Polyhedral Modeling of Immutable Sparse Matrices

Gabriel Rodriguez

Universidade da Coruia

Abstract

Sparse matrices conveniently store only non-zero values of
the matrix. This representation may greatly optimize stor-
age and computation size, but typically prevents polyhedral
analysis of the application due to the presence of indirec-
tion arrays. While specific strategies have been proposed to
address this limitation, such as the Sparse Polyhedral Frame-
work and Inspector/Executor approaches, we aim instead in
this paper to partition the irregular computation into a union
of regular (polyhedral) pieces which can then be optimized
by off-the-shelf polyhedral compilers.

This paper proposes to automatically analyze sparse ma-
trix codes with irregular accesses and build a sequence of
static control parts which reproduce the sparse matrix com-
putation but using only affine loops and indices. Specifically,
we focus on immutable sparse matrices, and develop a cus-
tom polyhedral trace compression technique to uncover reg-
ular pieces on the input sparse matrix. We illustrate how
to build a “sparse" matrix-vector multiplication operation
as a union of dense polyhedral subcomputations, and show
experimental results for the Harwell-Boeing collection.

ACM Reference Format:

Gabriel Rodriguez and Louis-Noél Pouchet. 2018. Polyhedral Mod-
eling of Immutable Sparse Matrices. In Proceedings of Eighth Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT
2018). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 Introduction

Sparse matrices lie at the core of many different types of
applications ranging from data analysis to physics simulation.
Their advantage is to allow a 2D indexing of each matrix
element (as in a typical dense N X M matrix), but without
actually using storage for elements which equals 0. This
can greatly reduce the memory space required to store the
useful data in memory compared to a N X M dense array, and
improve performance by skipping operations on the zero
elements of the matrix which would not contribute to the
final result.

However the optimization of these codes is complex, as
compressed representations of sparse matrices such as Com-
pressed Sparse Rows (CSR) typically use arrays to store the
coordinates of each non-zero element and another array
to store the actual data, leading to indirect array accesses

IMPACT 2018 (http://impact.gforge.inria.fr/impact2018)

Eighth International Workshop on Polyhedral Compilation Techniques,
In conjunction with HIPEAC 2018.

January 23, 2018, Manchester, United Kingdom

Louis-Noél Pouchet
Colorado State University

(e.g., ALBLi]]). As a result, computations operating on such
sparse representation are non-polyhedral programs.

Strategies have been proposed to address this limitation,
such as the Sparse Polyhedral Framework [12, 22, 23] and
Inspector/Executor (I/E) approaches, e.g., [1, 4, 8, 16, 18] that
allow to analyze and optimize important sparse computa-
tions using a modified polyhedral compilation framework
[22]. However, these approaches do not attempt to exploit
the possible regularity in the sparse computation. In the most
extreme case, a sparse matrix may be made of only non-zero
elements, and thus be totally equivalent to a dense matrix
and the sparse computation could be equivalently replaced
by a dense-matrix computation, which for many linear al-
gebra operations would be a polyhedral program. That is,
in such case, we could apply off-the-shelf polyhedral pro-
gram optimization techniques, without resorting to sparse
abstractions or I/E.

In this paper, we study the occurence of regularity in
sparse matrices, with the objective of capturing set(s) of non-
zero coordinates as polyhedra. This enables off-the-shelf
polyhedral computation on sparse matrices without resort-
ing to any specific framework. We achieve this by employing
a two-step approach where first the sparse matrix is analyzed
and re-compressed in a polyhedral format at compile-time,
followed by emitting a polyhedral program for the compu-
tation that is valid only if the sparsity structure does not
change (i.e., which elements are non-zeros in the matrix
does not change, the sparsity pattern is immutable).

Our approach builds on a powerful mechanism for affine
reconstruction of traces [17], which takes a set of integer
points as input and computes Z-polyhedra that contain
these points. By applying this reasoning on the non-zero
coordinates of a given sparse matrix, we rebuild a polyhedral
representation of it. A key challenge is to control the recon-
struction algorithm, trading off dimensionality for number
of pieces: what appears to be disjoint pieces in a 2D layout
may be a single piece in a 3D (or more) space, as by raising
dimensionality we can capture more complex patterns in a
convex way, as shown in this paper.

We make the following contributions:

e We present a Sparse-to-Polyhedral compression tech-
nique which converts a given sparse matrix (in any
format) into a union of polyhedra.

e We show how to use this polyhedral representation
to generate affine-only implementation of (sparse im-
mutable) matrix-vector product.

e We evaluate our approach on the 292 sparse matrices
from the Harwell-Boeing suite in SuiteSparse Matrix
Collection [9] and provide reconstruction statistics.

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

e We apply and evaluate our proposed flow on the SpMV
computation, and study criteria for achieving improved
performance with our approach.

The paper is organized as follows. Sec. 2 provides back-
ground and overview of the approach. Sec. 3 details the
mechanisms for the automatic extraction of regular pieces
from the irregular sparse matrix. Sec. 4 describes the synthe-
sis of affine programs operating on the compressed matrix.
Sec. 5 evaluates our approach on SpMV codes. Related work
is discussed in Sec. 6 before concluding.

