
Extending Pluto-Style Polyhedral Scheduling
with Consecutivity

Sven Verdoolaege

Polly Labs and KU Leuven

sven.verdoolaege@gmail.com

Alexandre Isoard

Xilinx

alexandre.isoard@gmail.com

Abstract
The Pluto scheduler is a successful polyhedral scheduler that

is used in one form or another in several research and produc-

tion compilers. The core scheduler is focused on parallelism

and temporal locality and does not directly target spatial

locality. Such spatial locality is known to bring performance

benefits and has been considered in various forms outside

and inside polyhedral compilation. For example, the Pluto

compiler has some support for spatial locality, but it is limited

to a post-processing step involving only loop interchange.

Consecutivity is a special case of spatial locality that aims

for stride-1 accesses, which can be useful for constructing

burst accesses and for vectorization. Stride-1 accesses have

been targeted by an approach based on one-shot scheduling,

but it is fairly approximative and not directly transferable to

a Pluto-style scheduler. This paper describes an approach for

consecutivity that is integrated in a Pluto-style polyhedral

scheduler, as implemented in isl. Both intra-statement and

inter-statement consecutivity is considered, taking into ac-

count multiple references per statement and the integration

into a component based incremental scheduler.

1 Introduction and Motivation
A program is said to exhibit locality if it reuses some data

element stored in some form of cache before it gets evicted. A

distinction is usually made between temporal locality, where

the same element is reused, and spatial locality, where the

reuse may be of some other element that is loaded into the

cache together with the element that was accessed first, e.g.,

because they share a cache line. Improving spatial locality

therefore usually brings performance benefits by increasing

cache hit rate.

Consecutivity is a special case of spatial locality, where

consecutive accesses to memory access consecutive elements.

Consecutivity facilitates memory access vectorization and

usually allows the hardware cache prefetcher to successfully

predict the next memory access. The main motivation for

this paper, however, is coalescing consecutive accesses into a

single burst request, which is useful on architectures such as

FPGAs to compensate for the difference in clock frequency

between the logic and the external memory interface and to

IMPACT 2018 (http://impact.gforge.inria.fr/impact2018)
Eighth International Workshop on Polyhedral Compilation Techniques,
In conjunction with HiPEAC 2018.

January 23, 2018, Manchester, United Kingdom

allow thememory controller to optimize the accesses, usually

guaranteeing close to one (widened) memory access per

cycle, thus fully utilizing the available memory bandwidth.

Xilinx (2017, Chapter 6) notably recommends using mem-

ory ports as wide as 512 bits (e.g., vectors of 16 elements for

32 bits integer) and bursting memory transfers from off-chip

global memory. Xilinx (2017, Appendix B) further suggests

storing the data into temporary buffers in on-chip memory

(BlockRAM) so as to freely perform all the memory accesses

of each array in a few bursts. This means, in particular, that

reads and writes should be made consecutive separately and

that there is little use in mixing consecutive accesses with

non-consecutive accesses to the same memory/array.

There aremany conceivable strategies for trying to achieve

consecutivity or, more generally, spatial locality. The opti-

mization can be performed as a post-processing step or it

can be integrated into a scheduler. Within polyhedral com-

pilation, a popular scheduling approach is to construct con-

straints on schedule coefficients through an application of

the Farkas lemma (Schrijver 1986, Corollary 7.1h, page 93;

Feautrier 1992a, Theorem 7), but there are also other ap-

proaches such as those based on transitive closures (e.g.,

Bielecki et al. 2017). Within the Farkas based approaches,

there are two main groups, those such as the Pluto scheduler

(Bondhugula, Baskaran, et al. 2008) that compute a schedule

row by row and those that compute a multi-dimensional

schedule in one shot based on a convex space of valid sched-

ules (Vasilache 2007; Pouchet et al. 2011).

Each such approach has its own advantages and disad-

vantages, but a detailed comparison is beyond the scope of

this paper. Instead, this paper focuses on one choice and

describes how to add support for consecutivity to the isl
scheduler (Verdoolaege, Juega, et al. 2013; Verdoolaege and

Janssens 2017), a scheduler based on the Pluto scheduler

that is used in GCC/graphite (Trifunovic, Cohen, et al. 2010),

LLVM/Polly (Grosser et al. 2012) and PPCG (Verdoolaege,

Juega, et al. 2013). In particular, this paper describes

• the derivation of constraints on schedule coefficients

for trying to achieve consecutivity in a row-by-row

polyhedral scheduler, without introducing any addi-

tional variables in the ILP problem,

• an approach for solving these constraints in conjunc-

tion with other constraints directed at correctness,

parallelism and/or temporal locality,

1

http://impact.gforge.inria.fr/impact2018

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

• an algorithm for combining consecutivity constraints

derived from multiple references, and

• the integration into a component based incremental

scheduler.

Note that this paper only focuses on consecutivity and,

in particular, does not explain how to ensure that the con-

secutive accesses can also be executed in parallel, which

would be an additional requirement for vectorization. If the

innermost tilable band in the generated schedule happens

to be fully parallel, then this will be the case. Otherwise,

additional techniques may be required, as briefly discussed

in Section 6. More details on the consecutivity support are

available from Verdoolaege and Isoard (2017). A prototype

implementation is available in consecutivity_CW_709 of

git://repo.or.cz/isl.git and git://repo.or.cz/ppcg.git. This im-

plementation is oriented towards optimizing the innermost

fully parallel loops for consecutivity.

