Re-Tiled parallel code for C6 partition

lbp=ceild(−N−31 ,32);
ubp=−1;
#pragma omp parallel for schedule(dynamic) private(lbv ,ubv,t2 ,t3 ,t4)
for (t1 = lbp; t1 <= ubp; t1++) {

for (t2 = 0; t2 <= min(floord(N−4,32),−t1−1); t2++) {
for (t3 = max(−N,32∗t1); t3 <= min(32∗t1+31,−32∗t2−4); t3++) {

lbv = 32∗t2 ;
ubv = min(32∗t2+31,−t3 −4);
for (t4 = lbv; t4 <= ubv; t4++) {

x[t3][t4] = y[t3][t3+t4+3] + y[t3+t4][t4];
x[−t4 −3][t3+t4 +3] = y[−t4 −3][t3 +3] + y[t3][t3+t4+3];
x[−t3−t4−6][t3+3] = y[−t3−t4−6][−t4] + y[−t4 −3][t3 +3];
x[−t3−6][−t4] = y[−t3 −6][−t3−t4 −3] + y[−t3−t4−6][−t4];
x[t4−3][−t3−t4−3] = y[t4−3][−t3−3] + y[−t3 −6][−t3−t4 −3];
x[t3+t4][−t3−3] = y[t3+t4][t4] + y[t4−3][−t3−3];

}
}

}
}

Experimental Results – Case Study 1

15

Experimental Setup:
Intel Xeon Phi Knights Landing CPU 7210 @ 1.30GHz (64 cores, 1MB L1-cache, 32MB L2-cache) – Quadrant-Cache configuration.
Affinity settings:
OMP_PROC_BIND = spread and OMP_PLACES = threads

Case 2: One Dimensional Non-Uniform Reuse Pattern 16

Reuse Pattern

Wavefront Execution for Polygonal
Partitions with One Dimensional

Non-Uniform Reuse Pattern

Loop-Nest

for (i = −N; i <= N; i++)
for (j = −N; j<= N; j++)

X[i][j] = Y[i][j] + Y[i][i+j+N];

Re-Tiling with
Wavefront Execution

u Smaller partitions are executed
as C type partition.

u Partitions are split to reduce
control statement overhead.

u Wavefronts don’t hinder reuse.

17

Summary

u Polygonal tiling technique is not constrained to either the shape or the size of tiles.

u The shapes and sizes are governed by the reuse pattern of the loop-nests.

u Re-Tiling provides load-balancing and scalability to the Polygonal Tiles.

u Up to 2x speedup over rectangular tiled code.

18