2 Background and Overview

Dense vs. sparse representation We illustrate our approach
by focusing on computing ¥ = A.X, a matrix-vector product
where the matrix A is read-only, that is A is immutable. A
is of size N X M, the coordinate (i, j) identifies the position
of an element in A with 0 < i < N,0 < j < M. When A
is a dense matrix, a computation will typically iterate over
all values (i, j). When A is stored as a sparse matrix, only
non-zero elements are stored and accessible, that is only a
subset of coordinates (i, j) in the N X M grid are represented.
When there is a high amount of zero elements in a matrix (an
extreme case being a diagonal matrix), significant storage
space can be saved by modeling only non-zeros.

1| for (i = 0; i < n; ++i) {

2|1: yl[il = o;

3| for (j = pos[il; j < pos[i+11; ++j)
4|s: y[il += A_datal[j] * x[cols[jl1];
50 3

(2)

1| for (i = @; i < n; ++i) {

2|1: yl[il = o;

3| for (j = @; j < m; ++3)

4| if (A_dense[il[j] !'= @)

5/S: y[il += A_dense[il[j] * x[j1;
6| 3}

(b)

Figure 1. Matrix-vector product

Fig. 1 shows two implementations of this operation: Fig. 1a
shows a typical CSR implementation, using A_data to store
the non-zero data, and pos and cols arrays to compute/re-
trieve the coordinates (i, j) associated to a non-zero element
and its data value. Fig. 1b shows a similar implementation
but using a classical dense representation, where we skip
“useless” operations (multiplication by 0), it performs the
same number of scalar operations as the CSR code. Using
over-approximations [3] and/or uninterpreted functions [20]
allow to build a polyhedral representation of these codes,
however these approximations do not capture the exact set

Gabriel Rodriguez and Louis-Noél Pouchet

of non-zero elements of a given matrix and therefore the
exact set of operations, as they only exploit static analysis in-
formation. Our objective in this work is to bridge this gap, by
using compile-time “inspection” of the input sparse matrix,
to generate polyhedral code that is specific to the non-zeros
of a given input matrix, in turn allowing exact polyhedral
representation and optimization for this specific sparse ma-
trix. An immediate consequence of our approach is that the
code we generate is not valid for any sparse matrix but only
for the (immutable) input one, in contrast to SPF and I/E
techniques which are general to any input sparse matrix.

From sparse matrix to polyhedra Our approach works
as follows. We take as input a matrix (there is no restriction
on the input format) and scan it to output a trace of all the
(i,j) coordinates which are non-zero. We then attempt to
rebuild as few polyhedra as possible to capture all points in
this trace. In that sense, our problem has analogy with affine
trace reconstruction [17] where the purpose is to rebuild a
polyhedral representation of a sequence of addresses being
accessed. Let us illustrate with a simple diagonal matrix
where only elements (i, i) (on the diagonal) are non-zero,
where N = M = 1000. The polyhedron describing the non-
zero elements is D : {[i,j] : 0 <= i < 1000 A i = j}.
Once D is built, the set of (i, j) values to operate on for
this matrix is known. Provided an affine implementation of
the equivalent dense operation (e.g., Fig. 1b minus the if
in line 4) is available, by constraining the program iteration
domain using 9 we can create a conditional-free SCoP for
this matrix, and optimize it with off-the-shelf tools. Fig. 2
shows the code specialized to this diagonal matrix, a purely
polyhedral program.’

1| for (i = 0; i < 1000; ++i) {
2|1 y[il = o;

3| for (j = i; j <= i; ++3j)

4s: y[il += A_poly[il = x[jl;
5/)

Figure 2. Specialized matrix-vector product

Numerous difficulties arise with this approach. First, we
must ensure it is always possible to recover the (i, j) indexing
to enable integration inside a polyhedral program, yet we
do not want to constrain the reconstructed structure to be
2D: Fig. 2 uses a 1D array for example, which is sufficient
to capture in a single domain all non-zero elements here.
Second, we must control the number and complexity of the
polyhedra being re-built to describe the sparse matrix. An
extreme case where each non-zero is captured in a single
polyhedron (one point in it) is always possible, yet would
be practically useless. There is a trade-off between the com-
plexity of such polyhedra (and therefore the complexity of

IThe j loop is shown for illustration purpose, and is not present in the code
we actually generate as it is eliminated by CLooG since it only iterates once.

Polyhedral Modeling of Immutable Sparse Matrices

the code scanning them to be generated by CLooG [2] here)
versus the overhead of indirect array accesses in the original
sparse representation.

Specifically, we build on the affine Trace Reconstruction
Engine (TRE) [17] and modify it to consider the above trade-
off by controlling the dimensionality and size of polyhedra
reconstructed, while preserving the ability to perform (i, j)
indexing. This tool employs an algebraic approach which,
taking as input the trace of memory addresses accessed by a
single memory reference, synthesizes an affine loop with a
single perfectly nested reference that generates the original
trace. The tool has been extended to: i) support the synthesis
of unions of affine loops; ii) analyze several address streams
in parallel, synthesizing multiple accesses inside a single
loop; and iii) support the reconstruction of complex streams
as a sequence of affine statements. The synthesis of affine
codes from the traces of sparse computations is described in
depth in Sec. 3.

Proposed workflow The end-to-end workflow we propose
is as follows.

1. The user isolates a sparse matrix based computation of
interest, such that (a) the sparse matrix are immutable;
and (b) a dense-matrix version of the computation is
known, and is a SCoP.

