Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra

Alain Ketterlin

IMPACT 2018: January, 23, 2018

Motivation

Periodic-Linear Inequalities

The Omicron Test

Decomposition

Omega's nightmare
$$3 \le 11x + 13y \le 21$$

$$-8 \le 7x - 9y \le 6$$

$$LS(N)$$

$$2 \le 3y - x \le 5$$

$$1 - N \le 2y - x \le 1$$

Omega's nightmare

$$3 \le 11x + 13y \le 21$$

 $-8 \le 7x - 9y \le 6$

- ► empty (no integer points)
- non-empty rational projections

- ► holes
- "fuzzy" vertices
- ► periodic *y*-span

Omega's nightmare

$$-11x + 3 \le 13y \le -11x + 21$$

 $7x - 6 \le 9y \le 7x + 8$

Fourier-Motzkin variable elimination (of y)

$$\begin{array}{rcl} 9 \cdot (-11x+3) & \leq & 13 \cdot (7x+8) \\ 13 \cdot (7x-6) & \leq & 9 \cdot (-11x+21) \end{array} \Rightarrow -77 \leq 190x \leq 267$$

Omega's nightmare

$$-11x + 3 \le 13y \le -11x + 21$$

 $7x - 6 \le 9y \le 7x + 8$

Fourier-Motzkin variable elimination (of y)

$$\begin{array}{rcl} 9 \cdot (-11x+3) & \leq & 13 \cdot (7x+8) \\ 13 \cdot (7x-6) & \leq & 9 \cdot (-11x+21) \end{array} \Rightarrow -77 \leq 190x \leq 267$$

What went wrong? Loose bounds...

- ► A tight bound would be: $9y \le 7x + 8 (7x + 8) \mod 9$
- Combinations accumulate and amplify the "slack"

$$-77 + \left[\underbrace{9(12 - (2 - 11x) \mod 13) + 13((7x + 8) \mod 9)}_{\text{up to } 2 \cdot 9 \cdot 13 - 9 - 13 = 212}\right] \le 190x$$

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

for 1 <= x <= 3N+7
for
$$\max(\lceil \frac{x+2}{3} \rceil, \lceil \frac{x+1-N}{2} \rceil)$$
 <= y <= $\min(\lfloor \frac{x+5}{3} \rfloor, \lfloor \frac{x+1}{2} \rfloor)$
exec S(x,y)

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

$$LS(N)$$

$$x + 2 \le 3y \le x + 5$$

$$x + 1 - N \le 2y \le x + 1$$

$$3 \cdot (x + 1 - (x + 1) \mod 2) \le 2 \cdot (x + 5 - (x + 5) \mod 3)$$

- 1. Tightening bounds
 - find a workable modulo representation
 - define precise combinations
- 2. The Omicron Test
 - ► Fourier-Motzkin-like decision procedure
 - correct and complete
- 3. Polyhedron Decomposition
 - via affine unswitching
 - applications: transformation, projection, optimization

Strategy

- ▶ Be Radically Integral
 - ▶ no [—] or [—], no inexact division
 - no loose bound!
- Focus on Representation, not on Algorithms
 - ► find a set of elementary operations
 - ► algorithms should simply repeat while possible

Motivation

Periodic-Linear Inequalities

The Omicron Test

Decomposition

A *periodic number* is a collection of numbers indexed by the congruence class of an expression:

$$\left\langle v_0, v_1, \dots, v_{\pi-1} \right\rangle_x^{\pi} = \begin{cases} v_0 & \text{if } x \equiv 0 \mod \pi \\ v_1 & \text{if } x \equiv 1 \mod \pi \\ \vdots \\ v_{\pi-1} & \text{if } x \equiv (\pi-1) \mod \pi \end{cases}$$

Essentially a notation, with useful operations:

Rotation
$$\langle v_0, v_1, \ldots \rangle_{x+1}^{\pi} = \langle v_1, \ldots, v_0 \rangle_x^{\pi}$$

