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Abstract
This paper explores an alternative definition of linear inequal-

ities over integer variables, focusing on expressive power

and precision. The core technique is to use periodic numbers

(also called Ehrhart numbers) to account for the seemingly

irregular behavior of affine combinations of integer variables.

The new representation is used to tighten inequalities, and

from there derive a correct and complete decision procedure

similar to Fourier-Motzkin elimination. A decomposition

algorithm is also described: its result is a disjoint union of

elementary polyhedra. Members of the union have a single

contiguous range on each dimension, and are guaranteed

to be non-empty. The data-structure used to represent the

decomposition is similar to an abstract syntax tree. Several

properties of this representation are briefly examined.

1 Introduction
The polyhedral model [9] has proved its ability to repre-

sent a large class of programs and their transformations.

However, we have the (admittedly subjective) feeling that

most of its fundamental algorithms do not fully account for

an obvious characteristics of the polyhedra of interest in

compilation: the fact that all involved variables are integers.

Despite indisputable successes on that front, such as Pip [8]

and Omega [14], we think this aspect needs further study.

This paper explores an alternative definition of linear

inequalities over integer variables, slightly drifting away

from linear programming techniques and focusing on expres-

sive power and precision. Our starting point is the Fourier-

Motzkin elimination algorithm, especially trying to avoid its

incompleteness when applied to integer domains (Section 2).

This will lead to a new representation of linear inequalities

over integer variables, whose properties are examined in Sec-

tion 3. A revised version of variable elimination is described

in Section 4. Trying to derive a sensible projection algorithm

leads to a decomposition algorithm, described in Section 5.

The resulting decomposition directly provides various pro-

jections, as well as lexicographic extrema. Interestingly, this

algorithm manipulates syntactic structures, and is almost

entirely based on a single operation called affine unswitching.
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The research described here is preliminary, and its only

goal is the exploration of alternative representations and al-

gorithms. We have developed software tools to validate core

ideas, but none of these tools is mature enough to support

meaningful comparison with existing machinery. Moreover,

certain algorithms are obviously inapplicable beyond simple

cases: we try to summarize the main limitations, and offer

some directions for improvement, in the conclusion.

2 Motivation & Background
Our study starts with the Fourier-Motzkin variable elimi-

nation algorithm. Given a set {x1, . . . ,xn } of variables with
values in Q, and a set of N linear inequalities{

ck0 +
n∑
i=1

ckixi ≥ 0
��� 1 ≤ k ≤ N

}
Fourier-Motzkin elimination proceeds by eliminating one

variable after the other, until either producing a trivially

false inequality (in which case the system is unsatisfiable),

or running out of variables (in which case the system is

guaranteed to have solutions). A single elimination step,

targeting variable xn , consists in:

1. for any pair of one lower and one upper bound

fl (x1, . . . ,xn−1) ≤ axn bxn ≤ fu (x1, . . . ,xn−1) (1)

with a,b > 0, add the new combined inequality

b · fl (x1, . . . ,xn−1) ≤ a · fu (x1, . . . ,xn−1) (2)

2. remove all inequalities involving xn

Every elimination step removes one variable. A trivially false

inequality appearing during any elimination step is a nec-

essary and sufficient condition for the system to have no

solution, because (1) and (2) are logically equivalent.
This algorithm is interesting for several reasons. First, it

provides a simple decision procedure, proving or disproving

the existence of solutions. Second, it also performs projection:
what remains after eliminating variables {xp+1, . . . ,xn } is a
projection of the original polyhedron over {x1, . . . ,xp }. Third,
the bounds that are combined (and then dropped) during an

elimination step delimit the values of the eliminated variable

in solutions. All these properties, however, are valid only

when variables have rational values.

Adapting Fourier-Motzkin elimination to integer variables

has given rise to the Omega test [14]. Variants of the same

algorithm have been used to generate scanning code, which

is a loop nest executing one statement for each integer point
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inside the polyhedron [2]. The same algorithm has even

been extended to project sets of inequalities with parametric

coefficients [11]. And it has probably many other uses.

We are going to use an example from the original Omega

paper [14, Section 2.3.3] to try to understand the specifics of

integer variables. The following polyhedron, called Omega’s
nightmare is used to illustrate a case where Omega needs

three attempts before deciding it is empty:

3 ≤ 11x + 13y ≤ 21

−8 ≤ 7x − 9y ≤ 6

The graph is as follows:

11x + 13y = 21

11x + 13y = 3

7x − 9y = −8

7x − 9y = 6

Integer points for each constraint pair are depicted as small

pie-slices. Note that the polyhedron does not contain any in-

teger point, even though both of its (continuous) projections

on the axes do.

The leftmost corner is the region delimited by constraints:

3 − 11x ≤ 13y ∧ 9y ≤ 7x + 8 (3)

Combining these constraints leads to −77 ≤ 190x , the exact
(rational) x coordinate of this vertex. Rounding up this bound

to the next integer leads 0 ≤ x , which is an under-estimation.

Omega correctly assesses emptiness by repeating the com-

bination with refined inequalities, and finally enumerating

a range of x coordinates which are tested individually. We

will not discuss Omega further here, but rather focus on un-

derstanding what went wrong with straightforward variable

elimination. Our analysis is as follows.

• Linear inequalities like 9y ≤ 7x + 8 are loose most

of the times: the upper bound on 9y is precise only

when 7x + 8 is a multiple of 9, and otherwise leaves a

“slack” of up to 8 units between 9y and its bound. Later

combinations accumulate and amplify the slack.

• A consequence of the accumulation of slack is that

the logical equivalence of a combination step is bro-

ken when dealing with integer variables. The missing

implication (the only-if part) is:

b · fl (x1, . . . ,xn−1) ≤ a · fu (x1, . . . ,xn−1)

↛ ∃x∗n ,

{
fl (x1, . . . ,xn−1) ≤ ax∗n
bx∗n ≤ fu (x1, . . . ,xn−1)

This makes the classical Fourier-Motzkin test correct

but incomplete on integers, failing to recognize some

empty polyhedra.

Recognizing this problem also immediately offers a solution,

at least in theory: tightening bounds. If one can assume tight

bounds, that is if both bounds are (provably) multiples of the

coefficient for all values of all other variables

∃f ′l , fl (x1, . . . ,xn−1) = af ′l (x1, . . . ,xn−1)
∃f ′u , fu (x1, . . . ,xn−1) = b f

′
u (x1, . . . ,xn−1)

then the existence of a value x∗n such that

f ′l (. . .) ≤ x∗n ≤ f ′u (. . .)

implies b · fl (. . .) ≤ abx∗n ≤ a · fu (. . .), which implies the

original bounds, and equivalence is restored.

Therefore, given two loose bounds

fl (x1, . . . ,xn−1) ≤ axn bxn ≤ fu (x1, . . . ,xn−1)

we can make Fourier-Motzkin elimination complete if we

find a way to derive two equivalent tight inequalities, and

combine these instead of the original ones. There are two

“standard” ways to tighten inequalities:

• By using integer parts:

⌈
fl (x1, . . . ,xn−1)

a

⌉
≤ xn xn ≤

⌊
fu (x1, . . . ,xn−1)

b

⌋

but the combination is difficult to manipulate, for in-

stance to eliminate another variable.