2. A trace of all non-zero coordinates is produced, by
scanning the sparse matrix.

3. Affine trace reconstruction is run on the trace to build
sets of polyhedra that model the non-zero coordinates.

4. The dense-matrix version of the code (i.e., which oper-
ates on all N X M matrix elements) is restricted to only
execute operations associated with a non-zero entry
in the sparse matrix. In the case of SpMV as studied
in this paper, as there is one “operation” per non-zero
element, this simply amounts to scanning the rebuilt
set of polyhedra.

5. The polyhedral representation of this matrix-specific
program can then be optionally optimized by polyhe-
dral compilers, or directly code-generated with CLooG.

We insist that our flow is specific to a particular sparse
matrix, that is the code we generate is valid only for this
matrix, which in addition must be sparse-immutable (its non-
zero structure does not change). In that sense it is best suited
for scenarios where the same large matrix is accessed many
times (e.g., from within an iterative loop, as with PageRank).

3 Polyhedral Sparse Matrix Compression

In the following, we present our approach to creating a
polyhedron-based description of a sparse matrix. To bet-
ter illustrate the process along with how the computation is
performed, we focus on the SpMV operation, as shown in
Fig. 1a. Indeed, for matrix-vector product (assuming the out-
put vector § is set to 0 prior to it) there is a single statement
performing the computation, and there is as many execu-
tions of the statement as there are non-zero in the sparse

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

matrix. That is, the process of building polyhedra describ-
ing the sparse matrix is equivalent to building polyhedra
describing subsets of the iteration domain that need to be
executed. Sec. 4 discusses the more general case.

Sparse compression as trace reconstruction Consider
the sequence of accesses in Fig. 3a, corresponding to ex-
ecuting the SpMV code in Fig. 1a using the matrix HB/nos1
from the SuiteSparse Matrix Collection [9]2. A convenient
feature of SpMV computation is that the (i, j) coordinates of
each non-zero is explicitly built to access the vectors, in other
words tracing the values of i and cols[j] gives exactly the
(i, j) coordinates at which non-zeros exist.

i cols[j] &(A_dataljl)
0 0 0x00

0 3 0x04 ®)
1 1 0x08

1 4 0x0C

1 5 0x10

2 2 0x14

2 4 0x18

2 5 0x1C

3 0 0x20

3 3 0x24

3 6 0x28

(a)

Figure 3. Different sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Fig. a) shows an excerpt of
the accesses performed during SpMV of matrix HB/nos-1.
The nonzero elements in this matrix are shown in Fig. b), and
a zoom of its main diagonal is provided in Fig. c). This is a
237 x 237 matrix with 1,017 nonzero elements, and its SpMV
affine equivalent code consists of a single statement inside
an 8-dimensional loop. Fig. d) shows the nonzero elements
inHB/can_1072,a 1,072 X% 1,072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
SpMV affine equivalent code includes 870 statements of up
to 8 dimensions.

As can be seen in Fig. 3b, all the nonzero elements lie
nearby the main diagonal, and zooming on this diagonal in
Fig. 3¢, we can see upon closer inspection there is a recog-
nizable sparsity pattern. An affine loop traversing all the
nonzero positions of this matrix must use piecewise itera-
tion domains, which are not easy to reason about, even by

In the remainder of the paper we will refer to different matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

domain experts. Instead of following a manual approach,
we designed a modified version of the Trace Reconstruction
Engine (TRE) [17], an analysis tool that takes as input the
sequence of memory addresses issued by an isolated memory
reference and generates an affine loop with a single perfectly
nested statement that produces the original access sequence.
The tool works by iteratively analyzing each address a*
the trace and building a projection vector ¢ and candidate
iteration vectors 7% such that: i) 7% lexicographically fol-

in

- . . .
lows 7% and ii) addresses in the trace are matched, i.e.,
Tk =gk

The reader may refer to [17] for details about TRE. In a
nutshell, it rebuilds a Z-polyhedron (the intersection of a
Z-polyhedron D and an affine integer lattice F [10]) that
captures a stream of addresses: both an iteration domain
P and an affine multidimensional access function F from
that domain to the trace element value are being built. But a
fundamental aspect of this approach is that it may rebuild
an iteration domain 9D of arbitrary dimensionality for the
purpose of capturing seemingly “distant” points into a dense/-
convex polyhedron. It only guarantees that it builds at the
same time an access function that, when applied on each
point in the rebuilt iteration domain, will produce exactly
all addresses in the original trace. In this work, we have a
supplementary constraint to handle: we must also for each
point in this TRE-reconstructed iteration domain be able to
produce the associated i and j value ((i, j) coordinate).

Our approach to handle this case is to extend the TRE
tool as follows. The original TRE rebuilds (D4, F4), the re-
constructed Z-polyhedron for a single address stream of
A. We want instead as output (D, Fa, F;, Fj) to be recon-
structed, where F; is the function that, when applied to any
point in D4, provides the i coordinate of this point, con-
versely for F; to obtain the (i, j) matrix coordinate for any
element. We achieve this by modifying TRE to instead ana-
lyze three streams simultaneously, with the additional con-
straint that D is identical for all three streams, i.e., only
the reconstructed F can be different for the three different
streams. Precisely, the three streams correspond to building
Fa, F; and F; each being a stream of scalar values. For each
non-zero element, the trace entry has three components:
the address A_data[j] being accessed, the value of i, and
the value of cols[j]. Note that by reconstructing F4 also,
which captures the memory location of the data associated to
a particular (i, j) coordinate, the polyhedral code can operate
directly on the input sparse matrix representation (including,
but not limited to, CSR). This means data does not need to be
copied in a new location for the program to proceed, avoid-
ing additional storage. Precisely, only A_data is needed, the
cols and pos arrays are not used anymore after polyhedral
compression.