2 Background
2.1 Terminology
For the purpose of consecutivity, only purely affine refer-

ences will be considered, i.e., a single expression defined over

a universe domain that does not involve any quasi-affine ele-

ments. For such an affine array reference A[F i+c], the matrix

F will be called the linear part and it will often be split into

the final row H and the remaining rows G, i.e.,

F =

[
G
H

]
. (1)

The linear part of the schedule transformation for a particular

statement will be represented by T .
Given a matrix M , its null-space is the set kerM = { x :

M x = 0 }. The orthogonal complement ofM is a matrix with

as rows any basis for its null-space. Two forms of linear inde-

pendence are considered in this paper. Anm×n-dimensional

matrix M is said to be linearly independent if the rows of

M are linearly independent, i.e., if rankM =m. Anm1 × n-
dimensional matrix M1 is said to be linearly independent
of an m2 × n-dimensional matrix M2 if there is no linear

dependence among the combined rows that is not a linear

dependence when restricted to the rows ofM1 (orM2), i.e., if

rank

[
M1

M2

]
= rankM1 + rankM2. (2)

Note that this is a symmetric property, meaning that ifM1 is

linearly independent ofM2, thenM2 is also linearly indepen-

dent ofM1. A basis extension of a matrixA to cover B, written
B \A is formed by rows C that extend a basis of A to a basis

that also covers B. One way of computing such a matrixC is

described by Verdoolaege and Isoard (2017, Section 5.4).

2.2 The isl Scheduler
The isl schedulerwas first introduced byVerdoolaege, Juega,
et al. (2013) and is explained in detail by Verdoolaege and

Janssens (2017). See also Appendix A. The scheduler takes

as input a set of statement instances that need to be sched-

uled as well as different forms of schedule constraints. The

most important schedule constraints are validity schedule

constraints, which enforce a relative order between pairs of

statement instances, proximity schedule constraints, which

tell the scheduler to try and schedule pairs of statement

instances close to each other, and coincidence schedule con-

straints, which tell the scheduler to try and schedule pairs

of statement instances together for as long as possible.

The isl scheduler combines two scheduling algorithms,

(a variant of) the Pluto scheduler (Bondhugula, Baskaran,

et al. 2008), and the Feautrier scheduler (Feautrier 1992b).

The Pluto scheduler tries to compute multiple, linearly inde-

pendent schedule rows using the same schedule constraints.

These schedule rows form the members of a band. Note that
these members not only need to be linearly independent of

each other, but also of members of outer bands. That is, if

T0 is the linear part of the schedule computed so far for a

particular statement, then the next schedule row C for that

statement needs to be such that

¬ (∃Y : C = YT0) . (3)

This linear independence constraint is relaxed for statements

with a dimension n that is smaller than the maximal state-

ment dimensionm. In particular, no constraint is imposed as

long as a total number of n linearly independent rows can

still be found in subsequent steps, i.e., if

n − r1 < m − ℓ, (4)

with r1 = rankT0 and ℓ the number of rows in T0. If no
more rows can be computed within a band, the schedule

constraints that do not relate statement instances that are

coscheduled by the band are removed and a new, nested band

is constructed. If no such band can be constructed, then a

single iteration of the Feautrier scheduler is used to create a

schedule row, ignoring proximity schedule constraints and

coincidence schedule constraints.

The Pluto scheduler variant implemented in isl first com-

putes bands for each strongly connected component in the

statement-level schedule constraint graph separately, after

which the components are combined incrementally by sched-

uling themwith respect to each other, rejecting combinations

that do not optimize at least some proximity schedule con-

straints. For each component and for each band member, the

scheduler constructs one or two ILP problems for computing

the next schedule rows by translating the validity, proximity

and coincidence schedule constraints to constraints on the

schedule coefficients through an application of the Farkas

Lemma. If there are any coincidence schedule constraints,

then they are first included in the ILP and if this fails to pro-

duce a solution, a second ILP is constructed without them.

Linear independence constraints (3) are imposed through

backtracking. In particular, the orthogonal complementU of

2

git://repo.or.cz/isl.git
git://repo.or.cz/ppcg.git

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity IMPACT 2018, January 23, 2018, Manchester, United Kingdom

T0 is computed and for each statement whereUC t , 0 does
not hold, the cases

UiC
t ≥ 1 or UiC

t ≤ −1 (5)

are considered for each row i of U in turn. The rows of U
are also normalized to favor schedules with zero values for

later schedule coefficients and a positive value for the first

schedule coefficient involved.

Once a solution has been found, backtracking continues,

but the search is narrowed to “significantly better” solutions.

In practice, this means that a solution with a parametric

bound on the distances over proximity schedule constraints

may be replaced by one with a non-parametric bound and

that a solution with a non-zero bound may be replaced by

one with a zero bound.