Division $\langle v_0, \ldots \rangle_{cx}^{\pi} = {}^i \langle \ldots, v_{(ci \bmod \pi)}, \ldots \rangle_x^{\pi/\gcd(\pi, c)}$
Distribution $\langle v_0, \ldots \rangle_{\langle w_0, \ldots, w_{\beta-1} \rangle_x^{\beta}}^{\alpha} = {}^i \langle \ldots, \langle v_0, \ldots \rangle_{w_i}^{\alpha}, \ldots \rangle_x^{\beta}$
Separation $\langle v_0, \ldots, v_{\alpha-1} \rangle_{x+y}^{\alpha} = {}^i \langle \ldots, \langle v_0, \ldots, v_{\alpha-1} \rangle_{i+y}^{\alpha}, \ldots \rangle_x^{\alpha}$

Modulos: for any expression *X*

$$X \mod \pi = \langle 0, 1, \dots, \pi - 1 \rangle_X^{\pi}$$

The maximal multiple of π less than or equal to X

$$X - X \mod \pi = X - \langle 0, 1, \dots, \pi - 1 \rangle_X^{\pi}$$

Tightened linear bounds have:

- ► a sharp linear part
- ► a periodic correction

$$9y \le 7x + 8 - (7x + 8) \mod 9$$

$$\le 7x + 8 - (0, ..., 8)_{7x+8}^{9}$$

$$\le 7x + 8 - (8, 6, 4, 2, 0, 7, 5, 3, 1)_{x}^{9}$$

Works for any number of variables:

$$\langle v_0, v_1, v_2 \rangle_{2x + 6y + 5z - 1}^3 = \left\langle \left\langle \langle v_2, v_1, v_0 \rangle_x^3 \right\rangle_y^1, \left\langle \langle v_1, v_0, v_2 \rangle_x^3 \right\rangle_y^1, \left\langle \langle v_0, v_2, v_1 \rangle_x^3 \right\rangle_y^1 \right\rangle_z^3$$

Periodic-linear expressions (PLEs) in *normal* form over $[x_1, \ldots, x_n]$:

$$\left(\sum_{i=1}^n a_i x_i\right) + \left(\cdots, \left(\cdots \left\langle\cdots\right\rangle_{x_1}^{\pi_1} \cdots\right)_{x_{n-1}}^{\pi_{n-1}}, \cdots\right)_{x_n}^{\pi_n}$$

or in simplified normal form

$$a_n x_n + \left\langle \cdots, a_{n-1} x_{n-1} + \left\langle \cdots \right\rangle_{x_{n-1}}^{\pi_{n-1}}, \cdots \right\rangle_{x_n}^{\pi_n}$$

If *X* and *Y* are PLEs, *n* an integer, then:

$$nX$$
, $(X + Y)$, $(X \mod \pi)$, $X[Y/x_k]$ are all PLEs

Periodic-linear inequalities are PLEs compared to zero:

$$a_n x_n + \langle X_0, \dots \rangle_{x_n}^{\pi_n} \ge 0$$
 with X_0, \dots PLEs over $[x_1, \dots, x_{n-1}]$

LS(N) over [N, x, y] with tightened inequalities:

$$x + \langle 3, 2, 4 \rangle_x \le 3y \le x + \langle 3, 5, 4 \rangle_x$$
$$x - N + \langle \langle 2, 1 \rangle_N, \langle 1, 2 \rangle_N \rangle_x \le 2y \le x + \langle 0, 1 \rangle_x$$

and over [N, x] after combination

$$\langle \langle 2, 1 \rangle_{N}, \langle 0, 1 \rangle_{N} \rangle_{x} - N \leq 0 \quad 0 \leq \langle 3, 0, 3 \rangle_{x}$$

$$\langle 6, 1, 8, 3, 4, 5 \rangle_{x} \leq x \quad x \leq 3N + \left(\langle 0, 3 \rangle_{N}, \langle 7, 4 \rangle_{N}, \langle 2, 5 \rangle_{N}, \right)_{x}^{6}$$

$$\langle 3, 0 \rangle_{N}, \langle 4, 7 \rangle_{N}, \langle 5, 2 \rangle_{N}$$

Categories:

