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Motivation / Polyhedra and Integers
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Motivation / Polyhedra and Integers

Omega’s nightmare LS(N)
3 < 11x+ 13y < 21 2<3y-x<5
-8< 7x-9y <6 1-N<2y—-x<1
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» empty (no integer points) » holes
» non-empty rational » “fuzzy” vertices

projections » periodic y-span



Motivation / Incomplete Variable Elimination

Omega’s nightmare
-1Ix+3 < 13y < —11x+ 21
7x—6< 9y <7x+8

Fourier-Motzkin variable elimination (of y)

9. (=11x+3) < 13-(7x +38)

> = 77 < 190x < 267
13-(7x—6) < 9-(—1lx+21) = TIX=



Motivation / Incomplete Variable Elimination

Omega’s nightmare
-1Ix+3 < 13y < —11x+ 21
7x—6< 9y < 7x+8

Fourier-Motzkin variable elimination (of y)

9-(—11x+3) < 13-(7x+38) o 77 < 190x < 267
13- (7x—6) < 9-(=T11x+21) = =

What went wrong? Loose bounds...
» A tight bound would be: 9y < 7x 4+ 8 — (7x + 8) mod 9
» Combinations accumulate and amplify the “slack”
—77 +[9(12 = (2 = 11x) mod 13) + 13((7x + 8) mod 9)] < 190x

upto2-9-13-9-13=212




Motivation / Imprecise Bound Comparisons

LS(N)
x+2 <3y <x+5
Xx+1-N <2y < x+1

for 1 <= x <= 3N+7
2 1-N _ _ . X+5 X
for max([%27, [¥5]) <= y <= min([*22], | X))
exec S(x,y)



Motivation / Imprecise Bound Comparisons

LS(N)
x+2 <3y <x+5
Xx+1-N <2y < x+1

Which (upper) bound is effective where?
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Motivation / Imprecise Bound Comparisons

LS(N)
x+2 <3y <x+5
Xx+1-N <2y < x+1
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Motivation / Imprecise Bound Comparisons

LS(N)
x+2 <3y <x+5
Xx+1-N <2y < x+1
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Motivation / Imprecise Bound Comparisons

LS(N)
x+2 <3y <x+5
Xx+1-N <2y < x+1
Which (upper) bound is effective where?
. 5
/%”://,¢3Y§X*
A o F ¢
4 ,/.’///o: /a
e o0
&7 ://;’ et
\‘i/‘:

w1 3 5 7 9 11 13

3-(x+1=(x+1)mod2) <> 2-(x+5-(x+5)mod3)



Motivation / What Problem are we Trying to Solve?

1. Tightening bounds
» find a workable modulo representation
» define precise combinations

2. The Omicron Test
> Fourier-Motzkin-like decision procedure
» correct and complete
3. Polyhedron Decomposition
» via affine unswitching
» applications: transformation, projection, optimization

Strategy
» Be Radically Integral
» no |—] or [—1, no inexact division
> no loose bound!
» Focus on Representation, not on Algorithms
» find a set of elementary operations
» algorithms should simply repeat while possible



Periodic-Linear Inequalities



Periodic-Linear Inequalities / Periodic Numbers

A periodic number is a collection of numbers indexed by the
congruence class of an expression:

Vo if x=0mod
. vi if x=1mod

VV...V_>:
<0’Ta 57Z'TX

Vi1 ifx=(r—1)modrx

Essentially a notation, with useful operations:

Rotation <V0, Vi, .. ‘>;r+] = (V], ey V()x(r

o i 7/ ged(rr,c)
Division (Vos +« )0 = < - +» Vci mod ) - - .>X

),

X

Distribution (v, ...)* =
<W("""‘/V/”’]>x
. a

. a _! a
Separation Vo, o v vy Va—1>x+y = < R va_1>/.+y, .. .>X




Periodic-Linear Inequalities / Modulos

Modulos: for any expression X
Xmod 7 =(0,1,...,7 = 1)Y
The maximal multiple of x less than or equal to X
X=Xmodr=X-(0,1,...,m1 = 1)
Tightened linear bounds have:
» asharp linear part %
» a periodic correction /'\*
9y < 7x+8— (7x +8) mod 9 o
<7x+8—1(0.....8);