Rebulding simultaneously Fy4, F; and F; in a Z-polyhedron
ensures we can always rebuild the (i, j) coordinates. One may
observe that for SpMYV, the evolution of the values of i and
Jj is explicitly captured by the stream of addresses accessed

Gabriel Rodriguez and Louis-Noél Pouchet

for y and x. The execution of the original SpMV code is
instrumented and the sequence of accesses to arrays A, x and
y is traced (see Fig. 3a), and used as input to the TRE.

Extended TRE algorithm The processing starts at the be-
ginning of the trace, trying to model the trace elements
using a single iteration domain. This may not be possible in
the general case without using an intractably large number
of dimensions [17]. For this reason, timeout mechanisms
are included to halt the analysis when it does not achieve
significant advances after a specified number of steps. In
this case, a new statement T; is generated using the largest
loop found until the timeout. The reconstruction process
continues trying to synthesize another statement T start-
ing from trace position (#D71 + 1). The previous process
repeats until the complete affine equivalent code is synthe-
sized. Algorithm 1 shows a pseudocode of each step of the
TRE. Esentially, the processing starts with an empty SCoP,
and tries to enlarge it by sequentially adding points in the
trace inside the add_iter call in line 14: in line 2 all the
indices lexicographically following the most recent one are
generated, while the loop in line 3 checks whether each of
the generated indices explains the next value 7 in the trace.
A list of candidate SCoPs is maintained and sorted by fitness
heuristics. Whenever a solution cannot be found building
over the best ranked candidate, control will return to the TRE
function, which will retrieve the best ranked candidate in
line 11, increase its dimensionality to incorporate one new
point to the SCoP, and continue processing it.

The TRE was extended in two different ways. First, in
order to reconstruct general piecewise-affine domains we
had to support more complex bounds matrices. In its original
form, TRE employs a square bounds matrix U € ZP*P, with
D the number of dimensions of the loop. Each row j encodes
an affine upper bound of the form i; < u;(iy,...,ij-1). Only
upper bounds faces were explicitly encoded, implicitly using
ij > 0 for all loop indices. In the extended version lower
bounds faces are explicit and general, i.e., they encode i; >
li(i1,...,ij-1). Furthermore, multiple bounds faces can be
included at any loop level. As such, the new bounds matrix
is not square, but U € ZFxD with F the number of faces of
the iteration polyhedron.

The second extension aims at supporting the synthesis
of several statements inside a loop. This is achieved using
a rather simple structural extension of the basic algorithm.
Instead of focusing on a single stream of addresses, several
of them are analyzed in parallel. Line 3 in Algorithm 1 is
changed so that an index is valid only if 7C =3*, where
now @* is not a single address but a tuple containing the
addresses issued in the same iteration for all the streams
being analyzed, and each column in matrix C contains the
access functions for each of the analyzed streams.

Complexity trade-offs It is theoretically always possible
to rebuild a set of integer points as a union of polyhedra, in
the worst case using polyhedra of only one point each. In

Polyhedral Modeling of Immutable Sparse Matrices

Algorithm 1: Pseudocode of the TRE

Input: the access trace, A; an input SCoP S
Output: a SCoP reproducing the accesses in A
1 Function add_iter(A, S)

2 Find £ = (7K} lexicographically following—z)k_1 €S;
3 for 7% € £ such that 7%¢ = a* do

" s’ =su7k

5 S_list = S_list U add_iter(A,S’)

6 end

7 end

8 Function TRE(A)

9 S_list = {EMPTY_SCoP};

10 while True do
// retrieve the best ranked SCoP

11 S = retrieve_best(S_list);

12 if (timed out) or #DS == len(A)) then return S;
// add dimension to include a

13 S = increase_dimensionality(S, ak);

14 add_iter(A,S);

15 end

16 end

this case the variable which may grow uncontrollably is the
number of total pieces s, which is bounded by m+m’ where
n is the number of entries per reference in the trace, and
maxg is the maximum number of dimensions allowed per
polyhedron. The fundamental tradeoff is between number of
pieces and dimensionality: a sequence of points which cannot
be captured using a 2D affine loop nest may be captured using
a 3D loop nest. For instance, consider a 2D-tiled traversal
of a 2D N x N array with block size B. This traversal can
be coded as: i) a sequence of % X % 2D loops, each of them

traversing a B X B section of the array; or ii) a sequence of %
3D loops, each of them traversing a single column (or row)
of tiles; or iii) a single 4D loop traversing the full set of tiles.
Table 1 shows the number of statements (i.e., pieces) required
using different maximum dimensionalities, for rebuilding
the HB/nos1 matrix which exposes a quite complex sparsity
structure.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (max,;) for matrix HB/nos1
(1,017 nonzero elements).

maxgy 2 3 4 5 6 7 8

pieces | 312 159 81 4 3 2 1
Table 1 clearly indicates highly different choices are pos-
sible, between manipulating a single 8D domain (intuitively
this will lead to a 8-deep loop nest to scan the polyhedrally

compressed matrix) versus 312 disjoint 2D pieces. Sec. 5 dis-
cusses the potential performance impacts of such trade-off.

