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Traditional Tiling vs Polygonal Tiling 2

Ø Single shape of tiles.                   
(not necessarily the size)

Ø Improves data locality for loop-
nests with uniform reuse pattern.

Ø Multiple tile sizes and shapes 
based on reuse pattern.

Ø Improves data locality for loop-nests 
with non-uniform reuse pattern.

Adapted from Bandishti, V., et al.: Tiling Stencil Computations to 
Maximize Parallelism. In: SC ’12.

Varying 
reuse 
distances



Formulation of the Problem

• Walk-through example:

for ( i = -N; i <= N; i++)
for ( j = -N; j <= N; j++)

X[i,j] = Y[i,i+j+3] + Y[i+j,j];

• Representation of the references to characterize the reuse pattern:

Reference α = ( i, i+j+3 )

Reference β = ( i +j, j )

𝜞i,i+j+3 = 1		0
1		1 𝐼 + 03 and 𝜞i+j,j = 1		1

0		1 𝐼 + 00
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Formulation of the Problem
• Deriving the other iteration reusing the same data:

𝜞α= 𝜞β ⇔ RαIα + rα = RβIβ + rβ
• Temporal reuse relation:

𝑹
β
(𝟏𝑹αIα + 𝑹

β
(𝟏(rα− rβ) = Iβ ⇔ TαβIα + tαβ = Iβ

T =	(T	,	t)

• For the example:

T = 0		 − 11							1 and t = −3			3
• To find iteration reusing same data as ( 2, 1 ):

 0		 − 11							1
𝟐
𝟏 +  −3			3 	 = −𝟒

			𝟔
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Partitioning Technique
u Partitioning the iteration space (D) in four sets

using two references:

• D1 iterations share the data used by 𝚪𝛂.

• D2 iterations share the data used by 𝚪β.

• C iterations reference data using 𝚪𝛂 and 𝚪β
which are referenced in other iterations.

• L iterations have no reuse.

• Hence, D = D1∪ D2∪ C ∪ L.
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Set Representation of the Classification



Partitioning Technique (contd.)

u After kth steps of the algorithm:

• DCk partitions: D1 iterations that link to k-1 C
iterations and at the end link to a D2 iteration.

• Ck partitions: The remaining C iterations that
are linked to themselves by T k.
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Partitioning Technique (contd.)

u Halting condition for the algorithm:

a) If the entire iteration space (D) is completely

partitioned. (Tk = I )

b) If kmax is too high then find an optimal value of

k to protect gained speedup.
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I

J

Adapted from Meister, B. et. al.: The Polytope Model for Optimizing 
Cache Locality, Technical Report RR 00-03, ICPS-LSIIT (2000)



Code Generation

u First strategy:

a) Scan the first partition of each type.

b) Generate subscripts for other partitions of similar
type using reuse relation: I, T (I), T 2(I), etc.

8

Index calculation for DC4 using reuse relation (T ). 

Scanning DC4
0 to compute index for 

DC4
1, DC4

2, DC4
3, DC4
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I

J

for (i =−N; i <= −4; i++) {
for (j = MAX(−N+3,−i−N−3); j <= −i−N−1; j++) {  

X[i][j] = Y[i][i+j+3] + Y[i+j][j]; 
X[−j−3][i+j+3] = Y[−j−3][i+3] + Y[i][i+j+3];
X[−i−j−6][i+3] = Y[−i−j−6][−j] + Y[−j−3][i+3];
X[−i−6][−j] = Y[−i−6][−i−j−3] + Y[−i−j−6][−j];
X[ j −3][−i−j −3] = Y[ j −3][−i −3] + Y[−i −6][−i−j −3];  

}
}  



Code Generation

u Second strategy:

Reduce high control statement overhead by re-
partitioning the partitions to reduce boundary
check overheads.
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Wave-front Execution of the 
Polygonal Partitions



Case 1: Two Dimensional Non-Uniform Reuse Pattern 10

Reuse Pattern

Polygonal Partitions for Two 
Dimensional Non-Uniform Reuse 

Pattern (kmax = 6)

Loop-Nest

for ( i = -N; i <= N; i++) 
for ( j = -N; j <= N; j++)

X[i,j] = Y[i,i+j+3] + Y[i+j,j];