7x+8

<7x+8-1(8,6,4,2,0,7,53,1),

\

Works for any number of variables:
3

1 1 1
3 3 3 3
(Yo, V15 V2)oy6y457-1 = <<<Vz, vi, Vo>x>y , <<V1, Vo, Vz>x>y , <<Vo, V2, Vi >X>y>
z



Periodic-Linear Inequalities / Normal Forms

Periodic-linear expressions (PLEs) in normal form over [xi, .. ., x,]:
n
TTn—1 7T
. Xn—1 Xn
i=1
or in simplified normal form

anXn + < oy Ap-1Xp-1 + < o ;T: ‘19 o '>:”
If X and Y are PLEs, n an integer, then:
nX, (X+Y), (Xmodmx), X[Y/x(] areallPLEs

Periodic-linear inequalities are PLEs compared to zero:

AnXp + (Xo, .. )% 20 with X, ... PLEs over [xi, ..., X,-1]



Periodic-Linear Inequalities / Linearity and Periodicity 3

LS(N) over [N, x, y] with tightened inequalities:

x+(3,2,4), <3y < x+(3,5,4),
x—N+<(2,1>N,<1’2>N>X < 2y < x 440, 1),

and over [N, x| after combination

K2, N0, DA, =N <0 0<(3,0,3),

<m»m0Amxzwmf

(6,1,8,3,4,5), < x x <3N+
* (3,0)n, {4, TN, (5, 2 n

Categories:
1
» linear: 3y < <x + (3, 5’4>X>y
> periodic: ((2, )y .(0, 1>N>X - N <0x

> mixed: <6, 1,8,3,4, 5>X < x



Periodic-Linear Inequalities / Tightening

Given a (potentially loose) periodic-linear inequality over [. .., x,]:

AnXn < {Xp, ... )" or (Xo» - - X" < @nXxn

/! xp,

the following inequality is an equivalent tight bound

. TTn
apnx, < ’< X,-—(o,1,...,a,,nn—1>“"”“ >

. b
X,-—la,, Xn

— the rhs is a multiple of a, for all phases of x, modulo 7,
(and all phases of the other variables)



Periodic-Linear Inequalities / Periodicity and Disjunction 2

24

Mixed tight bounds are “fuzzy”
x+(3,2,4), <3y 2y <x+(0,1), o ®

= (6,1,8,3,4,5), < x
T B Gy i §

DisjoIN turns a mixed bound into a disjunction of linear bounds:
it computes a major bound plus outliers

(6,1,8,3,4,5), < x = (x=1)V@B<x)
6
x < 3N+<§gg;zg‘;izgiiz> = (x<3N+5)V(x=3N+7)

Omega’s nightmare (left corner)
—1x+ (. )P <13y 9y <TIx+(..)]

(117,73,29,-15,...,-29,44)!" < 190x
= (117,1,2,3,...,115,116)]"7 < x
:> ] < x o 1 11



The Omicron Test



The Omicron Test / Correct and Complete Decision

Fourier-Motzkin elimination on Q relies on an equivalence:

filxts .oy Xnm1) < axg bx, < fu(x1s ..., Xn=1)
zq| o
b-fi(x1,...,xp=1) < a- fulx1,. s Xp—1)

Restoring completeness on Z by tightening

loose bounds (4<3x) L<ax bx<U (3x<5)
tight bounds (6<3x) I’'<ax bx<U (3x<3)
combination b’ < al’ (6<3)

— keep bounds tight at all times



The Omicron Test / Inequality Maintenance

Combining mixed bounds may not eliminate the variable

(0,3) . (7. 4)y » (2. 5)n ,>6

<37 O>N 5 <4’ 7>N 5 <5, 2>N

<<2, D (=2, =1)n (2, Ty ,>6
<O’ 1>N ’ <O’ _1>N ’<07 1>N

— apply Disjoin, and fork the system (if needed)

(6,1,8,3,4,5), < x x§3N+<

X

<N

There is no way to combine periodic bounds

x=2x"+0 A (2,1)y <N

2
{2, )N, 0, e SN = { x=2x"+1 A (0,1)y <N

— splinter the system and change variables



The Omicron Test / On Omega’s Nightmare

3-11x < 13y <21—11x
7X—-6<9 <7x+8

= tighten+combine

1

(117,73,29, ..., 487 < 190x
190x < (117,73,146. .., 161) 17

=7

-
= tighten+disjoin

y
1T<x<0

= combine

|

false



The Omicron Test / On Omega’s Nightmare

3-11x < 13y <21—11x
7X—-6<9 <7x+8

= tighten+combine

!