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

4 Generating Optimized Programs

We now discuss how the end-to-end program is generated,
first specifically for the experiments presented in this paper,
and then for more general cases.

Generating affine-SpMV programs As noted in Sec. 3,
the matrix-vector product operation has the convenient prop-
erty of executing exactly one statement instance for each
non-zero entry. That is, scanning the set of polyhedra that
model the input matrix do correspond exactly to scanning
the “actual” iteration domain of the SpMV computation. We
perform extensive evaluation in Sec. 5 of such SpMV re-
generation, using the following process:

1. Sets of Z-polyhedra modeling the non-zero of the
input sparse matrix are reconstructed, as per Sec. 3.

2. A SCoP (in scoplib format) is created by creating a
polyhedral statement for each piece, using its polyhe-
dron domain as the corresponding statement iteration
domain in the SCoP. For each, a statement text (in C)
is defined, using the access functions reconstructed
toemity[..] += A_poly[..] * x[..] where .. is
adequately replaced by the expression to compute i,
the position of the data in the compressed array, and j.

3. This SCoP is then generated as a C program using the
PoCC compiler [15], using CLooG’s code generation.
As all operations are parallel in this specific case, we
do not specify a full schedule and instead let CLooG
generate the C code scanning all domains using its
own heuristics.

Potential extensions Although we limit in this paper to
the study of SpMV computations, our approach can poten-
tially be applied to a variety of computations which have a
“dense array” equivalent to the considered sparse computa-
tion. Precisely, we require the user to provide the SCoP of
the program for the dense version of the kernel of interest,
i.e., which computes the same mathematical function and
iterates on all N X M (i, j) elements of the matrix. However
a caveat is that for seamless integration by intersecting the
program’s iteration domain with the union of pieces recon-
structed to restrict the program to only operating on the
non-zero elements, we must recognize in the SCoP which
loop iterators correspond to indexing the (i, j) elements. For
typical linear algebra computations these iterators are usu-
ally explicit, but this may require more complex matching
algorithms for general affine programs. In addition, we men-
tion this is not a “simple intersection” of domains: we need
to use the F;, F; reconstructed access functions to build the
constraints on the SCoP iteration domain, as D4 may be
of arbitrary dimensionality and cannot be intersected as-is
with the SCoP’s iteration domain.

Using off-the-shelf polyhedral compilers Once a SCoP
is built as depicted above and properly adjusted to only ex-
ecute the relevant operations, it can then be processed by
typical polyhedral compilers such as Pluto [5] or PPCG [24]

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

for example. Typical optimizations for data locality, paral-
lelism and vectorization can be applied.

But an important additional degree of freedom is that in
many linear algebra computations there is a vast amount of
parallelism available. To an extreme, allowing associative re-
ordering, for matrix-vector product all pointwise operations
can be executed in any order. This implies that the order in
which polyhedra are scanned does not impact semantics, in
turn suggesting that the order in which points in the trace
are read will not impact the semantics of, e.g., affine-SpMV
codes. By changing the order in which points are processed
by TRE we may influence (reduce) the dimensionality of the
reconstructed polyhedron. Although we did not exploit this
degree of freedom in this paper, it is an important component
of our future work.

5 Experimental results

The approach for SpMV described previously has been ap-
plied to all the matrices in the Harwell-Boeing matrix repos-
itory (the HB group of the Suitesparse Matrix Collection).
During the reconstruction process, we periodically check
whether more than 1,000 pieces are expected to be gener-
ated. In this case, the synthesis process is halted and the
matrix in question skipped, as we estimate that more than
1,000 pieces (that is, more than 1,000 statements® in the final
SpMV code) is mostly impractical for current polyhedral
compilers such as PoCC. Out of the 292 matrices, 235 are
reconstructed using at most 1,000 statements. Figure 4 shows
the histogram of the number of statements in the generated
SCoPs over all 235 reconstructed matrices. Reconstruction
time is highly related with the number of generated state-
ments: as we employ a timeout to stop exploring alternate
branches for the compression (i.e., trading off number of
pieces versus maximal dimensionality), this timeout length
drives the reconstruction time in our experiments. The time
required per statement was approximately 15 seconds.
Table 2 details some reconstruction statistics about these
matrices. Data is aggregated by the number of statements/-
pieces required. It shows how the complexity characteristics
of the generated loops (the dimension and number of faces
of the iteration polyhedron) are essentially invariant when
the number of statements increases, which means that the
reconstruction heuristics employed by TRE are inherently
limiting the maximum complexity of the synthesized loops.
The exception are matrices which exhibit a high degree of
structural regularity, and can then be reconstructed using a
small number of statements. In these cases we observe how
the synthesized loops are structurally simpler, and at the
same time have much larger iteration domains. Note that the
parameters which control maximum complexity could be
changed in the TRE, leading to SCoPs with a larger number

3In this section we use interchangeably the words “piece” and “statement”
as the affine-SpMV code is generated by scanning the pieces, leading to one
statement per piece.

Gabriel Rodriguez and Louis-Noél Pouchet

120 1 [

100 A

80 4

60 A

Frequency

40 A

20 1

o MJJMWW*H*.—%

0 100 200 300 400 500 600 700 800 900
Affine statements

Figure 4. Histogram and rug plot of the number of state-
ments/pieces required to reconstruct matrices in the Harwell-
Boeing repository. The minimum number of statements is 1.
The maximum number is 881.

of simpler statements, or a smaller number of more complex
ones.