- linear: $3y \le \langle x + \langle 3, 5, 4 \rangle_x \rangle_{y}^{1}$
- ▶ periodic: $\langle \langle 2, 1 \rangle_N, \langle 0, 1 \rangle_N \rangle N \leq 0x$
- $mixed: \langle 6, 1, 8, 3, 4, 5 \rangle_{x} \leq x$

Given a (potentially loose) periodic-linear inequality over $[..., x_n]$:

$$a_n x_n \leq \langle X_0, \ldots \rangle_{X_n}^{\pi_n}$$
 or $\langle X_0, \ldots \rangle_{X_n}^{\pi_n} \leq a_n x_n$

the following inequality is an equivalent tight bound

$$a_n x_n \leq {}^i \left\langle \ldots, X_i - \left\langle 0, 1, \ldots, a_n \pi_n - 1 \right\rangle_{X_i - i a_n}^{a_n \pi_n}, \ldots \right\rangle_{X_n}^{\pi_n}$$

 \rightarrow the rhs is a multiple of a_n for all phases of x_n modulo π_n (and all phases of the other variables)

Mixed tight bounds are "fuzzy"

$$x + \langle 3, 2, 4 \rangle_x \le 3y \quad 2y \le x + \langle 0, 1 \rangle_x$$
$$\langle 6, 1, 8, 3, 4, 5 \rangle_x \le x$$

Disjoin turns a *mixed* bound into a disjunction of *linear* bounds: it computes a *major* bound plus *outliers*

$$\langle 6, 1, 8, 3, 4, 5 \rangle_{x} \le x \qquad \Rightarrow (x = 1) \lor (3 \le x)$$

$$x \le 3N + \left(\langle 0, 3 \rangle_{N}, \langle 7, 4 \rangle_{N}, \langle 2, 5 \rangle_{N}, \right)^{6} \Rightarrow (x \le 3N + 5) \lor (x = 3N + 7)$$

Omega's nightmare (left corner)

$$\frac{-11x + \langle \dots \rangle_{x}^{13} \le 13y \qquad 9y \le 7x + \langle \dots \rangle_{x}^{9}}{\langle 117, 73, 29, -15, \dots, -29, 44 \rangle_{x}^{117} \le 190x}$$

$$\Rightarrow \qquad \langle 117, 1, 2, 3, \dots, 115, 116 \rangle_{x}^{117} \le x$$

$$\Rightarrow \qquad 1 \le x$$

Motivation

Periodic-Linear Inequalities

The Omicron Test

Decomposition

Fourier-Motzkin elimination on \mathbb{Q} relies on an equivalence:

$$f_l(x_1, \dots, x_{n-1}) \le ax_n \qquad bx_n \le f_u(x_1, \dots, x_{n-1})$$

$$\mathbb{Z}, \mathbb{Q} \downarrow \qquad \uparrow \mathbb{Q}$$

$$b \cdot f_l(x_1, \dots, x_{n-1}) \le a \cdot f_u(x_1, \dots, x_{n-1})$$

Restoring completeness on \mathbb{Z} by tightening

loose bounds
$$(4 \le 3x) \quad L \le ax \quad bx \le U \quad (3x \le 5)$$
 tight bounds
$$(6 \le 3x) \quad \underline{L' \le ax \quad bx \le U'} \quad (3x \le 3)$$
 combination
$$bL' \le aU' \quad (6 \le 3)$$

→ keep bounds tight at all times

Combining *mixed* bounds may *not* eliminate the variable

$$\langle 6, 1, 8, 3, 4, 5 \rangle_{x} \leq x \qquad x \leq 3N + \left\langle \langle 0, 3 \rangle_{N}, \langle 7, 4 \rangle_{N}, \langle 2, 5 \rangle_{N}, \right\rangle^{6}_{x}$$

$$\Rightarrow \left\langle \langle 2, 1 \rangle_{N}, \langle -2, -1 \rangle_{N}, \langle 2, 1 \rangle_{N}, \right\rangle^{6}_{x} \leq N$$

→ apply Disjoin, and fork the system (if needed)

There is no way to combine *periodic* bounds

$$\langle \langle 2, 1 \rangle_N, \langle 0, 1 \rangle_N \rangle_x^2 \le N \qquad \Rightarrow \begin{cases} x = 2x' + 0 \land \langle 2, 1 \rangle_N \le N \\ x = 2x' + 1 \land \langle 0, 1 \rangle_N \le N \end{cases}$$

→ *splinter* the system and change variables

false

On \mathbb{Q} , Fourier-Motzkin Elimination can be used for projection Omicron can as well, but produces a disjoint union.