2.3 Spatial Locality
Wolf and Lam (1991a) define the directions of self-tempo-
ral reuse to be those in ker F and those of self-spatial reuse
to be those in kerG, with G as in (1). They also consider

group-spatial reuse between different references to the same

array from the same schedulable unit (in their case, a loop

nest), but these rarely bring any additional directions (Wolfe

1996). They partition the original loop iterators into those

that do not appear in reuse directions and those that do, and

apply their SRP algorithm (Wolf and Lam 1991b) to both

groups of iterators separately. Tiling is performed on the

innermost loops, but reorderings of the point loops are not

considered because they do not affect reuse. For the purpose

of consecutivity, however, such reorderings are important.

Anderson et al. (1995), Kandemir, Ramanujam, and Choud-

hary (1999), and Vasilache et al. (2012) show that data layout

transformations are also important. This means that spatial

locality may be considered in array dimensions other than

the innermost (in C layout). This paper does not consider

such transformation and the related work is reformulated in

terms of the innermost dimension when appropriate.

Kandemir, Ramanujam, and Choudhary (1999) apply both

data layout transformations and a loop nest transformation,

i.e., with a single transformation matrix. They require the

innermost transformed loop iterator to only appear in the

innermost array index expression and to appear there on

its own with coefficient one. In later steps, they also allow

self-temporal reuse in the innermost index expression and

self-spatial reuse in the second innermost expression. That

is, they try to have FiT
−1

equal to[
X 0
0t 1

]
or


X 0 0
0t 1 0

0t 0 0

 (6)

and use these constraints to fix elements ofT −1. The authors
explain that their criterion is stronger than strictly needed

for spatial locality. In fact, it is sufficient for consecutivity and

forms the basis of the consecutivity objective of Section 3.1.

Kandemir, Ramanujam, Choudhary, and Banerjee (2001)

compute a loop nest transformation by picking the last col-

umn of T −1 from ker F for self-temporal reuse or from kerG
for self-spatial reuse. In the first case, they also try and pick

the second to last column ofT −1 from kerG . The approach of
the present paper computes multipleT matrices, one for each

statement, row by row and therefore first needs to transform

the objective into constraints on those rows.

Bastoul and Feautrier (2004) described how to obtain a

(partial) schedule with a prescribed null-space. They take

self-temporal reuse as an example, where the null-space is

picked from ker F , but explain that self-spatial reuse can be

handled in a similar way (where the null-space would be

kerG). They start from a basis T that has the selected vector

in its null-space and successively replace individual rows by

linear combinations of the rows by solving for optimal linear

combinations. A direct application to the isl scheduler is

not straightforward because its scheduling problem is formu-

lated in terms of the original schedule coefficients and not in

terms of these linear combinations. However, computing a

linear combination of the rows ofT is the same as computing

a row with a null-space that includes that ofT . It is therefore
sufficient to add some equality constraints (corresponding to

the orthogonal complement ofT) on the schedule coefficients.

This latter method will be used in Section 3.3.

Bondhugula, Hartono, et al. (2008, Section 5.4) mention

the possibility of optimizing spatial locality by perform-

ing interchanges in the intra-tile bands, but do not pro-

vide any details. Support for these intra-tile interchanges

for spatial locality was later made available in pluto ver-

sion 0.8.1-53-g63b86f2 (2012). Trifunovic, Nuzman, et al.

(2009) perform an exhaustive search over all loop permuta-

tions (at the AST level) and pick the best based on a cost

model. There is no mention of any validity check.

Whereas Bastoul and Feautrier (2004) compute a partial

schedule that is orthogonal to a selected element of kerG (in

case of self-spatial reuse), Vasilache et al. (2012) compute an

outer schedule T1 (all but the final row) that is orthogonal to
any element of kerG, i.e.,

kerT1 ⊆ kerG . (7)

In other words, the rows ofG need to be linear combinations

of the rows ofT1. Note that since kerT1 consists of multiples

of the last column of T −1, this criterion is essentially the

same as that expressed by the left part of (6), except that

this latter criterion also involves constraints derived from H ,

ensuring non-temporal spatial locality. Just like Bastoul and

Feautrier (2004), they try to obtain a partial schedule that

consists of linear combinations of some initial matrix (here,

G), but they only do so for schedule rows where it is strictly

needed to ensure thatG is a linear combination ofT1. It is not
entirely clear from the description what happens in other

cases. In particular, it is not clear if they prevent H from be-

ing a linear combination of the rows of T1, which is allowed

3

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

by criterion (7), but which would prevent consecutivity. Un-

like Bastoul and Feautrier (2004), the linear combination is

part of an optimization criterion and not a hard constraint.

In particular, a constraint is added that makes the schedule

row equal to Gλ, with λ additional unconstrained variables.

This equality constraint is encoded as a pair of inequality

constraints that are only enforced if the corresponding de-

cision variable is set. Note that while a one-shot scheduler

is being used, it is called several times, each time fixing an

additional row of the schedule.