• By using the euclidean remainder:

f ′l (. . .) −
(
f ′l (. . .) mod a

)
≤ axn

where f ′l (. . .) = fl (. . .) + (a − 1)
bxn ≤ fu (. . .) − ( fu (. . .) mod b)

and then introduce one new variable and two inequal-

ities per modulo expression, of which there is one per

tightened equality, which is a lot.

Both solutions are equally awkward, and actually hopeless:

we will see in Section 3.3 that combining two tightened in-

equalities does not always result in a single linear inequality.

The next section describes a workable tightening mechanism

for linear inequalities.

3 Periodic-Linear Inequalities
This section details a tightening process based on periodic

numbers. It also explores the meaning and some properties

of tightened inequalities.

3.1 Periodic Numbers and Expressions
A periodic number is a collection of integers indexed by the

congruence class of an expression:

⟨v0,v1, . . . ,vπ−1⟩
π
x =




v0 if x ≡ 0 mod π
v1 if x ≡ 1 mod π
...
vπ−1 if x ≡ (π − 1) mod π

where vi are numbers (plain integers or periodic numbers),

called the elements; π is a positive integer, called the period
(or size); and x is any expression, usually an unknown, called

the argument. Periodic numbers have been introduced by
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Simple properties

Linearity a + b · ⟨. . . ,vi , . . .⟩
π
x = ⟨. . . ,a + b · vi , . . .⟩

π
x

Rotation ⟨v0,v1, . . .⟩
π
x+1 = ⟨v1, . . . ,v0⟩

π
x (with invariance: ⟨v0, . . .⟩

π
ax+b = ⟨v0, . . .⟩

π
(a mod π )x+(b mod π ))

Extension ⟨v0, . . . ,vπ−1⟩
π
x = ⟨v0, . . . ,vπ−1, . . . ,v0, . . . ,vπ−1⟩

cπ
x (with elements v0, . . . ,vπ−1 repeated c times)

Addition (etc.) ⟨v0, . . .⟩
α
x + ⟨w0, . . .⟩

β
x =

i
〈
. . . ,v (i mod α ) +w (i mod β ) , . . .

〉
lcm(α ,β )

x

Division ⟨v0, . . .⟩
π
cx =

i
〈
. . . ,v (ci mod π ) , . . .

〉π / gcd(π ,c )
x

(special case: ⟨v0, . . .⟩
cπ
cx =

i ⟨. . . ,vci , . . .⟩
π
x )

Multidimensional properties

Transposition

〈
. . . ,

〈
. . . ,vi j , . . .

〉α
x
, . . .

〉β
y
=

〈
. . . ,

〈
. . . ,vji , . . .

〉β
y
, . . .

〉α
x

Distribution ⟨v0, . . . ,vα−1⟩
α
⟨w0, ...,wβ−1⟩

β
x

=
〈
⟨v0, . . . ,vα−1⟩

α
w0

, . . . ,⟨v0, . . . ,vα−1⟩
α
wβ−1

〉β
x

Separation ⟨v0,v1, . . . ,vα−1⟩
α
x+y =

〈
⟨v0, . . . ,vα−1⟩

α
y ,⟨v1, . . . ,v0⟩

α
y , . . . ,⟨vα−1, . . . ,vα−2⟩

α
y

〉α
x

Table 1. Essential operations on periodic numbers: a, b, v∗, w∗ are integers; c , α , β , π are positive integers; x and y are

unknowns;
i ⟨. . .⟩π indicates that i denotes the position of the element (in [0,π − 1]) where it appears.

Ehrhart in its classic work on counting integer points inside

a polytope [6, 7], and have been generalized by Clauss in the

context of the polyhedral model [5]. We know of very little

later work making use of periodic numbers. One exception

is the work by Meister [13] on computing the convex hull of

a polyhedron, which is a precursor of our approach.

Basic symbolic operations on periodic numbers are col-

lected in Table 1. The rest of this paper relies on the ability to

normalize the representation of periodic numbers which take

symbolic expressions as argument. The separation rule in

Table 1 is a cornerstone: along with division and extension, it
states that when the argument is a linear function of several

variables, a periodic number can be made multidimensional,

with every dimension involving a single variable with unit

coefficient. For instance, the periodic number:

⟨0,1,2⟩3
2x+6y+5z−1

can be rewritten as:〈〈
⟨2,1,0⟩3x

〉
1

y
,
〈
⟨1,0,2⟩3x

〉
1

y
,
〈
⟨0,2,1⟩3x

〉
1

y

〉
3

z

In the following, the superscript indicating period will often

be omitted. Likewise, periodic numbers with period 1 will

be replaced with their unique component. They appear here

because 6y is a multiple of 3, and have been left in to illustrate

the nesting along the list of unknowns.

We are going to manipulate symbolic expressions over a

set of unknowns, typically parameters and variables, listed

in an arbitrary but fixed order. Given such an ordered list

[x1, . . . ,xn], a periodic-linear expression (PLE) in normal form
is an expression of the form

*
,

n∑
i=1

aixi+
-
+

〈
· · · ,

〈
· · · ⟨· · · ⟩π1x1 · · ·

〉πn−1
xn−1
, · · ·

〉πn
xn

(4)

that is, an affine expression where the constant has been

replaced with an n-dimensional periodic number with un-

knowns as arguments, conventionally nested in reverse order.

“Usual” affine expressions are PLEs where π1 = . . . = πn = 1.

It is often convenient to use the simplified normal form:

anxn +
〈
· · · , an−1xn−1 + ⟨· · · ⟩

πn−1
xn−1 , · · ·

〉πn
xn

(5)

where every linear component aixi is placed near its corre-

sponding periodic component. This form is redundant (all

occurrences of aixi are identical) but much simpler and ab-

stract when it comes to manipulate expressions with respect

to xn only, because the elements of a periodic component

are all invariant with respect to the argument.

Addition and subtraction between PLEs, as well as multi-

plication by an integer, are all stable operations: the result is a

PLE. Less obvious is the fact that, given integersv0, . . . ,vπ−1
and a PLE X , the expression ⟨v0, . . . ,vπ−1⟩

π
X is also a PLE:

its normal form is obtained by the recursive application of a

succession of separation, extension, division, and distribu-

tion operations. The details of the derivation are omitted,

they are purely technical. Another useful stability property

is that given two PLEsX andY over the same set of variables,

replacing variable xi by Y in X is guaranteed to be a PLE.

Finally, we are going to build periodic-linear inequalities

by comparing a PLE with 0. The inequality axn + ⟨. . .⟩
π
xn ≥ 0

in simplified normal form will be called:

• linear if a , 0 and π = 1;

• (purely) periodic if a = 0 and π > 1;

• mixed if a , 0 and π > 1;

Other inequalities, not involving xn , will be called uniform.