Table 2. Statistics for the Harwell-Boeing collection. Data is
quantized by the number of statements in each affine-SpMV
SCoP (see Fig. 4). The table shows the geometric mean of
the number of dimensions of the iteration polyhedron (loop
depth), the number of nonzeros of the original matrices (nnz),
the number of statements necessary for the reconstruction
(stmts), the number of iterations of the inner loop of each
statement (stmts), and the number of matrices belonging to
each category (count).

dims nnz stmts iters count
category
(0,5] | 2.47 699.56 1.43 489.42 32
(5,20] | 6.39 631.72 1142 55.29 22

(20,100] | 6.32 152451 4955 30.77 67

(100, 200] | 6.29 3560.80 137.73 25.85 48
(200, 400] | 6.31 7202.05 293.90 24.51 45
(400, 600] | 6.40 886598 477.95 18.55 20

(600, 800] | 6.16 17984.74 687.62 26.16 10

5.1 Performance of optimized codes

We use PoCC 1.4.1 [15] to compile the generated SCoPs to C
code. The compilation chain is mostly limited to code gen-
eration (CLooG), but we use AST post-processing in PoCC
to simplify and hoist loop bounds, and loop unrolling. Not
all the generated SCoPs can be handled by this toolchain:
only 179 out of the total 235 are converted to C code. In the
remaining 56 cases, CLooG exhausts the 64 GB of available

Polyhedral Modeling of Immutable Sparse Matrices

RAM and is killed. SCoPs with up to approximately 500 state-
ments can be handled in our experiments, which motivates
the previous decision to interrupt the synthesis process for
matrices requiring more than 1,000 statements.

GNU GCC 7.2.0 is used to compile the generated codes us-
ing -03, which includes automatic vectorization. The bench-
marks are executed on an Intel Core i7 4790 (Haswell). We
run both irregular and affine versions of the 179 different
input matrices. Executions are instrumented using hard-
ware counters through PAPI [13]. Each sparse matrix-vector
multiplication is performed 1,000 times and the aggregated
counter values are reported. We measured performance im-
provements from 0.10x (i.e., a 10x slowdown) to 6.17x, with
an average improvement of 1.38x. After broadly analyz-
ing the impact of different factors, we find the increase in
executed instructions count to be the most performance-
impacting one. Figure 5 shows the relationship between
normalized instruction count and speedup. There is a clear
inverse logarithmic relationship between both, and we can
broadly divide our matrices into four different categories.
We further analyze the reasons for the obtained performance
by singling out a few representative benchmarks for each of
the three regions with data points (note that no benchmarks
achieve better performance than their irregular counterparts
when they execute more instructions, so one of the original
four regions is empty). A graphical summary of the most
relevant performance counters is given in Fig. 6. The perfor-
mance counter values for the irregular kernels are given in
Table 3.

Let us consider first the lower right corner of Fig. 5, con-
taining benchmarks in which instruction count increases
and performance decreases. This region includes 40 bench-
marks. HB/nos1 appears in the far right extreme of that
region. This benchmark is a perfect example of a class in
which loop-related instructions (integer additions, compar-
isons, the multiplications used in affine access functions,
branches) significantly increase the total instruction count
of the application. Even memory access increases due to
register pressure. This usually happens when the original, ir-
regular 2-level loop is replaced by a more complex dense one.
For HB/nos1, the affine-SpMV code contains a single state-
ment, but enclosed into an 8-dimensional loop. The L1 cache
accesses increase by 9, branch instructions by 7, and other
instructions (integer additions, subtractions, multiplications,
comparisons, etc. supporting loop control flow) increase by
13. As a result, the code is much slower simply because many
more computations need to be carried out, even if cache be-
havior is excellent (both L1 data and instruction misses are
below 0.00001%).

In the lower left corner of Fig. 5 we find benchmarks which
execute less instructions than the original irregular code, but
still cannot achieve performance improvements, including
19 benchmarks. A paramount example of this class of codes
is HB/ jagmesh1. In this case, the instruction count decreases

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

.bcssltm09
6 - 1
1
o |1
1
1
1
] e
5 8 :
1
1
e 1
1
44 G !
(] 1
Q e 1
> - 1
S ° 1
9 1
231 1
0 1
o
&
e |
2 4 .l%cssthS
1
1
bus
I
1-_—— ____________________________________
qshl
1® e °
®
H W e o e o 1051
) S—
1

2 3 4 5 6 7 8 9 10
Normalized instruction count

Figure 5. Instruction count of affine-SpMV codes normalized
to original SpMV codes vs. speedup. The slashed lines divide
the space into four regions. No affine code executing more
instructions than its irregular counterpart achieves better
performance.

@ D2 misses

W 11 misses
[Branch count

[execution cycles
[instruction count
[D1 hits

3 D1 misses

[Mispredicted branches
I \Vector instructions
I Stalled cycles

0.8

o
o

10t

Normalized value
Percentage

o
>

107t 4
102 4
1073 A \I‘

107 4 |II

nosl jagmeshl 685_bus bcsstm25 bcsstm09
app

F 0.2

- 0.0

Figure 6. Performance counters for the singled-out bench-
marks. Values are normalized with respect to the original
irregular code. The number of stalled cycles and of vector
operations are given as a percentage of total cycles and float-
ing point operations, respectively, and are referenced to the
right axis.