Kong et al. (2013) have similar objectives to those of the

present paper as they try and obtain stride-1 and stride-0

accesses. Being based on a one-shot scheduler (in their case

only called once), this approach belongs to a different class

of approaches. Moreover, it is exclusively based on which

statement indices appear in index expressions and schedule

rows and not on any linear combinations of those statement

indices, thereby missing some opportunities, e.g., in case of

an access A[j][j - i] with loop iterators i and j. Finally,
the encoding in the ILP problem only seems to create fa-

vorable conditions where stride-1 or stride-0 accesses may

appear rather than necessarily enforcing such accesses. See

Verdoolaege and Isoard (2017, Section 2.11) for further de-

tails.

When using the isl scheduler, a potential approach would
be to exploit proximity schedule constraints to try and bring

accesses to consecutive elements close to each other. How-

ever, a naive implementation would have these proximity

schedule constraints compete with those for temporal local-

ity, where one group may drown out the other. They would

continue to be enforced within a band even if outer mem-

bers already prevent spatial locality, potentially steering the

scheduler in the wrong direction. In case of temporal reuse in

an array reference, a naive formulation would result in many

interrelated instances, possibly causing infeasibility of the

ILP problem (Verdoolaege and Janssens 2017, Section 6.6.3).

Finally, proximity schedule constraints are not directional.

That is, they only bring statement instances close to each

other, but do not ensure that one appears before the other,

which is required for consecutivity.

The approach of Zinenko et al. (2018) attempts to resolve

some of these issues by introducing specialized spatial prox-
imity schedule constraints, but focuses on general spatial

locality and not specifically on consecutivity. The constraints

are derived from pairs of statement instances that access

adjacent elements of an array, with additional filtering to

avoid some problematic cases. Due to this filtering, many

of the resulting pairs have a strong correspondence with

the intra-statement consecutivity schedule constraints in-

troduced below, in the sense that a satisfied intra-statement

consecutivity schedule constraint means that the correspond-

ing spatial proximity schedule constraints will have a zero

distance in the outer dimensions and a distance of one (in

absolute value) in some inner dimension. However, since

void transpose(int N,

__pencil_consecutive float A[N][N],

__pencil_consecutive float C[N][N])

{

float tmp[N][N];

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: C[j][i] = tmp[i][j];

}

}

Listing 1. Input file

spatial proximity schedule constraints are not tailored to

optimizing consecutivity, they do not distinguish between

accessing elements in increasing order and accessing them

in decreasing order. They also make no distinction between

directions that should be in outer dimensions and directions

that are independent, meaning they will favor putting the

independent directions in non-innermost positions, while

the handling of intra-statement consecutivity schedule con-

straints below does not imply such a preference. If a choice

needs to be made, then this also means that they cannot

tell the difference between allowing one of the independent

directions to be innermost (while still achieving spatial local-

ity) and allowing one of the outer index expression directions

to be innermost (thereby failing to achieve spatial locality).

Spatial proximity schedule constraints derived from uni-

formly generated references are grouped together and the

groups are sorted according to their expected influence. Dur-

ing the computation of a schedule row, the maximal schedule

distance between pairs of elements in each group is mini-

mized in turn. Each group with a non-zero distance is re-

moved from consideration for any subsequent schedule rows.

The group based minimization means that a sequence of ad-

ditional variables in the ILP problem is added for each group.

In contrast, the approach of this paper does not introduce

any additional variables and does not involve any minimiza-

tion, in particular of distances between pairs of instances

that may in the end turn out to correspond to a failed spatial

locality constraint. On the other hand, the approach of this

paper may commit too eagerly to some constraints and miss

other opportunities, although this effect is mitigated by the

preprocessing of Section 3.4. It is therefore difficult to pre-

dict which approach will produce the best results with the

least amount of effort. A detailed comparative experimental

evaluation is left to future work.

4

void transpose(int N,
 __pencil_consecutive float A[N][N],
 __pencil_consecutive float C[N][N])
{
 float tmp[N][N];

 for (int i = 0; i < N; i++)
	for (int j = 0; j < N; j++) {
S:	 tmp[i][j] = A[i][j];
T:	 C[j][i] = tmp[i][j];
	}
}

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity IMPACT 2018, January 23, 2018, Manchester, United Kingdom

3 Intra-Statement Consecutivity
Consider the matrix transpose code in Listing 1. The code

assumes that arrays A and C are stored in external memory

and would therefore benefit from consecutive accesses. This

objective is expressed through the __pencil_consecutive
annotation. The tmp array is stored locally and does not need
to be considered for consecutivity. It is clear that in order

to obtain consecutive accesses, the loop nest needs to be

distributed and loop interchange needs to be applied to the

second loop nest. This section describes the schedule con-

straints that allow information about desired consecutivity

to be communicated to the scheduler as well as their han-

dling by the scheduler. Note that PPCG has an optimization

that groups chains of statements accessing the same memory

elements into larger statements in the input to the scheduler

(Verdoolaege and Janssens 2017, Section 7.4). This optimiza-

tion is disabled if consecutivity is involved as it would group

statements such as S and T in the example into a single state-

ment based on their accesses to tmp, preventing any loop

distribution.

3.1 Objective
Given the linear part of affine index expression F , split into
an outer partG and an inner part H as in (1), the objective is

to obtain a transformed array access that has the innermost

transformed loop iterators appear with coefficient 1 in the

innermost index expressions (in the same order) and not in

any outer index expressions. Furthermore, some additional

transformed loop iterators may be mixed in with the afore-

mentioned innermost transformed loop iterators as long as

this additional set does not appear in any index expressions.