Since these qualifiers are common words, we keep them

italicized throughout the paper when they refer to the form

of a periodic-linear inequality.
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3.2 Tightening
As per the definition of periodic numbers, the following

holds for any given PLE X :

⟨0,1, . . . ,π − 1⟩πX = X mod π

Hence, the largest multiple of π less than or equal to X is:

X − ⟨0,1, . . . ,π − 1⟩πX

and the smallest multiple of π greater than or equal to X is:

(X + π − 1) − ⟨0,1, . . . ,π − 1⟩πX+π−1
= X + ⟨0,π − 1, . . . ,1⟩πX

This simple remark provides a tightening strategy for linear
inequalities: if a > 0 and X is a PLE over [x1, . . . ,xn−1], then:

axn ≤ X ↔ axn ≤ X − ⟨0,1, . . . ,a − 1⟩aX (6)

X ≤ axn ↔ X + ⟨0,a − 1, . . . ,1⟩aX ≤ axn (7)

The proof of these equivalences is immediate, by reasoning

by case on the congruence of X modulo a.
For instance, Omega’s nightmare’s left corner inequalities

(see Equation (3) in Section 2) can be tightened by adding a

simple corrective term:

3 − 11x ≤ 13y ⇒ 3 − 11x + ⟨0,12, . . . ,1⟩13
3−11x ≤ 13y

9y ≤ 7x + 8 ⇒ 9y ≤ 7x + 8 − ⟨0,1, . . . ,8⟩9
7x+8

These tight inequalities can be safely combined without in-

troducing any slack:

9 · (3 − 11x + ⟨0,12, . . . ,1⟩13
3−11x )

≤ 9 · 13 · y ≤
13 · (7x + 8 − ⟨0,1, . . . ,8⟩9

7x+8)

It takes some algebraic properties of periodic numbers to

rearrange this inequality. Please admit the following result:

⟨117,73,29,−15,−59,14, . . . ,59,15,−29,44⟩117x ≤ 190x (8)

which is a mixed inequality with respect to x : there is a

different bound for each congruence of x modulo 117.

We now come to the trickiest part of tightening. Equa-

tion (8) is a combination result, and should be tightened be-

fore being further combined. Consider phase 2 for instance,

where 29 ≤ 190x . Straightforward tightening results in

1 ≤ x

but this is again loose, because it ignores the phase: this

bound is not suitable for x congruent to 2 modulo 117. Taking

the phase into account means that x = 117x ′ + 2 for some x ′.
Performing this change of variable leads to 29 ≤ 190(117x ′+
2), and tightening with respect to x ′ leads 0 ≤ x ′. Reverting
the change of variable leads to the correct result:

2 ≤ x

A similar change of variable must be done for all 117 phases.

The lesson learned with this example is that tightening

a mixed periodic-linear inequality is slightly more complex

than simple linear tightening. Fortunately, it has a closed

form, also covering the linear case. Given an upper bound

anxn ≤ ⟨A0, . . .⟩
πn
xn (9)

where A0,A1, . . . are all PLEs over variables [x1, . . . ,xn−1],
the result of tightening is the following inequality:

anxn ≤
i
〈
. . . ,Ai − ⟨0,1, . . . ,anπn − 1⟩

anπn
Ai−ian

, . . .
〉πn
xn

(10)

where i , ranging from 0 to πn−1, designates the phase. There
is a similar formula for lower bounds, which we omit. The

proof that inequalities (9) and (10) are equivalent is by case

on the congruence of xn modulo πn : if xn = πnx
′
n + φ, then

the equivalence becomes:

an (πnx
′
n + φ) ≤ Aφ ↔

an (πnx
′
n + φ) ≤ Aφ − ⟨0,1, . . . ,anπn − 1⟩

anπn
Aφ−φan

which, after some rearrangement, is exactly covered by linear
tightening equivalence, in Equation (6) above.

Coming back to our example, Equation (8) is tightened as

⟨117,1,2,3,4, . . . ,112,113,114,115,116⟩117x ≤ x (11)

Intuition suggests that this actually means 1 ≤ x ; Section 3.4

explains how this simpler inequality can be automatically in-

ferred. In the meantime, note that tightening alone is enough

to correct the under-estimation observed during the rational-

with-rounding application of Fourier-Motzkin elimination

in Section 2. For lack of space, the reader will have to admit

that combining inequalities forming the “right corner” leads

to x ≤ 0 with similar means, from which Omega’s nightmare

emptiness follows.

3.3 Saturating Inequalities
Before going back to adapt Fourier-Motzkin to integer poly-

hedra, let us examine a few characteristics of tightened in-

equalities. In this and later section we use a second example

polyhedron, named LS(N ):

(A) x + 2 ≤ 3y ≤ x + 5 (C )
(B) x − N + 1 ≤ 2y ≤ x + 1 (D)

with upper bounds on y tightened as:

3y ≤ x + 5 − ⟨2,0,1⟩x (C ′)
2y ≤ x + 1 − ⟨1,0⟩x (D ′)

We say that a bound is saturated when the inequality is actu-

ally an equality. In the case of upper bounds, the saturated

bound gives, for each x , the maximal value of y for which

the inequality holds.

We define a π -vertex (of a 2D-polyhedron) as the lieu

where two bounds are saturated simultaneously. For bounds

(C ′) and (D ′), we can write the equality and solve for x :

2(x + 5 − ⟨2,0,1⟩x ) = 3(x + 1 − ⟨1,0⟩x )
⇒ x = ⟨6,7,8,3,10,5⟩x

The resulting equation involves x both as a plain variable

and as the argument of a periodic number. The definition of

4
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periodic numbers gives a precise meaning to such equations:

x = 6 when x ≡ 0 mod 6, x = 7 when x ≡ 1 mod 6, and

so on. Here, all phases are valid solutions, but this is not

necessarily the case in general. The geometric meaning of

this equation appears on the following graph:

1

1

3 5 7 9 11 13

6

2y = x + 1

3y = x + 5

The butterfly-like markers designate integer points that sat-

urate one inequality, and full circles designate points where

both inequalities are saturated (the π -vertex).
An important remark about this example is that the π -

vertex is made of six distinct integer points, and that these

points are not connected. A consequence of this is that there

is no single integer x∗ such that one bound “dominates” for

x < x∗ and the other dominates for x∗ ≤ x : partitioning
is possible, but the boundary is a periodic number. Finally,

note that we have tightened with respect to y and solved for

x : had we considered the variables in the reverse order, the

π -vertex would have been formed of a single point (y = 4).

Another example of the complexity of intersecting inequal-

ities is the case of bound (A), tightened as

x + 2 + ⟨1,0,2⟩x ≤ 3y

and intersected with (D ′). The resulting π -vertex is found
at x = ⟨6,1,8,3,4,5⟩x . This π -vertex intersects with the one

pictured above, at x = 3,5,6,8, which shows that several

π -vertices can share integer points.