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

Gabriel Rodriguez and Louis-Noél Pouchet

Table 3. Performance counter values for the irregular version of the singled-out benchmarks.

ex.cyc. inst.count D1hits D1 misses D2 misses I1 misses Br.count Mispred.br. Stalled cyc.
matrix
nosl 2776143 9424195 3524280 47 19 32 1492049 1004 104333
jagmesh1 | 17107678 50692196 20409426 99334 3317 40 8137050 31118 1202684
685_bus | 11001499 29088196 8928827 672438 189 40 4620050 48850 1201676
bcsstm25 | 79524188 308784201 75879071 351066 31069 31 46318055 1004 3056718
bcsstm09 | 5531743 21664196 4827409 184956 51 31 3250050 1005 181461

significantly, as the affine-SpMV version executes 30M in-
structions vs. the 51M instructions of the irregular code.
Some of the performance counters for this matrix clearly
improve: the number of executed branches significantly de-
creases (0.6M vs 8.1M), as do branch mispredictions (which
are anecdotical in both code versions). However, the number
of stalled cycles increases by a factor of 5. The culprit seems
to be cache behavior: L1 data misses are increased by 29, and
instruction misses go from just 40 to 1.5M. The explanation in
this case is in the code generated by CLooG: it translates the
original 285 statements in the SCoP to a single monolothic
outer loop with only two iterations, containing the original
accesses in an almost completely unrolled fashion. While
this avoids the increase in instruction count observed for
HB/nos1, it increases the code size by 16.

On the upper left section of Fig. 5 we find benchmarks
which execute less instructions than their irregular coun-
terparts, and do so faster. These include the remaining 120
benchmarks. The reasons for success in this region are varied.
Extreme cases correspond to completely regular matrices,
such as diagonal matrices or matrices with no zeros. These
can be traversed using a single 1-dimensional statement. In
the extreme case of HB/bcsstm@9 the number of instructions
decreases by a factor of 10, and we also observe significant
reductions in the number of branches and data accesses.
Furthermore, 100% of the floating point instructions are vec-
torized. The final speedup is 6.17. This matrix contains 1,083
nonzero elements. Other similar diagonal but much larger
matrices, such as HB/bcsstm25 with 15,439 nonzeros, also
achieve notable speedups for the same reasons (1.94 in this
particular example). The reason for the slower performance
in this case is the difference in memory footprints: in the
smallest case it is only of 25kB, fitting L1, whereas in the
largest one it goes up to 361 kB, which makes temporal lo-
cality across the 1,000 repetitions of the SpMV operation be
exploited through the L2/L3 caches.

Finally, we draw the attention towards more modest per-
formance improvements. In these cases, the reasons for suc-
cess are varied, and the result of different tradeoffs in instruc-
tion count, memory footprint, and runtime improvements.
Consider the case of HB/685_bus. The code ends largely
unrolled by PoCC/CLo0G, using half the number of total
executed instructions. However, code size increases, and
consequently worsens the behavior of the instruction cache.

However, the total number of data memory access is de-
creased, as is the number of branch mispredictions, for a
total improvement of 1.29x.

6 Related Work

Sparse codes characteristically exhibit irregular access pat-
terns to one or more arrays that prevent static code anal-
ysis and optimization. Their prevalence in scientific com-
puting, and in particular using distributed-memory clusters
lead to the design of inspector/executor (I/E) approaches
pioneered by Saltz et al. [18]. They developed runtime in-
frastructure for distributed memory parallelization of irreg-
ular applications [14, 18, 19]. These were augmented with
compiler approaches that automatically generated parallel
code [1, 8, 25]. Ravishankar et al. exploit run-time regular-
ity to produce polyhedrally-optimizable executor code in
specific cases [16]. Sukumaran-Rajam and Clauss [21] also
detect run-time regularity using linear interpolation and
regression models, selecting optimizations in a speculative
fashion. However none of this approaches allow to customize
the program at compile-time to the specifics of the input
sparse matrix, instead generating code that is always-correct
whatever the input sparse matrix.

The Sparse Polyhedral Framework [12, 20, 23] provides
a unified framework to express affine and irregular parts
of the code by representing indirection array access using
uninterpreted function symbols. In essence this amounts to an
(over-)approximation of the non-polyhedral program into a
polyhedral one, which is perfect for the purpose of generat-
ing automatically at compile-time I/E code. Still, the same
advantages and limitations occur: the generated code will
be valid for any input sparse matrix, but will not exploit op-
portunities to customize the optimization to a specific input
matrix.

The Trace Reconstruction Engine (TRE) [17] used in this
paper uses an algebraic approach to synthesize an affine
statement with a single perfectly nested reference which
produces a sequence of integers provided as input. The tool
works by analyzing the elements in the input sequentially by
progressively refining an initial 1-dimensional affine state-
ment, incorporating more elements of the input each time,
until a full match is obtained. The tools works by finding all
the possible solutions to the linear equation systems which

Polyhedral Modeling of Immutable Sparse Matrices

describe the iteration polyhedron and its projection on the
input sequence. The tool can be used to analyze memory
address streams, but also sequences of integer indices as we
have done in this paper. The TRE has been recently improved
to support the synthesis of piecewise-affine domains (i.e.,
loops using min/max of affine functions in their lower/upper
bounds).