That is, F T −1 is of the form

0

0

0

0

. . .

0

0

0A

...
...

...
0 0 . . . 0

1 0 . . . 0

1

. . .
...

L
. . . 0

1



d − f

f

, (8)

for some A and L. This is a minor generalization of crite-

rion (6) of Kandemir, Ramanujam, and Choudhary (1999),

where H may have a number of rows f that is greater than

one, where the number of zero columns may be any number

greater than or equal to zero and where both L and the lower

part of A do not need to be all zeros. Allowing multiple rows

in H is mostly of interest for combining multiple references

as described in Section 3.4 below. Let the number of zero

columns be t . They allow for t directions of temporal locality

in addition to the f directions of consecutivity. Criterion (7),

on the other hand, considers temporal locality as a special

case of spatial locality. A straightforward extension to multi-

ple inner index expressions would therefore try to achieve at

most f levels of spatial locality. Note that criterion (8) above

only requires a transformed loop iterator appearing with a

coefficient 1 in some index expression to not appear in any

earlier index expression. It can appear in later index expres-
sions since the iterator may be considered to be fixed when

evaluating the consecutivity of this later index expression.

Criterion (8) can only be satisfied if F satisfies some crite-

ria. In particular, H needs to be linearly independent and H
needs to be linearly independent of G. The matrix G itself

does not need to be linearly independent, but it may be re-

placed by a basis of its rows without affecting consecutivity.

For the code in Listing 1,

FS =

[
GS

HS

]
=

[
1 0

0 1

]
and FT =

[
0 1

1 0

]
, (9)

and transformation matrices

TS =

[
1 0

0 1

]
and TT =

[
0 1

1 0

]
(10)

can be found that both result in an identity F T −1, where A
consists of the first column and there are no zero columns.

3.2 Strategy
The strategy for trying to achieve objective (8) in a sched-

uler that computes the schedule row by row consists of two

main phases. The first phase tries to obtain the zeros in the

top right part of criterion (8), while the second phase tries

to obtain the lower-triangular matrix in the bottom right.

Once these goals have been obtained, consecutivity has been

achieved and the scheduler is free to choose the remaining

schedule rows based on other criteria. Let the linear part of

the schedule of the corresponding statement be subdivided

accordingly into rows T1, T2 and T3. Note that T0 still refers
to the linear part of the schedule computed so far.

The first phase is essentially the same as the strategy of

Vasilache et al. (2012), picking outer rows T1 that have G as

a linear combination, i.e., kerT1 ⊆ kerG (7), except that it

also needs to take into account that it will be followed by a

second phase that will try and pickT2 to be equal toH (up to

some linear combinations of earlier rows). This means that

the rows of T1 should be chosen to be linearly independent

of H . In fact, since each schedule row needs to be linearly

independent of all previous rows, it should be chosen to be

linearly independent of H and T0 combined. Let

r1 = rankT0 and r2 = rank

[
T0
G

]
, (11)

then the first phase continues until r1 becomes equal to r2,
at which point G is a linear combination of T0.

The best way to make progress during the first phase is to

pick schedule rows that are linear combinations of G. This

5

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

Constraints introduced when r1 < r2(
C = X

[
T0
G

]
∧C , Y

[
T0
H

])
∨C , Y


T0
G
H

 ∨C = XT0

Constraints introduced when r1 = r2 ∧ h < f

C = Hh + X

[
T1
H<

]
∨C , Y


T0
G
H

 ∨C = XT0

Constraints introduced when h = f
none

Table 2. Constraints on (the linear part of) the next schedule
row C introduced at different stages of the consecutivity

constraints handling process. C = X M is short for C being

a linear combination of the rows ofM . C , Y M is short for

C being linearly independent of the rows ofM . H< contains

the rows of H with index smaller than h.

will increase r1 without also increasing r2. Each such sched-

ule row may also include contributions from the previously

computed schedule rows. To ensure that the row contains

a non-zero contribution fromG, it is explicitly enforced to

be linearly independent of T0 and H . Alternatively, it is also

possible to pick a row that is linearly independent of the

entire F (and T0). This will increase both r1 and r2. Such a

choice is only possible if the total rank of T0 and F com-

bined is smaller than the statement dimension n. Finally, for
lower-dimensional statements that still satisfy condition (4),

allowing the next schedule row to be linearly dependent on

T0, it is also possible to pick a linear combination ofT0. Such
a choice increases neither r1 nor r2. It also does not prevent

a successful application of the second phase because each

row of T0 is linearly independent of H at this stage. These

different options are summarized in the top part of Table 2.

In the second phase, the successive schedule rows need

to be made equal to successive rows of H . For each intra-

statement consecutivity schedule constraint, the scheduler

therefore keeps track of the number of schedule rows h that

have been made equal to the first of the f rows of H . Note

that the schedule rows do not need to be exactly the same as

the rows of H , but may instead also have contributions from

earlier schedule rows. Since these earlier rows are linearly

independent of the current row ofH , the contribution of this

row is not canceled out and the resulting schedule row is

linearly independent of both the outer schedule rows and of

subsequent rows of H . As in the first phase, schedule rows

that are linearly independent of the entire F , or linear com-

binations of earlier rows are also allowed, when applicable.