⌊C ⌋ = ⌊D ⌋

⌊D ⌋ = ⌈A⌉

⌊C ⌋ = ⌈A⌉

Finally, consider the π -vertex formed by saturating both (A)
and (C ), displayed as circles above, whose equation is:

⟨3,0,3⟩x = 3 (which means x . 1 mod 3)

On integer domains, parallel (and distinct) saturated inequal-

ities can have a non-empty, and even infinite intersection.

The purpose of this little exercise was to convince the

reader that nothing is simple when dealing with integers,

and that intuitions forged by looking at rational polyhedra

hardly transpose to the integer case.

3.4 Mixed Inequalities and Disjunction
This section looks at one last important property of tightened

inequalities, especially of themixed category: their tendency

to hide disjunctions. For instance, consider the result of com-

bining first (A) and (D), and then (B) and (C ) in the example

of the previous section. The result is:

(AD) ⟨6,1,8,3,4,5⟩x ≤ x

(BC ) x ≤ 3N +

〈
⟨0,3⟩N ,⟨7,4⟩N ,⟨2,5⟩N ,
⟨3,0⟩N ,⟨4,7⟩N ,⟨5,2⟩N

〉
6

x

Looking at inequality (AD), intuition tells that it is equivalent
to (x = 1) ∨ (3 ≤ x ). Inequality (BC ) is more complex, but

turns out to mean (x ≤ 3N + 5) ∨ (x = 3N + 7).
The algorithm to systematically convertmixed inequalities

into disjunctions of linear inequalities is called Disjoin. It is

defined inductively on the dimension of the periodic number.

In the one-dimensional case, assuming the inequality is a

lower-bound of the form

⟨v0, . . .⟩
π
x ≤ ax with vi s plain integers

the algorithm proceeds as follows:

Disjoin_1(⟨v0, . . .⟩
π
x ≤ ax )

letM = vm − a(π − 1), where vm = max{vi }
let O = {vi | vi < M }

return (M ≤ ax ) ∨

( ∨
d ∈O

(x = d )

)
Value vm is the maximal value appearing in the periodic

number: it is equal to 8 for (AD). Value M is the start of a

full period (of length π ) ending at vm : the interval [3,8] for
(AD). The set O collects “outliers”, values which are outside

of the period anchored atM and need special casing: it is the

set {1} for (AD). Here is a pictured summary, with columns

representing congruence classes modulo 6, illustrating the

fact that values aboveM = 3 are necessarily covered:

. . . -5 -4 -3 -2 -1

0 1 2 3 4 5
6 7 8 9 10 11

12 13 14 15 16 . . .

bound

[M ,vm]

The final result is a lower bound on M , plus a set of spe-

cial equality relations for outliers (which can sometimes be

turned into short intervals). Inequality (AD) is equivalent to
(x = 1) ∨ (3 ≤ x ).
Another example is Omega’s nightmare’s lower bound on

x (see Equation (11) in Section 3.2). This bound has M = 1

and no outlier: it is therefore turned into 1 ≤ x .
A full description of the multidimensional case would

require heavy notations. We are only going to illustrate it

on the (BC ) inequality above:

1. Transpose the periodic number to bring the target vari-

able at the deepest level, and consider the inequality

to be local to this level. This turns (BC ) into:

3N + ⟨ x ≤ ⟨0,7,2,3,4,5⟩x , x ≤ ⟨3,4,5,0,7,2⟩x ⟩N
5
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This strange notation highlights the fact that, after

transposition, the next-to-last level of the periodic

number is a collection of one-dimensional inequali-

ties on x .
2. Apply the one-dimensional algorithm to each inner

inequality, leading to:

3N + ⟨ (x ≤ 5) ∨ (x = 7), (x ≤ 5) ∨ (x = 7) ⟩N

3. Transpose back into the original order:

(x ≤ 3N + ⟨5,5⟩N ) ∨ (x = 3N + ⟨7,7⟩N )

Note that this transposition phase also needs to sim-

plify redundant periodic numbers along the way.

Inequalities (AD) and (BC ) are the results of eliminating

variable y. The fact that they are disjunctions means that

LS(N ) has holes along the x axis. This can be verified by

plotting the integer points for some value of N (5 here):

1

1

22

9

(D )

(C )

(A)

(B )

As expected, there is no integer point for x = 2 and x = 21.

This section contains only sketchy algorithm descriptions,

but the main ideas are fairly simple. The point was to show

that mixed inequalities can always be transformed into a

disjunction of linear inequalities (or equalities inmany cases).

Mixed inequalities are therefore “almost” linear, in the sense

that they display vagaries for a finite number of points only.

They are really specific to integer domains, which lack the

inherent smoothness of their rational (or real) counterparts.

Here is one last example, taken from the Omega paper [14,

Section 4]: eliminate b in

5b ≤ a ≤ 6b

The proposed solution is:

{20 ≤ a} ∨ {0 ≤ a;a = 6α } ∨ {1 ≤ a;a = 6α + 1}
∨ {2 ≤ a;a = 6α + 2} ∨ {3 ≤ a;a = 6α + 3}

which is a disjunction based on the congruence classes of a
modulo 6, with α an existential variable ranging over inte-

gers. In contrast, periodic-linear tightening leads to:

a + ⟨0,5,4,3,2,1⟩a ≤ 6b 5b ≤ a − ⟨0,1,2,3,4⟩a

which combines into:

⟨0, 31,32,33,34, 5,6, 37,38,39, 10,11,12, 43,44,

15,16,17,18, 49,20,21,22,23,24,25,26,27,28,29 ⟩30a ≤ a

with outliers underlined. Our implementation of Disjoin

groups outliers into intervals when possible, producing:

(a = 0) ∨ (5 ≤ a ≤ 6) ∨ (10 ≤ a ≤ 12) ∨ (15 ≤ a ≤ 18) ∨
(20 ≤ a)

Note that no existential variable is needed, and that the result

is a disjoint union.

4 The Omicron Test
We are now ready to adapt Fourier-Motzkin elimination to

integer domains. We have called the resulting procedure the

Omicron test. There are two major changes in the basic al-

gorithm. First, tightening is applied systematically, on input

inequalities as well as on all inequalities created during the

process. Second, inequalities with a non-trivial periodic com-

ponent are turned into disjunctions, which lead to forking
the system into several, independent sub-systems that are

tested individually, maybe in parallel. This forking process is

similar to what Omega does after two inconclusive attempts

to solve the original system.

Non strictly linear inequalities need special treatment.

Over variables [x1, . . . ,xn], assuming the algorithm is about

to eliminate xn , Omicron does the following, in order:

• If the system contains a periodic inequality

0xn + ⟨X0, . . .⟩
πn
xn ≥ 0 with πn > 1

then create πn new systems where xn is changed into

πnx
′
n + φ, with φ = 0,1, . . . ,πn − 1. Every change of

variable turns the periodic inequality into a uniform
inequality Xφ ≥ 0. This is called splintering, and essen-
tially amounts to reason by case on the various phases

of xn modulo πn .
• If the system contains a mixed inequality

anxn + ⟨X0, . . .⟩
πn
xn ≥ 0 with an , 0, πn > 1

then apply the Disjoin algorithm (Section 3.4), and cre-

ate one new sub-system for each term of the resulting

disjunction. This is called disjoining, and essentially

amounts to split the system around the holes, if any.