I

J



Irregular Scaling of Partitions
Size |DC4| |C6| Ratio (|C6|/|DC4|) 
128 1860 47250 26 
256 3780 192786 52 
512 7620 778770 103 

1024 15300 3130386 205 
2048 30660 12552210 410 
4096 61380 50270226 820 
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Iteration counts in C6 and DC4 partitions

Partition Approx. Scaling Factor w.r.t. Dataset 
C6 1x 

DC1, DC4 0.5x 
DC3, DC1 0x 



Re-Tiling of Polygonal Partitions

u Load Balancing 
u C6 partitions execution time dominates the kernel execution time.

u Scalability 
u Scheduling each type of partition on different thread, restricts parallelism.

u Solution for both problems:
u Re-Tiling the partitions with rectangular tiling.

u Executing all partitions type one-by-one.

u Dynamically scheduling re-tiles for a single partition. 
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Re-Tiling Partitions 
with Reuse

u L partitions don’t have any reuse.

u Hence, all iterations can execute in 
parallel.

u Scheduling partitions based on size.
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#pragma omp parallel for schedule(dynamic) 
Loop−Nest : Re−tiled C6 partitions
#pragma omp parallel for schedule(dynamic) 
Loop−Nest : Re−tiled DC4 partitions 
#pragma omp parallel for schedule(dynamic) 
Loop−Nest : Re−tiled DC3 partitions
#pragma omp parallel for schedule(dynamic) 
Loop−Nest : Re−tiled DC1 partitions 
#pragma omp parallel for schedule(dynamic) 
Loop−Nest : Re−tiled C1 partitions
#pragma omp parallel for
Loop−Nest : L partitions 



Code Sample after Re-Tiling 14

Re-Tiled parallel code for C6 partition

lbp=ceild(−N−31 ,32);
ubp=−1;
#pragma omp parallel for schedule(dynamic) private(lbv ,ubv,t2 ,t3 ,t4) 
for (t1 = lbp; t1 <= ubp; t1++) {  

for (t2 = 0; t2 <= min(floord(N−4,32),−t1−1); t2++) {
for (t3 = max(−N,32∗t1); t3 <= min(32∗t1+31,−32∗t2−4); t3++) {  

lbv = 32∗t2 ;
ubv = min(32∗t2+31,−t3 −4);
for (t4 = lbv; t4 <= ubv; t4++) {  

x[t3][t4] = y[t3][t3+t4+3] +  y[t3+t4][t4]; 
x[−t4 −3][t3+t4 +3] = y[−t4 −3][t3 +3] +  y[t3][t3+t4+3];
x[−t3−t4−6][t3+3] = y[−t3−t4−6][−t4] +  y[−t4 −3][ t3 +3]; 
x[−t3−6][−t4] = y[−t3 −6][−t3−t4 −3] + y[−t3−t4−6][−t4]; 
x[t4−3][−t3−t4−3] = y[t4−3][−t3−3] +  y[−t3 −6][−t3−t4 −3]; 
x[t3+t4][−t3−3] = y[t3+t4][t4]   +  y[t4−3][−t3−3];

}
}

}
}  



Experimental Results – Case Study 1
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Experimental Setup: 
Intel Xeon Phi Knights Landing CPU 7210 @ 1.30GHz (64 cores, 1MB L1-cache, 32MB L2-cache) – Quadrant-Cache configuration.
Affinity settings: 
OMP_PROC_BIND = spread and OMP_PLACES = threads 



Case 2: One Dimensional Non-Uniform Reuse Pattern 16

Reuse Pattern

Wavefront Execution for Polygonal 
Partitions with One Dimensional 

Non-Uniform Reuse Pattern

Loop-Nest

for (i = −N; i <= N; i++)
for (j = −N; j<= N; j++) 

X[i][j] = Y[i][j] + Y[i][i+j+N]; 



Re-Tiling with 
Wavefront Execution

u Smaller partitions are executed 
as C type partition.

u Partitions are split to reduce 
control statement overhead.

u Wavefronts don’t hinder reuse.
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Summary

u Polygonal tiling technique is not constrained to either the shape or the size of tiles.   

u The shapes and sizes are governed by the reuse pattern of the loop-nests.     

u Re-Tiling provides load-balancing and scalability to the Polygonal Tiles.

u Up to 2x speedup over rectangular tiled code.
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