However, such intermediate rows, which correspond to the

zero columns in criterion (8), are not allowed in the linear

combinations that may be added to subsequent rows made

equal to rows in H in order to ensure that those columns

are entirely zero. The corresponding constraint in Table 2

therefore refers to T1 (which does not include these rows)

rather than to T0 (which does include these rows). As soon

as all rows of H have been handled, i.e., h = f , consecu-
tivity has been achieved and no more consecutivity based

constraints on schedule coefficients are introduced during

the computation of subsequent schedule rows.

For statement T in Listing 1, the first phase tries to find a

suitable linear combination of

[
0 1

]
that is linearly inde-

pendent of

[
1 0

]
, say

[
0 1

]
itself, while the second phase

tries to construct a schedule row that is equal to

[
1 0

]
plus

some linear combination of the previous row

[
0 1

]
.

As soon as any of the constraints imposed on the schedule

coefficients fails to be satisfied by the solution, the corre-

sponding intra-statement consecutivity schedule constraint

is removed from consideration. Note that in the current im-

plementation, these constraints are only imposed by the

Pluto scheduler. In cases where a step of the Feautrier sched-

uler ends up getting performed, the computed schedule row

may therefore not satisfy those constraints. If at any stage,

f − h > rank


T0
G
H

 − r2, (12)

i.e., there are not enough linearly independent rows in H
left, then the corresponding intra-statement consecutivity

schedule constraint is also removed from consideration.

If multiple intra-statement consecutivity schedule con-

straints were specified for the same statement, then a con-

straint on the schedule coefficients is constructed for each

intra-statement consecutivity schedule constraint according

to the rules in Table 2. However, the solver is instructed to

first try and satisfy the constraint on the schedule coeffi-

cients corresponding to the first intra-statement consecutiv-

ity schedule constraint on the statement and to only consider

the one corresponding to a later intra-statement consecutiv-

ity schedule constraint when the one corresponding to the

previous one cannot be satisfied. Disjuncts that also appear in

the constraint on the schedule coefficients corresponding to

previous intra-statement consecutivity schedule constraints

are therefore dropped since they are already known to be

unsatisfiable by the time they would be reconsidered. In

particular, the linear dependence disjunct is independent of

the intra-statement consecutivity schedule constraint and is

therefore only considered for the first intra-statement con-

secutivity schedule constraint. If all disjuncts corresponding

to an intra-statement consecutivity schedule constraint are

duplicates of disjuncts corresponding to previous ones on

the same statement, then the entire disjunction is dropped.

6

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity IMPACT 2018, January 23, 2018, Manchester, United Kingdom

3.3 Solution
The elementary constraints in Table 2 on the preceding page

are of a form that is similar to that of the linear independence

constraint (3). They are also handled in a similar way. Some

of these constraints are also linear independence constraints,

but they involve more rows, meaning that the complement

U has fewer rows and that therefore fewer cases need to be

considered during backtracking. Some impose linear combi-

nations, in which case the same orthogonal complementU is

computed, but the (linear) constraintsUC t = 0 are imposed,

which do not require any backtracking. When both types are

combined, i.e.,UC t = 0 andVC t , 0, thenV can be replaced

by V ′ = V \U . It is the rows of this V ′ that are normalized

to favor schedules with zero values for later schedule coeffi-

cients and a positive value for the first schedule coefficient

involved.

The remaining constraint is of the form C = A + XM ,

with A linearly independent ofM . LetU be the orthogonal

complement of [M ;A]. Then UC t = 0. Moreover, if U ′ is
the orthogonal complement of M , then the constraint also

implies U ′C t = U ′At
. Since UC t = 0, the matrix U ′ in this

last condition can be replaced byU ′′ = U ′\U . The combined

constraint on the schedule coefficients C is therefore[
U

U ′′

]
C t =

[
0

U ′′At

]
. (13)

For example. during the second phase of the computation

for statement T in Listing 1, A =
[
1 0

]
and M =

[
0 1

]
,

meaning that U has zero rows andU ′′ = U ′ =
[
0 1

]
. The

constraint therefore specializes to[
1 0

]
C t =

[
1

]
, (14)

allowing any solution of the form C =
[
1 x

]
.

As in the case of the linear independence constraint (3), a

constraint on the schedule coefficients is only enforced if it

is not already satisfied by the current ILP solution. However,

the backtracking search is modified in several ways.

First, in contrast to constraint (3), which is required to

produce a schedule with linearly independent rows, the con-

straints on schedule coefficients derived from intra-statement

consecutivity schedule constraints are optional. That is, a
schedule not satisfying such a constraint is still a valid, if

suboptimal, schedule. Besides the 2n cases of the form (5),

the search therefore also needs to consider the case where

the constraint is not imposed, but is disabled instead. The

constraint needs to be disabled to avoid the constraint being

considered at nested levels in the search. It is re-enabled

when backtracking out of the level that disabled the con-

straint. Optional constraints are considered before required

constraints, i.e., those that are required for linear indepen-

dence of the schedule. Note that the optional constraints

that involve some linear independence subsume the required

linear independence constraints on the same statement. That

is, when this part of the optional constraint is being enforced,

the corresponding required constraint will not be triggered.