Clauss et al. [7] characterized program behavior using
polynomial piecewise periodic and linear interpolations sep-
arated into adjacent program phases to reduce function com-
plexity. The model can be recursively applied, interpreting
coefficients of the periodic interpolation as traces in them-
selves. Clauss and Kenmei [6] introduced polyhedra to graph-
ically represent the program memory behavior (including
cache misses) and facilitate its understanding. Ketterlin and
Clauss [11] proposed a method for trace prediction and com-
pression based on representing memory traces as sequences
of nested loops with affine bounds and subscripts. Such ap-
proach could also be used in place of TRE, but we note that
rebuilding multi-statements or their schedule [11] is not
needed in our present work.

7 Conclusion

Sparse matrices conveniently store only non-zero values of
the matrix. This representation may greatly optimize stor-
age and computation size, but typically prevents polyhedral
analysis of the application due to the presence of indirec-
tion arrays. This paper introduces our approach to generate
polyhedral-friendly code specialized to a given input sparse
matrix, by employing affine trace reconstruction algorithms
to discover regularity in the set of non-zero coordinates.
Specifically, we focus on immutable sparse matrices, and
we illustrate how to build an “affine-SpMV” matrix-vector
multiplication operation as a union of dense polyhedral sub-
computations. Experimental results highlight the potential
for performance improvements but also performance degra-
dation using our technique, as the performance is highly
dependent on the number, dimensionality and size of the
polyhedral pieces describing sets of non-zero coordinates.

References

[1] G. Agrawal, J. Saltz, and R. Das. Interprocedural partial redundancy
elimination and its application to distributed memory compilation. In
PLDI, 1995.

[2] C.Bastoul. Code generation in the polyhedral model is easier than
you think. In IEEE Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT 04), pages 7-16, Juan-les-Pins, France, Sept. 2004.

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.
The polyhedral model is more widely applicable than you think. CC,
6011:283-303, 2010.

[4] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for
adaptive scientific algorithms on distributed memory machines. Con-
currency: Practice and Experience, 1991.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In PLDI,
2008.

IMPACT 2018, January 23, 2018, Manchester, United Kingdom

“This extension is described in an ongoing journal submission

[6] P.Clauss and B. Kenmei. Polyhedral modeling and analysis of memory
access profiles. In Proceedings of the 2006 IEEE International Confer-
ence on Application-Specific Systems, Architecture and Processors, ASAP,

pages 191-198, 2006.

P. Clauss, B. Kenmei, and J. C. Beyler. The periodic-linear model of

program behavior capture. In Proceedings of the 11th International

Euro-Par Conference, pages 325-335, 2005.

[8] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index array flattening
through program transformation. In SC, 1995.

[9] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collec-
tion. ACM Trans. Math. Software, 38:1-25, 2011.

[10] G. Gupta and S. Rajopadhye. The z-polyhedral model. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP, pages 237-248. ACM, 2007.

[11] A.Ketterlin and P. Clauss. Prediction and trace compression of data
access addresses through nested loop recognition. In Proceedings of
the 6th International Symposium on Code Generation and Optimization,
CGO, pages 94-103, 2008.

[12] A.LaMielle and M. Strout. Enabling code gen. with sparse polyhedral
framework. Technical report, Colorado State University, 2010.

[13] P. Mucci et al. Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/people/index.html. Last accessed November
2017.

[14] R. Ponnusamy, J. H. Saltz, and A. N. Choudhary. Runtime compilation
techniques for data partitioning and communication schedule reuse.
In SC, 1993.

[15] L.-N. Pouchet. the PoCC polyhedral compiler collection. http://pocc.
sourceforge.net.

[16] M. Ravishankar, R. Dathathri, V. Elango, L.-N. Pouchet, J. Ramanujam,
A. Rountev, and P. Sadayappan. Distributed memory code generation
for mixed irregular/regular computations. In ACM PPoPP 2015. ACM,
2015.

[17] G.Rodriguez, J. M. Andién, M. T. Kandemir, and J. Tourifio. Trace-based
affine reconstruction of codes. In Proceedings of the 14th International
Symposium on Code Generation and Optimization, CGO, pages 139-149,
2016.

[18] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time
scheduling and execution of loops on message passing machines. }.
Parallel Distrib. Comput., 1990.

[19] S.Sharma, R. Ponnusamy, B. Moon, Y. shin Hwang, R. Das, and J. Saltz.
Run-time and compile-time support for adaptive irregular problems.
In SC, 1994.

[20] M. M. Strout, G. George, and C. Olschanowsky. Set and relation ma-
nipulation for the sparse polyhedral framework. In LCPC, September
2012.

[21] A.Sukumaran-Rajam and P. Clauss. The polyhedral model of nonlinear
loops. ACM Trans. Archit. Code Optim., 12(4):48, 2016.

[22] A.Venkat, M. Hall, and M. Strout. Loop and data transformations for
sparse matrix code. In 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2015. Association for
Computing Machinery, 2015.

[23] A. Venkat, M. S. Mohammadj, J. Park, H. Rong, R. Barik, M. M. Strout,
and M. Hall. Automating wavefront parallelization for sparse matrix
computations. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 41.
IEEE Press, 2016.

[24] S.Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado,
and F. Catthoor. Polyhedral parallel code generation for cuda. ACM
Transactions on Architecture and Code Optimization (TACO), 9(4):54,
2013.

[25] R.vonHanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler
analysis for irregular problems in Fortran D. LCPC, 1993.

7

—