A *decomposition* is a partition of a polyhedron such that, in each part:

- each variable has a contiguous non-empty range
- ► with elementary bounds (no min / max)

Motivation

Periodic-Linear Inequalities

The Omicron Test

Decomposition

To keep a collection of (disjoint) polyhedra: an AST

- ▶ if condition then statements [else statements]
 - arbitrary logical combinations
 - all inequalities properly tightened
 - ► no *mixed* inequalities (thanks to Disjoin)
- ► exec label
- ► for/when PLE <= scale × counter <= PLE statements
 - ► scale used only to keep bounds tight, e.g.,

for
$$2x + [x:6,4,8] \le 6y \le 3x + [x:0,3] \dots$$

The AST keeps a layer for each variable. On LS(N), start with

```
when _ <= N <= _
    for _ <= x <= _
    for _ <= y <= _
        if 3y <= x+[x:3,5,4] and ... then
        exec S</pre>
```

Starting from an inequality and its innermost enclosing loop

for/when
$$L \le sx_n \le U$$
 ... $ax_n \le X$...

Affine unswitching produces:

```
if sX < aL then
    for L < sx_n < U do
         \ldots \mid ax_n \leq X \mid \ldots // = false
else if sX < aU then
    for aL \leq asx_n \leq sX do
         \ldots | ax_n \le X | \ldots // = true
    for s(X + a) \le asx_n \le aU do
         \ldots | ax_n \le X | \ldots // = false
else // sX \ge aU
    for L < sx_n < U do
         \dots |ax_n \le X| \dots // = true
```


Periodic inequalities need special treatment:

$$\langle X_0, X_1, \ldots \rangle_{X_n}^{\pi_n} \ge 0$$
 is viewed as $\langle X_0 \ge 0, X_1 \ge 0, \ldots \rangle_{X_n}^{\pi_n}$

then individual inner inequalities are hoisted, eventually leaving a *periodic boolean*:

$$\langle b_0, b_1, \ldots \rangle_{x_n}^{\pi_n}$$
 with $b_i \in \{\text{true}, \text{false}\}$

At this point, the for-range on x_n is unrolled by a factor π_n

```
when N = 0
 exec S(1,1); exec S(3,2); exec S(5,3); exec S(7,4)
when N = 1 [...] when N = 2 [...] when N = 3 [...] when N = 4 [...]
when 5 <= N <=
 exec S(1,1)
                                         10
 for 3 <= x <= 8
                                                 for 2x+[x:6,4,8] \le 6y \le 3x+[x:0,3]
         exec S(x,y)
 exec S(9,4)
 for 4 <= y <= 5
     exec S(10, y)
                                                                        25
 for 11 \le x \le 3N-3
     for x+[x:3,2,4] \le 3y \le x+[x:3,5,4]
         exec S(x,y)
 for N \le v \le N+1
      exec S(3N-2, y)
 exec S(3N-1.N+1)
  for 3N \le x \le 3N+5
      for 3x-3N+[x:[N:6,3],[N:3,6]] \le 6y \le 2x+[x:6,10,8]
         exec S(x,y)
 exec S(3N+7,N+4)
```

$$\begin{cases}
0 \le i \le P \\
0 \le j \le i \\
0 \le k \le i - j \\
Q = i + j + k
\end{cases}$$

$$Q > P$$

```
when P = 0
 when Q = 0
      exec S(0,0,0)
when 1 \le P \le _{-}
 when 0 \le Q \le P
      for Q+[Q:0,1] \le 2i \le 2Q
          for 0 <= i <= -i+0
               exec S(i,j,-j-i+0)
 when P+1 <= 0 <= 2P
      for Q+[0:0,1] \le 2i \le 2P
          for 0 <= i <= -i+0
               exec S(i, j, -j-i+0)
```