(117,73,29, ..., 487 < 190x
190x < (117,73,146. .., 161) 17

=7
77 ) e
= tighten+disjoin = alternative: splintering by 117
1 _—
1<x<0 117 < 22230x" < 117
- - - — — false
= combine = tighten+combine
1 .
. (115 more)
false .
—21996 < 22230x” < —21879
L

— false

= tighten+combine



The Omicron Test / Projection?

On Q, Fourier-Motzkin Elimination can be used for projection
Omicron can as well, but produces a disjoint union.

X+2 <3y <x+5
x=-N+1<2y<x+1

(x even) / \ (x odd)

4<2X +0 <3N+ {4, 7y 1<2X +1<3N+(7,4)y

1<N 0<N

A decomposition is a partition of a polyhedron such that,
in each part:

» each variable has a contiguous non-empty range

» with elementary bounds (no min / max)



Decomposition



Decomposition / Polyhedra and ASTs

To keep a collection of (disjoint) polyhedra: an AST

» if condition then statements [else statements]
» arbitrary logical combinations
» all inequalities properly tightened
» no mixed inequalities (thanks to DisjoiN)

» exec label

» for/when PLE <= scale X counter <= PLE  statements
» scale used only to keep bounds tight, e.g.,

for 2x + [x:6,4,8] <= 6y <= 3x + [x:0,3] ...
The AST keeps a layer for each variable. On LS(N), start with

when _ <= N <= _
for _ <= x <= _
for _ <=y <= _
if 3y <= x+[x:3,5,4] and ... then
exec S



Decomposition / Affine Unswitching

Starting from an inequality and its innermost enclosing loop

for/when L <sx, <U
axp < X

Affine unswitching produces:

al al
if sX < al then ---t +---
—F -
for L < sx, < Udo X
| axy <X\...// = false
’else if sX < aU then‘ al aU
for al < asx, < sX do -
B 1 —_— 3
Laf(”,ée(J"' // = true X
for s(X + a) < asx, < aU do
[a%n:gg(j\ // = false al alU
else //sX = aU -
- -
for L < sx, < Udo X

:ax,,SX‘\...// = true



Decomposition / Hoisting Inequalities

Periodic inequalities need special treatment:
(Xo, X1, .. .)fn“ >0 is viewed as (Xo =20, X; >0, ...

I xp

then individual inner inequalities are hoisted,
eventually leaving a periodic boolean:

(bo, b1, .. )" with b; € {true, false}

At this point, the for-range on x, is unrolled by a factor 7,



Decomposition / On LS(N)

when N = @

exec S(1,1); exec S(3,2); exec S(5,3); exec S(7,4)
when N =1 [...] when N=2T[...] when N=3[...] when N=4[...]
when 5 <= N <= _

exec S(1,1) .
for 3 <= x <= 8 10
for 2x+[x:6,4,8] <= 6y <= 3x+[x:0,3] ] P
exec S(x,y) ! g@g ]
1

for 11 <= x <= 3N-3
for x+[x:3,2,4] <= 3y <= x+[x:3,5,4]
exec S(x,y)

25

exec S(3N-1,N+1)
for 3N <= x <= 3N+5
for 3x-3N+[x:[N:6,3],[N:3,6]] <= 6y <= 2x+[x:6,10,8]
exec S(x,y)
exec S(3N+7,N+4)



Decomposition / Example

when P = @
< j <i when Q = 0
. exec S(0,90,0)
k< r=J when 1 <= P <= _

when 0 <= Q <= P
for Q+[Q:0,1] <= 2i <= 2Q
for 0 <= j <= -i+Q
exec S(i,j,-j-i+Q)
when P+1 <= Q <= 2P
for Q+[Q:0,1] <= 2i <= 2P
for @ <= j <= -i+Q
exec S(i,j,-j-i+Q)