When only linear inequalities (lower and upper bounds)

remain, an elimination step is performed, exactly as in the

original Fourier-Motzkin algorithm.

Figure 1 shows two possible executions of Omicron on

Omega’s nightmare. The one on the left ignores Disjoin, and

applies splintering on both period-117 inequalities, leading to

117 very simple systems. This shows that splintering can also

be applied to mixed inequalities, and can replace disjoining,

at the cost of additional forking. The right part of Figure 1

shows that Disjoin turns the mixed inequalities into simple

bounds (there are no outliers after tightening), and a single

elimination step concludes on emptiness.

Figure 2 is Omicron applied to LS(N ). Splintering happens

early on x , because of the periodic inequality

⟨⟨2,1⟩N ,⟨0,1⟩N ⟩x ≤ N

Later elimination steps proceed smoothly, with both sub-

systems testing positively for some values of N . The two

legs represent different parities of x : the left leg (x even) has

no solution for N = 0.

6
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3 − 11x ≤ 13y ≤ 21 − 11x
7x − 6 ≤ 9y ≤ 7x + 8

⇒ tighten+combine

⟨117,73,29, . . . ,44⟩117x ≤ 190x
190x ≤ ⟨117,73,146 . . . ,161⟩117x

⇒ ?

⇒ splintering by 117

117 ≤ 22230x ′ ≤ 117

⇒ tighten+combine

−44 ≤ 22230x ′ ≤ −44

⇒ tighten+combine

−351 ≤ 22230x ′ ≤ −234

⇒ tighten+combine

−21996 ≤ 22230x ′ ≤ −21879

⇒ tighten+combine

false

false

false

false

(113 more)

⇒ tighten+disjoin

1 ≤ x ≤ 0

⇒ combine

false

Figure 1. Two different decisions of Omega’s nightmare.

5 Decomposition
By its very nature, variable elimination seems to be a sensible

mean to project a polyhedron onto a subset of its dimensions.

However, it is not actually the case, because Omicron may

fork a system into (disjoint) sub-systems, where most of the

inequalities are replicated. This appears clearly in Figure 2,

where the next-to-last tree level (after the elimination of

bothy and x ) has two largely overlapping systems. Moreover,

mere projection hides some details about the polyhedron.

For instance, the LS(N ) polyhedron changes its effective

bounds on y several times along the x axis: see the graph

in Section 3.3. Capturing such changes allows splitting the

original polyhedron into elementary fragments, where each

dimension has a single contiguous range. Projection can be

recovered from such a decomposition, by merging ranges

where discrimination is superfluous.

5.1 Polyhedra and Abstract Syntax Trees
A decomposition needs to maintain a set of polyhedra, or-

ganized inside a progressive subdivision on ranges of the

variables, considered in a predefined order. An adequate data

x + 2 ≤ 3y ≤ x + 5
x − N + 1 ≤ 2y ≤ x + 1

⇒ tighten+combine

⟨6,1,8,3,4,5⟩x ≤ x
x ≤ 3N + ⟨⟨0,3⟩N , . . .⟩x
⟨⟨2,1⟩N ,⟨0,1⟩N ⟩x ≤ N

⇒ splintering by 2

⟨3,4,2⟩x ′ ≤ x ′

2x ′ ≤ 3N +

〈⟨0,3⟩N
⟨2,5⟩N
⟨4,7⟩N

〉
x ′

⟨2,1⟩N ≤ N

⇒ tighten+disjoin

2 ≤ x ′

2x ′ ≤ 3N + ⟨4,7⟩N
⟨2,1⟩N ≤ N

⇒ tighten+combine

⟨0,−1⟩N ≤ N
⟨2,1⟩N ≤ N

⇒ disjoin

1 ≤ N
−1 ≤ N

⇒ combine

true

⟨0,1,2⟩x ′ ≤ x ′

2x ′ ≤ 3N +

〈 ⟨6,3⟩N
⟨2,−1⟩N
⟨4,1⟩N

〉
x ′

⟨0,1⟩N ≤ N

⇒ tighten+disjoin

0 ≤ x ′

2x ′ ≤ 3N + ⟨6,3⟩N
⟨0,1⟩N ≤ N

⇒ tighten+combine

⟨0,1⟩N ≤ N
⟨−2,−1⟩N ≤ N

⇒ disjoin

0 ≤ N
−2 ≤ N

⇒ combine

true

y

x

N

Figure 2. Omicron on LS(N ).

structure for the task is an abstract syntax tree (AST) formed

of loop-like and if-then-else-like constructs, along with se-

quential composition of constructs. The AST is layered, with

one layer per variable, and every one of its leaves represents

one fragment of the decomposition. For example, a concrete

initial representation of the LS(N ) polyhedron, defined over

parameter N and regular variables x and y, would be:

when _ <= N <= _
for _ <= x <= _

for _ <= y <= _
if (...) then

exec S(x,y)

7



IMPACT 2018, January 23, 2018, Manchester, United Kingdom Alain Ketterlin

The (...) condition attached to the if-construct is meant

to contain the various inequalities defining the polyhedron.

A when construct represents a range for a parameter, and for
the range of a variable. The _ symbol represents a missing

bound, and can be understood as positive of negative infinity.

Variable ranges (for and when) carry a variable name, a

scale, and two bounds, which are periodic-linear expressions

over the set of enclosing variables. For instance

for 2x + [x:6,4,8] <= 6y <= 3x + [x:0,3]

represents a consecutive range of integers for y. In particular,

the scale 6 is not a step: it is there only to ensure that both

bounds can be kept tight at all times.

Conditions on if statements are arbitrary logical combi-

nations of inequalities. All inequalities are kept tight at all

times (as do range bounds). Additionally, a mixed inequality

is turned into a disjunction (via Disjoin) at creation time, so

that all inequalities in the AST are either linear or periodic.

5.2 Affine Unswitching
The polyhedron decomposition algorithm is a variation of

Fourier-Motzkin elimination, with two differences. The first

(minor) difference is that the algorithm “eliminates” inequal-

ities rather than variables. The second (major) difference,

is that it does not only combine lower bounds with up-

per bounds, but also “compares” two lower (or two upper)

bounds to discriminate ranges of variables depending on

which bound is effective. Both operations are performed at

once by affine unswitching, which is a way to hoist an in-

equality out of its nearest enclosing range, or, more precisely,

out of the nearest enclosing range of a variable or parameter

appearing in the inequality.

As we have mentioned earlier, all inequalities in the AST

are either linear or periodic. Affine unswitching applies to

linear inequalities. Consider such an inequality, an upper

bound here, and its nearest enclosing range construct:

for/when L ≤ sxn ≤ U do
... axn ≤ X ...

where L, U , and X are arbitrary expressions not involving

xn . Affine unswitching transforms this construct into:

if sX < aL then [

aL
]

aU

]

sXfor L ≤ sxn ≤ U do

... axn ≤ X ... // = false

else if sX < aU then

for aL ≤ asxn ≤ sX do [

aL
]

aU

]

sX... axn ≤ X ... // = true

for s (X + a) ≤ asxn ≤ aU do

... axn ≤ X ... // = false

else // sX ≥ aU [

aL
]

aU

]

sXfor L ≤ sxn ≤ U do

... axn ≤ X ... // = true

There is an exactly symmetric definition of affine unswitch-

ing dedicated to lower bounds, which we omit.