► image (and pre-image): e.g., skewing a rectangle

```
for _ <= x <= _
    for _ <= y <= _
        if 0 <= x <= 19 and 0 <= y <= 9 then
        exec S(x,y)</pre>
```

► image (and pre-image): e.g., skewing a rectangle

► image (and pre-image): e.g., skewing a rectangle

```
for _ <= x' <= _
  for _ <= y' <= _
    for _ <= x <= _
        for _ <= y <= _
            if 0 <= x <= 19 and 0 <= y <= 9 then
            if x' = x+y and y' = y then
            exec S(x',y',x,y)</pre>
```

After unswitching:

```
for 0 <= x' <= 9
  for 0 <= y' <= x'
      exec S(x',y',-y'+x',y')
for 10 <= x' <= 19
  for 0 <= y' <= 9
      exec S(x',y',-y'+x',y')
for 20 <= x' <= 28
  for x' - 19 <= y' <= 9
      exec S(x',y',-y'+x',y')</pre>
```

► image (and pre-image): e.g., skewing a rectangle

After unswitching:

```
for 0 <= x' <= 9
    for 0 <= y' <= x'
        exec S(x',y',-y'+x',y')

for 10 <= x' > +9
    for 0 <= y' <= 9
        exec S(x',y',-y'+x',y')

for 20 <= x' <= 28
    for x' - 19 <= y' <= 9
        exec S(x',y',-y'+x',y')
```

Most polyhedral operations can be implemented by hoisting:

► image (and pre-image): e.g., skewing a rectangle

After unswitching:

```
for 0 <= x' <= 9

for 0 <= y' <= x'

exec S(x',y',-y'+x',y')

for 0 <= y' <= 9

exec S(x',y',-y'+x',y')

for 20 <= x' <= 28

for x' - 19 <= y' <= 9

exec S(x',y',-y'+x',y')
```

Most polyhedral operations can be implemented by hoisting:

► image (and pre-image): e.g., skewing a rectangle

After unswitching:

```
for 0 <= y' <= 9
    for x'-y' <= x <= x'-y'
    for y' <= y <= y'
        exec S(x',y',-y'+x',y')</pre>
```

After repeated hoisting/unswitching:

- ▶ no if-then-else conditional parts
- no empty range
- → lexicographic extrema are readily available

```
for 0 <= x' <= 9
    for 0 <= y' <= x'
        exec S(x',y',-y'+x',y')
for 10 <= x' <= 18
    for 0 <= y' <= 9
        exec S(x',y',-y'+x',y')
for 19 <= x' <= 28
    for x' - 19 <= y' <= 9
        exec S(x',y',-y'+x',y')</pre>
```

Linear optimization: min/maximize $\begin{vmatrix} 15z + 2 = x \end{vmatrix}$ over LS(N)

exec S

Linear optimization: min/maximize $\begin{vmatrix} 15z + 2 = x \end{vmatrix}$ over LS(N)

$$|15z + 2 = x|$$
 over LS(N)

Linear optimization: min/maximize 15z + 2 = x over LS(N)

produces

```
when N = 4
    exec S(1,17,7)
when 5 <= N <= _
    for 5 <= 5z <= N+[N:0,-1,-2,-3,1]
    exec S(z,15z+2,5z+2)
```

i.e.,
$$z_{\min} = 1$$
 (at $x = 17$) and $z_{\max} = \frac{N - \langle 0, 1, 2, 3, -1 \rangle_N}{5} = \lceil \frac{N - 3}{5} \rceil = \lfloor \frac{N + 1}{5} \rfloor$

States: one per (static) exec statement Transitions: given by function Next (\rightarrow) , defined with First (\rightarrow) :

```
[...]

for 3 <= x <= 10 do

for 2x+[x:6,4,8] <= 6y' <= 3x+[x:0,3] do

exec S2(x,y')

done

done

for 11 <= x <= 3N-3 do

for x+[x:3,2,4] <= 3y' <= x+[x:3,5,4] do

exec S3(x,y')

[...]
```

Note: the result of Next tests each variable exactly once ("at" done)

Summary

- A new representation for inequalities
- ▶ Tightening
- ► Precise combination/comparison
- A correct and complete decision procedure
- Polyhedron decomposition into simple ranges
- Essential polyhedral operations reformulated

More work needed on:

- reducing size/complexity of representations and algorithms
 - delay normalization of "deeper levels"
 - leverage more arithmetic properties
- strategies & heuristics for "simplest" decomposition
 - very frequent excessive fragmentation
 - avoidance or correction?