Decomposition / Polyhedral Operations

Most polyhedral operations can be implemented by hoisting:

» image (and pre-image): e.g., skewing a rectangle

for _ <= x <= [:::::]

for _ <=y <= _
if @ <= x <=19 and @ <=y <= 9 then

exec S(x,y)
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» image (and pre-image): e.g., skewing a rectangle
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Decomposition / Polyhedral Operations

Most polyhedral operations can be implemented by hoisting:
» image (and pre-image): e.g., skewing a rectangle
for _ <= x' <=
for _ <=y’

for _ <= xi;_ E =

for _ <=y <= _
if @ <= x <=19 and @ <=y <= 9 then
if x' = xty and y' =y then
exec S(x',y',x,y)

After unswitching:
for @ <= x' <=9
for @ <= y' <= x'
exec S(x',y',-y'+x',y")
for 10 <= x' <= 19
for @ <=y' <=9
exec S(x',y',-y'+x',y")
for 20 <= x' <= 28
for x' =19 <=y' <=9
exec S(x',y',-y'+x',y")



Decomposition / Polyhedral Operations

Most polyhedral operations can be implemented by hoisting:
» image (and pre-image): e.g., skewing a rectangle

for _ <= x' <=

for _ <= y' <= _ 5
For _ < x <= =2

for _ <=y <= _
if 0 <= x==<%J and 0 <=y <= 9 then
if x' = xty and y' =y then
exec S(x',y',x,y)

After unswitching:
for @ <= x' <=9
for 0 <= y' <= x'
exec S(x',y',-y'+x',y")
for 10 <= x' =<9
for @ <=y' <=9
exec S(x',y',-y'+x',y")




Decomposition / Polyhedral Operations

Most polyhedral operations can be implemented by hoisting:

» image (and pre-image): e.g., skewing a rectangle

for _ <= x' <= _
for _ <= y' <= _ e
for _ <= x <= _ - s
for _ <=y <= _

ifZ<<x=><%J and 0 <= y <= 9 then

if x' = xty and y' =y then

exec S(x',y',x,y)

After unswitching:

for IT@<= x' =<9
for 0 <=y' <=9
exec S(x',y',-y'+x',y")




Polyhedral Operations

Decomposition /

Most polyhedral operations can be implemented by hoisting:
» image (and pre-image): e.g., skewing a rectangle

for _ <= x' <= _
for _ <= y' <= _ —_—
for _ <= x <= _ =
for _ <=y <= _
if << x> and 0 <= y <= 9 then
if x' = x+ty and y' =y then
exec S(x',y',x,y)

After unswitching:

for T<= x' =<9
for @ <=y' <=9
for x'-y' <= x <= x'-y'
for y' <=y <=y'
exec S(x',y',-y'+x",y")



Decomposition / Lexicographic Extrema

After repeated hoisting/unswitching:
» no if-then-else conditional parts
» no empty range

— lexicographic extrema are readily available

for 0 <= x' <=9
for 9 <= y' <= x'
exec S(x',y',-y'+x',y")
for 10 <= x' <= 18
for @ <=y' <=9
exec S(x',y',-y'+x',y")
for 19 <= x' <= 28
for x' - 19 <=y' <=9
exec S(x',y',-y'+x',y")



Decomposition / Lexicographic Extrema

Linear optimization: min/maximize over LS(N)

when _ <= N <= _
for _ <= x <= _
for _ <=y <= _

if ... then

exec S



Decomposition / Lexicographic Extrema

Linear optimization: min/maximize over LS(N)

when _ <= N <= _
for _ <=z <= _
for _ <= x <= _
for _ <=y <= _
if ... then

exec S




Decomposition / Lexicographic Extrema

Linear optimization: min/maximize over LS(N)

when _ <= N <= _
for _ <=z <= _
for _ <= x <= _
for _ <=y <= _

if ... then

exec S
produces
when N = 4

exec S(1,17,7)
when 5 <= N <= _
for 5 <= 5z <= N+[N:0,-1,-2,-3,1]
exec S(z,15z+2,5z+2)