Essentially, this transformed code covers all possible or-

derings of the bound provided by the inequality (X ) and the

range bounds (L and U ), and determines all possible ranges

where the inequality has an uniform truth value. On these

ranges, the inequality can be replaced with a boolean con-

stant. New guards are placed above variations of the original

construct: by construction, they do not involve xn , and en-

sure that the new ranges are non-empty. Condition sX < aL
is (a slight variation on) the result of a Fourier-Motzkin com-

bination step, while sX < aU is discriminating between two

competing upper bounds, breaking the range of xn to ensure

a uniform truth value of the original inequality.

Affine unswitching applies to linear inequalities, but actu-
ally also to periodic inequalities, such as:

⟨X0,X1, . . .⟩
πn
xn ≥ 0

which can be viewed as a collection of inequalities:

⟨X0 ≥ 0, X1 ≥ 0, . . .⟩πnxn

These inner inequalities X0 ≥ 0, X1 ≥ 0, . . . , are hoisted

first, eventually turning the original periodic inequality into

a “periodic boolean” ⟨b0,b1, . . .⟩xn , where bi ∈ {true,false}.
At this point, unless xn is a parameter, the enclosing range

on xn is unrolled by a factor of πn , and the condition finally

vanishes. We omit the details. Note that unrolling applies

to regular variable ranges only: for parameters, the periodic

boolean is kept as is. This is the only difference between

when and for.
It is important to realize that affine unswitching (and un-

rolling) applies without restriction. Any inequality can be

eventually hoisted from its nearest enclosing range. The de-

composition algorithm simply hoists inequalities repeatedly.

All inequalities bubble up the AST, losing at least one variable

during every unswitching, and eventually evaporate through

the root. What remains is an AST that is totally free of condi-

tionals (not even min /max in range bounds), and where all

ranges are guaranteed to contain at least one integer value:

this is the decomposition of the original polyhedron.

The decomposition of LS(N ) is shown in Figure 3 (for

reference, a plot of LS(5) appears in Section 3.4). Single-value

ranges have been elided to save space : their unique value

appears in the exec statement. The striking characteristic

of this code is its extreme fragmentation: it comes from the

stormy intersections between the two upper bounds on y,
and symmetrically between the lower bounds. The smallest

N for which a significant range appears in between these

two intersections is N = 5. For the same reason, all values of

N between 1 and 4 need to be special-cased. When N ≥ 5,

the stable body of this polyhedron is with x between 11

and 3N − 3. Across this range, the range on y has width

((x + ⟨3,5,4⟩x ) − (x + ⟨3,2,4⟩x ))/3 + 1 = ⟨1,2,1⟩x . Dividing
by the scale is necessarily exact since bounds are tight.

8
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when N = 0
exec S(1,1); exec S(3,2); exec S(5,3); exec S(7,4)

when N = 1
exec S(1,1)
for 3 <= x <= 8

exec S(x,x+[x:0,1]//2)
exec S(10,5)

when N = 2 [...]
when N = 3 [...]
when N = 4 [...]
when 5 <= N <= _

exec S(1,1)
for 3 <= x <= 8

for 2x+[x:6,4,8] <= 6y <= 3x+[x:0,3]
exec S(x,y)

exec S(9,4)
for 4 <= y <= 5

exec S(10,y)
for 11 <= x <= 3N-3

for x+[x:3,2,4] <= 3y <= x+[x:3,5,4]
exec S(x,y)

for N <= y <= N+1
exec S(3N-2,y)

exec S(3N-1,N+1)
for 3N <= x <= 3N+5

for 3x-3N+[x:[N:6,3],[N:3,6]] <= 6y <= 2x+[x:6,10,8]
exec S(x,y)

exec S(3N+7,N+4)

Figure 3. Decomposition of LS(N ). Indentation is nesting.

Another example is the following polyhedron, with pa-

rameters P and Q , the intersection of a pyramid and a plane:




0 ≤ i ≤ P

0 ≤ j ≤ i

0 ≤ k ≤ i − j

Q = i + j + k (0, 0, 0) (P,
0, 0

)

(P, P, 0)

(P, 0, P )

Q < P

Q = P

Q > P

Repeated affine unswitching produces:

when P = 0
when Q = 0

exec S(0,0,0)
when 1 <= P <= _
when 0 <= Q <= P

for Q+[Q:0,1] <= 2i <= 2Q
for 0 <= j <= -i+Q

exec S(i,j,-j-i+Q)
when P+1 <= Q <= 2P

for Q+[Q:0,1] <= 2i <= 2P
for 0 <= j <= -i+Q

exec S(i,j,-j-i+Q)

Decomposition happens in parameter space. When P ≥ 1,

the algorithm correctly discriminates between “triangular”

(0 ≤ Q ≤ P ) and “quadrilateral” (P + 1 ≤ Q ≤ 2P ) regions.

Our last example illustrates periodic booleans and un-

rolling. It starts from a union, implemented as:

for _ <= t <= _
for _ <= i <= _

if t = 2i then
exec S1(t,i)

if t = 2i+1 then
exec S2(t,i)

In our implementation, equality relations are treated as pairs

of inequalities. Note that both t and i have unbounded

ranges. After some affine unswitching, the AST becomes:

for _ <= t <= _
if [t:true,false] then

exec S1(t)(t+[t:0,-1]//2)
if [t:false,true] then

exec S2(t)(t+[t:0,-1]//2)

The next step is to unroll the loop over t, leading to:

for _ <= 2t <= _
exec S1(2t)(t)
exec S2(2t+1)(t)

5.3 Applications
A decomposition actually provides a projection, at the cost

of some fragmentation (again). In Figure 3, the projection

onto [N ,x] is easily computed by pruning the AST below

ranges on x . What remains is the set {1,3,5,7} for N = 0, the

union {1} ∪ [3,8] ∪ {10} for N = 1, and

{1} ∪ [3,8] ∪ {9} ∪ {10} ∪ [11,3N − 3] ∪

{3N − 2} ∪ {3N − 1} ∪ [3N ,3N + 5] ∪ {3N + 7}

forN ≥ 5, which is a ridiculous but accurate way to represent

{1} ∪ [3,3N + 5]∪ {3N + 7}. Fragmentation is unavoidable in

the general case though, because the projection of a disjoint

union is not necessarily a disjoint union. Moreover, it is

very easy to “stitch” together the various pieces, but a fully

general description of the algorithm would take us too far.

More interesting is the fact that decomposition provides

lexical minimum and maximum with no further processing.

Inside each parameter domain, keeping the lower bound

(resp. upper bound) of each range and the first (resp. last)

statement of each sequence, one obtains the lexical minimum

(resp. maximum). An example is found in the next paragraph.