Second, the new types of constraints have a fixed part that

is enforced in all the linear independence cases (5), but not

in the case where the constraint is disabled. If the constraint

does not involve a linear independence part, then there are

two states, one where the fixed part is enforced and one

where the constraint is disabled.

Third, the constraint may be disjunctive, in which case it

is only triggered when all of the disjuncts are violated by the

current ILP solution. When it is triggered, the first disjunct

that has not been disabled at previous levels of the backtrack-

ing search is enforced. If this does not result in a solution,

then the disjunct will be disabled and the next disjunct will

be enforced until all disjuncts have been considered.

Finally, a (possibly disjunctive) constraint may be condi-
tional on the previous (possibly disjunctive) constraint. In

this case, the entire disjunctive constraint is ignored until the

final disjunct of the previous constraint has been disabled.

Whenever a solution has been found, all optional con-

straints satisfied by the solution are turned into required

constraints, ensuring that any improved solution has at least

the same satisfied intra-statement consecutivity schedule

constraints. This could be further refined to enforce that the

number of satisfied intra-statement consecutivity schedule

constraints does not decrease. Note, in particular, that the

backtracking search is currently not continued for the pur-

pose of increasing the number of satisfied intra-statement

consecutivity schedule constraints, but only for obtaining a

“significantly better” solution, as described in Section 2.2.

3.4 Multiple References
If a statement has multiple accesses to arrays marked con-

secutive, then intra-statement consecutivity schedule con-

straints can be constructed for each access individually. How-

ever, for each statement, the isl scheduler will only try to

optimize one of them, as it expects the user to construct

combined intra-statement consecutivity schedule constraints

that cover multiple such accesses. A prototype implementa-

tion is available in PPCG.
For the purpose of constructing consecutivity constraints,

PPCG first prunes references that access multiple array ele-

ments per statement instance, that are not purely affine or

that have an innermost index expression that is a linear com-

bination of the outer index expressions, e.g., A[i][i]. If any
reference to an array is pruned, then any other reference to

the same array from the same statement is also pruned as it is

impossible to achieve consecutivity for such arrays. If there

are multiple references to the same array from the statement,

then they are first combined into a single reference using the

procedure described below. If this fails to produce a singe

reference that covers all original references to the array, then

these references are pruned as well.

7

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

void matmul(int N, int M, int K,

__pencil_consecutive float A[N][K],

__pencil_consecutive float B[K][M],

__pencil_consecutive float C[N][M])

{

__builtin_assume(K > 0);

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j) {

S: C[i][j] = 0;

for (int k = 0; k < K; ++k)

T: C[i][j] += A[i][k] * B[k][j];

}

}

Listing 3. Input file

Multiple references in the same statement (to the same

array in a first phase and to distinct arrays in a second phase)

are combined into one or more composite references by suc-

cessively combining pairs of intra-statement consecutivity

schedule constraints (G1,H1) and (G2,H2), with Hi linearly

independent and also linearly independent of Gi , into a sin-

gle intra-statement consecutivity schedule constraint that

satisfies the same properties (Verdoolaege and Isoard 2017,

Section 3.2.1). In particular,

1. if H1 = H2, then the two constraints can be combined

by setting

G =

[
G1

G2

]
H = H1, (15)

provided H1 = H2 is linearly independent of G.
2. If H2 is linearly independent of [F1;G2], then the two

constraints can be combined by setting

G =

[
G1

G2 \ F1

]
H =

[
H1

H2

]
. (16)

The final result is a list of possibly composite references with

those that cover more original references appearing first.

Consider the code in Listing 3, where the assumption

on K only serves to simplify the output code in Listing 4.

Statement T contains three accesses to arrays that should all

be accessed consecutively. The constraints for the individual

accesses are

FA =

[
1 0 0

0 0 1

]
, FB =

[
0 0 1

0 1 0

]
, FC =

[
1 0 0

0 1 0

]
.

(17)

Since HB = HC is linearly independent of the combination

of GB and GC, the first form of combination can be applied,

resulting in

FBC =


0 0 1

1 0 0

0 1 0

 . (18)

for (int c0 = 0; c0 < N; c0 += 1)

for (int c1 = 0; c1 < K; c1 += 1)

for (int c2 = 0; c2 < M; c2 += 1) {

if (c1 == 0)

C[c0][c2] = 0;

C[c0][c2] += A[c0][c1] * B[c1][c2];

}

Listing 4. Transformed code for the input in Listing 3

Now, HBC is linearly independent of

[
FA
GBC

]
=


1 0 0

0 0 1

0 0 1

1 0 0

 (19)

and so the second form of combination can be applied. In

this case,GBC is a linear transformation of FA and soGBC \ FA
has zero rows. The result of the combination is therefore

FABC =


1 0 0

0 0 1

0 1 0

 . (20)

Satisfaction of this single constraint ensures consecutivity for

all three accesses and corresponds to the loop order (i,k, j).
The transformed code satisfying the constraint is shown in

Listing 4. Note that for the accesses to B and C, the innermost

loop iterator only appears in the last index expression and

does so with coefficient one. For the access to A, the inner-
most iterator does not appear at all in the index expressions,

while the second innermost iterator only appears in the last

index expression and does so with coefficient one.