. N=(0,1,2,3,~1) 2
i.e., Zmin = 1(at x = 17) and zpax = % = f%] =1



Decomposition / Finite State Machines

States: one per (static) exec statement
Transitions: given by function NexT (—), defined with FirsT (—):

[...]
for 3 <= x <= 10 do
for 2x+[x:6,4,8] <= 6y' <= 3x+[x:0,3] do

“Slexec S2(x,y")

done

done<”’
for 11 <= x <= 3N-3 do
S for x+[x:3,2,4] <= 3y' <= x+[x:3,5,4] do
“Sexec S3(x,y")
[...]

Note: the result of NExT tests each variable exactly once (“at” done)



Summary
» A new representation for inequalities
» Tightening

» Precise combination/comparison

\{

A correct and complete decision procedure

v

Polyhedron decomposition into simple ranges

v

Essential polyhedral operations reformulated

More work needed on:

» reducing size/complexity of representations and algorithms

» delay normalization of “deeper levels”
> leverage more arithmetic properties

» strategies & heuristics for “simplest” decomposition

» very frequent excessive fragmentation
» avoidance or correction?






Backup Slides / Normal Forms and Space Complexity

The modulo of a PLE is a PLE

(anxn + (X, - . }ff:) mod S

= (0,1,.. '>f,,xn+(xo,--->z1n ’
= "(. o (ank + X(k mod ﬁ)) mod § >:

where 7} = lem(,, B/ gcd(ap, B))
The overall size of a corrective term for
anXn < (X0, - - Tn

I xp

” p
| [temtmn ey



Backup Slides / Periodicity and Disjunction

Mixed tight bounds are “fuzzy” o
x+(3,2,4), <3y 2y <x+(0,1), o ®
= (6,1,8,3,4,5), < x
T B Gy i §

These can be turned into disjunctions of linear bounds

DisjoIN_1({vp, . . .)7 < ax)
let v,;, = max{v;}
let M= vy, —a(r-1)
let O ={v;| v < M}
return (M < ax) V

(Vdeo(x = d))

Provides a major bound (M) plus outliers (O)
= (x=1)V@B<x



Backup Slides / Periodicity and Disj

31y < 10x < 32y
= 10x <32y A 31y < 10x
= (0,497,498, .. .,493,494,495)7° < x

XxX=0Vx=16Vx=19Vx=22Vx=25Vx=28

V 31<x<32 V x=35Vx=38Vx=41Vx=44
V 47<x<48 V 50<x<51 V 53<x<54
V 56<x<57 V 59<x<60 V
V 66<x<67 V 69<x<70 V 72<x<73
V 75<x<76 vV 78 <x



Backup Slides / Periodicity and Disjunction

Multidimensional mixed bounds rely on transposition, e.g.:

<09 3>N ] <77 4>N s <25 5>N 9>6

x <3N+ <<3, Oy » (4, Ty (5, 2D

1. Build the uni-dimensional bound
for all phases of all other variables

x <3N+( (0,7,2,3,4,5),, (3,4,5,0,7,2), )y

2. Apply DisjoIN_1 on each “sub-bound”
to obtain the major bound and outliers

XS3N+< |IMO:5,0():{7}]], IIM] :5,01 :{7}]] >N

3. Collect phase-specific major bounds and outliers
into periodic numbers

(x 3N+ 5,50 V(X =3N+{T7,7)N)

(+ simplify, + other details)



Backup Slides / Periodicity and Disj

With multidimensional bounds (X, .. .);" < anx,
» transpose to “sink” x, at the lowest level
» apply DisjoIn_1 (for each phase of each other variable)

» transpose “back” the results

— _ I, TTn Tn-1
XOO -1 X]O TTp-1 n ( ) [ng, X]g, .. ']Xnn
X X a TTn
01 L | o [Xo1, Xi1, - - 13 .-
: . \\
Xn-1 Xn—1 Xn : Xn-1)
)
n—1 1
Mo Ttn-1 Oui Tp-1 {MO, Oo1, - - } J
7/
M; S On N -— {Mh Oq1, } 4
. . (C)

Xn—1 “Xn-1 . Xn—1
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