Since lexical extrema are so easy to procure at any level of

the tree, algorithms that rely on repeatedly computing them

are easy to adapt when given a decomposition. A notable ex-

ample is the building of a finite state machine that indicates,

for any leaf statement instance, what the next statement

instance is according to the lexicographic order [4]. The non-

emptiness of value ranges is here of paramount importance.

A full description of the algorithm would take us too far.

Another interesting application of the ability to extract

lexical extrema is linear optimization, where the goal is to

find inside a polyhedron the integer point(s) that maximizes

or minimizes a given function z = f (x1, . . . ,xn ). The idea is
9
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to build a decomposition of an (n + 1)-dimensional polyhe-

dron, with the z variable placed after/under parameters but

before/above regular variables, and start from the logical con-

junction of the polyhedron and the function definition. The

optimal values are provided by the lexical extreme values

on z after decomposition. One can even place congruence

requirements on z. For instance, optimizing 15z + 2 = x over

LS(N ) searches for extreme (actually all) values congruent

to 2 modulo 15, resulting in:

when N = 4
exec S(1,17,7)

when 5 <= N <= _
for 5 <= 5z <= N+[N:0,-1,-2,-3,1]

exec S(z,15z+2,5z+2)

For N < 4, the polyhedron is too short. Otherwise, the

maximum value z∗ is such that 5z∗ = N − ⟨0,1,2,3,−1⟩N , or:

5z∗ = N − 3 + ⟨0,4, . . . ,1⟩N−3 = N + 1 − ⟨0,1, . . . ,4⟩N+1

that is, 5z∗ is the multiple of 5 between N − 3 and N + 1.

The corresponding point is (15z∗ + 2,5z∗ + 2). Note that

this example is over-fragmented (again): the case N = 4 is

covered by the other case.

Finally, the AST is an executable program, modulo syn-

tax. Periodic numbers are trivial to implement, and easy to

strength-reduce. The AST-as-a-loop-nest has no branch be-

sides parameter tests and loop control. For reference, we

have run (by hand) on LS(N ) the pioneering code-generation

algorithm of Ancourt and Irigoin [2], which is based on

Fourier-Motzkin elimination [1, Chap. 11]. The result is:

when 0 <= N <= _
for 1 <= x <= 3N+7

for max(⌈ x+2
3
⌉, ⌈ x−N+1

2
⌉) <= y <= min(⌊ x+5

3
⌋, ⌊ x+1

2
⌋)

exec S(x,y)

All modern code-generators [3, 15] we have tried produce the

same result. Code generation is a distinct topic, with different

objectives [10], and even defining terms for a meaningful

comparison would take us too far.

6 Conclusion
This paper offers a new characterization of linear inequalities

over integer variables, with a focus on expressive power

and precision. Major operations include tightening, which

ensures precise and reversible combinations, and disjoining,

which makes inherent disjunctions explicit. Algorithms for

decision and decomposition have been described, and some

potential applications highlighted. Thanks to the accuracy

of periodic-linear expressions, the algorithms are simple

repeated applications of elementary operations.

This preliminary work has ignored important questions

about complexity (not even considering that almost all prob-

lemswith integers are NP-hard [12]). First, tightening bounds

may produce periodic numbers of size proportional to a co-

efficient to the power of the number of variables, which is

obviously problematic. We expect to alleviate this problem

by a combination of laziness (delaying the creation of nor-

malized representations) and arithmetic properties (many

examples in this paper have shorter representations: for in-

stance, ⟨6,1,8,3,4,5⟩x ≤ x is just ⟨4,1⟩x ≤ x). Second, the
decomposition algorithm is extremely sensitive to the or-

der in which inequalities are examined, with frequent over-

fragmentation, which has a tremendous impact on program

size. We expect to avoid these drawbacks with the help of

selection heuristics, combined with a dedicated range fusion

strategy applicable after damage.
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A Implementation Notes
This appendix collects information about some aspects of

the implementation of the algorithms described in this paper.

It uses a simple C++-based language for code fragments.

A.1 Data Structures
Periodic numbers are defined over an ordered set of vari-

ables, and decay into plain integers when that set is empty.

Variables names are never stored, and must be provided ex-

plicitly when input/input is involved. The data structure for

periodic numbers, in Figure 4 (lines 1–8), strictly follows the

simplified normal form (see Equation (5) in Section 3.1). A

periodic number is essentially a tree, with leaves for plain in-

tegers and inner nodes carrying a coefficient and a collection

of sub-numbers. Here is a graphical depiction of an example

number (taken from Figure 2) over variables [N ,x]:

−N +
〈
⟨2,1⟩N ,⟨0,1⟩N

〉
x

= 0x +
〈
−N + ⟨2,1⟩N , −N + ⟨0,1⟩N

〉
x

PN(0, {·,·}) (x)

PN(-1, {·,·}) PN(-1, {·,·}) (N)

PN(2, {}) PN(1, {}) PN(0, {}) PN(1, {})

In this paper, periodic numbers have strong invariants: all

coeff values are identical for a given variable (coefficients

are not periodic), and so do phases size (the constant term
is a hyper-rectangle of integers). A dense representation is

possible, with a vector of coefficients and a multidimensional

array of integers for the constant term. We have favored a

generic, sparse representation for ease of implementation,

and also to allow the exploration of less constrained settings.

Figure 4 shows the implementation of add (lines 9–20),

performing addition of two periodic numbers provided they

are defined over the same set of variables (mod computes

arithmetic modulo). Almost all core operations (scaling, gcd

extraction and reduction, and so on) follow the same pattern.

A.2 Normalization (Section 3.1)
Most, if not all, of our work relies on the ability to tighten

inequalities over integer variables. Tightening takes an arbi-

trary periodic linear expression and adds a corrective term to

“bring it back” to a multiple of a given coefficient: see Equa-

tions (6), (7), and (10) in Section 3.2. The corrective term

for an PLE X is of the form ⟨0,1, . . . ,π − 1⟩πX (or a variant

thereof). This section details how such an expression is put

in simplified normal form when X itself is.

Assume X is an normalized PLE over variables [. . . ,y,z]:

X = αz +
〈
Y0,Y1, . . . ,Yβ−1

〉β
z

where all Yi , for 0 ≤ i < β , are PLEs over variables [. . . ,y].
The rules of Table 1 let us progressively turn the correc-

tive term ⟨0, . . .⟩πX into its normal form. Before detailing the

1 struct PN {
2 int coeff;
3 vector<PN> phases;
4 PN(int c, vector<PN> p): coeff(c),phases(p) {}
5 int period () {return phases.size();}
6 bool isplain() {return period() == 0;}
7 PN at(int i) {return phases[mod(i,period())];}
8 };
9 PN add(PN pn1, PN pn2)
10 {
11 assert ( pn1.isplain() == pn2.isplain() );
12 if ( pn1.isplain() ) {
13 return PN(pn1.coeff + pn2.coeff, {});
14 } else {
15 int pi = lcm(pn1.period(), pn2.period());
16 vector<PN> r; // of size pi
17 for ( int i=0 ; i<pi ; i++ )
18 r[i] = add(pn1.at(i), pn2.at(i));
19 return PN(pn1.coeff + pn2.coeff, r);
20 } }

Figure 4. Implementing periodic numbers

derivation, we introduce the following notation:〈〈
δ
〉〉π
X
= ⟨0,1, . . . ,π − 1⟩πX+δ =

i〈
. . . , (δ + i ) mod π , . . .