The modulo of a PLE is a PLE

$$\left(a_{n}x_{n} + \langle X_{0}, \dots \rangle_{x_{n}}^{\pi_{n}}\right) \bmod \beta$$

$$= \langle 0, 1, \dots \rangle_{a_{n}x_{n} + \langle X_{0}, \dots \rangle_{x_{n}}^{\pi_{n}}}^{\pi_{n}}$$

$$= {}^{k} \langle \dots, \left(a_{n}k + X_{(k \bmod \beta)}\right) \bmod \beta \dots \rangle_{x_{n}}^{\pi'_{n}}$$

$$\text{where } \pi'_{n} = \operatorname{lcm}(\pi_{n}, \beta / \gcd(a_{n}, \beta))$$

The overall size of a corrective term for

$$a_n x_n \leq \langle X_0, \ldots \rangle_{x_n}^{\pi_n}$$

is

$$\prod_{i=1}^{n} \operatorname{lcm}(\pi_{n}, \frac{\beta}{\gcd(a_{n}, \beta)})$$

Mixed tight bounds are "fuzzy"

$$x + \langle 3, 2, 4 \rangle_x \le 3y \quad 2y \le x + \langle 0, 1 \rangle_x$$
$$\langle 6, 1, 8, 3, 4, 5 \rangle_x \le x$$

These can be turned into disjunctions of *linear* bounds

Provides a *major* bound (*M*) plus *outliers* (*O*) \Rightarrow (x = 1) \lor ($3 \le x$)

$$31y \le 10x \le 32y$$

$$\Rightarrow$$
 $10x \le 32y \land 31y \le 10x$

$$\Rightarrow \langle 0, 497, 498, \dots, 493, 494, 495 \rangle_x^{496} \le x$$

$$x = 0 \lor x = 16 \lor x = 19 \lor x = 22 \lor x = 25 \lor x = 28$$
 $\lor 31 \le x \le 32 \lor x = 35 \lor x = 38 \lor x = 41 \lor x = 44$
 $\lor 47 \le x \le 48 \lor 50 \le x \le 51 \lor 53 \le x \le 54$
 $\lor 56 \le x \le 57 \lor 59 \le x \le 60 \lor 62 \le x \le 64$
 $\lor 66 \le x \le 67 \lor 69 \le x \le 70 \lor 72 \le x \le 73$
 $\lor 75 \le x \le 76 \lor 78 \le x$

Multidimensional mixed bounds rely on transposition, e.g.:

$$x \le 3N + \left\langle \langle 0, 3 \rangle_N, \langle 7, 4 \rangle_N, \langle 2, 5 \rangle_N, \right\rangle_x^6$$

1. Build the uni-dimensional bound for all phases of all other variables

$$x \le 3N + \langle (0,7,2,3,4,5)_x, (3,4,5,0,7,2)_x \rangle_N$$

2. Apply Disjoin_1 on each "sub-bound" to obtain the major bound and outliers

$$x \le 3N + \langle [M_0 = 5, O_0 = \{7\}], [M_1 = 5, O_1 = \{7\}] \rangle_N$$

Collect phase-specific major bounds and outliers into periodic numbers

$$(x \le 3N + \langle 5, 5 \rangle_N) \lor (x = 3N + \langle 7, 7 \rangle_N)$$

(+ simplify, + other details)

With multidimensional bounds $(X_0, ...)_{x_n}^{\pi_n} \leq a_n x_n$

- ► transpose to "sink" x_n at the lowest level
- ▶ apply Disjoin_1 (for each phase of each other variable)
- transpose "back" the results