〉π
X

where 0 ≤ δ < π . This notation is convenient, because nor-

malization will repeatedly rotate constant periodic numbers.

Here are now the details of the derivation, which is a typi-

cal example of symbolic manipulations of periodic numbers.

Starting with

⟨0,1, . . .⟩π
αz+⟨Y0, ...⟩

β
z

=
〈〈
0

〉〉π
αz+⟨Y0, ...⟩

β
z

=
i〈
. . . ,

〈〈
i
〉〉π
⟨Y0, ...⟩

β
z
, . . .

〉π
αz

(after separation)

let π ′ = π/ gcd(α mod π ,π ) and apply division by α mod π

=
i′〈
. . . ,

〈〈
αi ′ mod π

〉〉π
⟨Y0, ...⟩

β
z
, . . .

〉π ′
z

apply distribution of ⟨Y0, . . .⟩
β
z

=
i′
〈
. . . ,

j〈
. . . ,

〈〈
αi ′ mod π

〉〉π
Yj
, . . .

〉β
z
, . . .

〉π ′
z

let π ′′ = lcm(β ,π ′), and apply extension to π ′′ on the outer

periodic number and on all its components; this turns i ′ into
i ′′ mod π ′, which simplifies as

=
i′′
〈
. . . ,

j′〈
. . . ,

〈〈
αi ′′ mod π

〉〉π
Y(j′ mod β )

, . . .
〉π ′′
z
, . . .

〉π ′′
z

and apply diagonalization

=
k〈
. . . ,

〈〈
αk mod π

〉〉π
Y(k mod β )

, . . .
〉π ′′
z

(12)

11
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This last diagonalization step consists in realizing that two

periodic levels have the same argument z and same period

π ′′. These two dimensions coalesce (index k replaces both

i ′′ and j ′), and only elements with identical positions at both

levels are kept.

Note that the derivation must be slightly generalized to

provide a recursive definition of normalization, because Equa-

tion (12) contains arbitrarily rotated periodic constant. One

can easily verify that:〈〈
δ
〉〉π
αz+⟨Y0, ...⟩

β
z
=

k〈
. . . ,

〈〈
(δ + αk ) mod π

〉〉π
Y(k mod β )

, . . .
〉π ′′
z

This last equation can be directly translated into code:

PN correction(PN pn, int delta, int pi)
{

if ( pn.isplain() ) {
return PN(mod(delta + pn.coeff, pi), {});

} else {
int pi1 = pi / gcd(pi, mod(pn.coeff, pi));
int pi2 = lcm(pn.period(), pi1);
vector<PN> r; // of size pi2
for ( int k=0 ; k<pi2 ; k++ ) {

int delta1 = mod(delta + pn.coeff*k, pi);
r[k] = correction(pn.at(k), delta1, pi);

}
return PN(0, r);

} }

The result of correction(...) has the same structure and

depth as its first argument, and all coefficients equal to zero.

A.3 Disjoining (Section 3.4)
The Disjoin algorithm turns a mixed inequality (where the

bound is periodic) over variables [. . . ,x ,y,z]

⟨Y0, . . .⟩
πz
z ≤ αzz with πz > 1 (13)

into a logical expression where all bounds are no more peri-
odic in z (A = B is a shorthand for A ≤ B ∧ B ≤ A):

(αzz = Ok ) ∨ . . . ∨ (αzz = O1) ∨ (M ≤ αzz)

All of M (the major bound) and O j (1 ≤ j ≤ k , the out-
liers) are PLEs over [. . . ,y], not involving z anymore. We

will henceforth use notation {M ,O1, . . . ,Ok } to collectively

represent the major bound and all outliers.

The principles of disjoining multidimensional bounds is

illustrated on the following picture:





X00

X01

...



πy

y

,



X10

X11

...



πy

y

, . . .



πz

z



[X00,X10, . . .]
πz
z

[X01,X11, . . .]
πz
z

...



πy

y



{
M0,O01, . . .

}
{
M1,O11, . . .

}

...



πy

y






M0

M1

...



πy

y

,



O01

O11

...



πy

y

, . . .




(a)

(b)

(c)

Starting from a bound with πz > 1, step (a) does an inter-

change of the outer two variables, pulling y out to represent

the bound as phases of y modulo πy . Step (b) is a recursive

processing of these phases, acting over the remaining vari-

ables [. . . ,x ,z], and returning a complete set of bounds for

each phase of y. Step (c) turns a periodic series of lists of

bounds into a list of periodic bounds.

Overall, the processing is surrounded by two transposi-

tions, and recurses until reaching a situation where z is the
only remaining variable; at this point, Disjoin_1 (see Sec-

tion 3.4) applies. This happens for every possible phase of

variables [. . . ,x ,y]. A simplified version of the code is:

vector<PN> disjoin(vector<PN> ps, int alpha)
{

int piz = ps.size();
if ( ps[0].isplain() ) {

int vm = ps[0].coeff;
for ( int i=1 ; i<piz ; i++ )

vm = max(vm, ps[i].coeff);
int M = vm - alpha*(piz-1);
vector<PN> bounds; // initially empty
bounds.append(PN(M, {}));
for ( int i=0 ; i<piz ; i++ )

if ( ps[i].coeff < M )
bounds.append(PN(ps[i].coeff, {}));

return bounds;
} else {

int piy = ps[0].period();
vector<vector<PN>> rec; // of size piy
for ( int j=0 ; j<piy ; j++ ) { // (a)

vector<PN> cj; // of size piz
for ( int i=0 ; i<piz ; i++ )

cj[i] = ps[i].phases[j];
rec[j] = disjoin(cj, alpha); // (b)

}
// ... standardize sizes in rec ...
int bsize = rec[0].size();
vector<PN> bounds; // of size bsize
for ( int k=0 ; k<bsize ; k++ ) { // (c)

vector<PN> ph; // of size piy
for ( int j=0 ; j<piy ; j++ )

ph[j] = rec[j][k];
bounds[k] = PN(ps[0].coeff, ph);

}
return bounds;

} }

Given an inequality such as Equation (13), the initial call to

disjoin is with arguments [Y0, . . .] and αz . This code relies
on periodic number invariantsmentioned earlier: coefficients

must not be periodic, and bounds must be rectangular (all πy
values equal in the schema above). To simplify exposition, it

assumes that all lists of bounds are of the same size (variable

bsize): in practice, the lengths may need to be standardized

by adding dummy bounds. Also ignored is the fact that out-

liers can be grouped into intervals. In general, the treatment

of outliers supports several variations.
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