This mechanism for combining information from different

array references is similar to the way Kandemir, Ramanujam,

and Choudhary (1999) take multiple array references into

account. However, they derive additional elements of the

inverse transformation matrix directly by examining each

array reference in turn, while the mechanism described in

this section first collects information from multiple array

references into one or more composite array references that

are then later used as a whole during the schedule construc-

tion. Note that the combined constraint may end up being

discarded by the scheduler if it conflicts with the validity or

coincidence constraints. PPCG therefore also imposes consec-

utivity constraints that only cover some or even one array,

with those that cover most arrays placed first.

3.5 Incremental Scheduling
Asmentioned in Section 2.2, the isl scheduler first computes

a band schedule in each component separately. If any of

the components (partially) satisfies some intra-statement

consecutivity schedule constraints, then the scheduler needs

to take care not to violate these intra-statement consecutivity

8

void matmul(int N, int M, int K,
 __pencil_consecutive float A[N][K],
 __pencil_consecutive float B[K][M],
 __pencil_consecutive float C[N][M])
{
 __builtin_assume(K > 0);
 for (int i = 0; i < N; ++i)
 for (int j = 0; j < M; ++j) {
S: C[i][j] = 0;
 for (int k = 0; k < K; ++k)
T: C[i][j] += A[i][k] * B[k][j];
 }
}

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity IMPACT 2018, January 23, 2018, Manchester, United Kingdom

schedule constraints when combining the components. In

particular, if h > 0 for some statement in a component, i.e.,

if at least one schedule row has been set equal to a row in H ,

then an intra-statement consecutivity schedule constraint

is introduced on the component that ensures that this row

and all subsequent rows are unaffected (apart from possibly

mixing in earlier rows). Let p be the position of the schedule

row in the component schedule that corresponds to the first

row of H . If this row belongs to an outer band, then set

p = 0. Let v be the dimension of the component schedule.

Then an intra-statement consecutivity schedule constraint

is introduced with identity F = I and f set to v − p.
Consider once more the code shown in Listing 3. The

combined intra-statement consecutivity schedule constraint

for statement T has been derived before (20). For S, the intra-
statement consecutivity schedule constraint is

FS =

[
1 0

0 1

]
. (21)

The two statements are first scheduled individually, resulting

in the schedules

{ S[i, j] → C0[i, j] } and { T[i, j,k] → C1[i,k, j] }. (22)

In both cases, the second schedule dimension corresponds

to the first row of the respective H matrices. The intra-

statement consecutivity schedule constraints on the clusters

C0 and C1 are therefore

FC0 =

[
1 0

0 1

]
and FC1 =


1 0 0

0 1 0

0 0 1

 . (23)

The proximity schedule constraints between the clusters

determine how the clusters should be combined, resulting

in the cluster schedule

{ C0[a,b] → [a, 0,b]; C1[a,b, c] → [a,b, c] }, (24)

satisfying the cluster intra-statement consecutivity schedule

constraints. Combined with the individual schedules (22),

the final result is

{ S[i, j] → [i, 0, j]; T[i, j,k] → [i,k, j] }. (25)

For the code in Listing 1, the cluster intra-statement con-

secutivity schedule constraints steer the scheduler towards

a schedule that places the second cluster at an offset N in

the outer dimension, effectively causing the entire second

statement to be executed after the first statement. Since this

cluster schedule does not optimize any proximity schedule

constraints, it is rejected. This preserves the two separate

bands, which are then also scheduled one after the other,

resulting in loop distribution.

4 Inter-Statement Consecutivity
The previous section only considered consecutivity within a

statement. It can also be useful to try and bring instances of

distinct statements that access consecutive array elements

void unroll(int N, int M, float A[N][M],

__pencil_consecutive float B[M][N])

{

__builtin_assume(N%2 == 0 && M%2 == 0);

for (int i = 0; i < N; i += 2) {

for (int j = 0; j < M; j += 2) {

S00: B[j + 0][i + 0] = A[i + 0][j + 0];

S01: B[j + 1][i + 0] = A[i + 0][j + 1];

S10: B[j + 0][i + 1] = A[i + 1][j + 0];

S11: B[j + 1][i + 1] = A[i + 1][j + 1];

}

}

}

Listing 5. Input file

for (int c0 = 0; c0 < M - 1; c0 += 2) {

for (int c1 = 0; c1 < N - 1; c1 += 2) {

B[c0][c1] = A[c1][c0];

B[c0][c1 + 1] = A[c1 + 1][c0];

}

for (int c1 = 0; c1 < N - 1; c1 += 2) {

B[c0 + 1][c1] = A[c1][c0 + 1];

B[c0 + 1][c1 + 1] = A[c1 + 1][c0 + 1];

}

}

Listing 6. Transformed code for the input in Listing 5

close to each other. Consider, for example, the code in List-

ing 5, where only B is marked consecutive. Different state-

ments access different slices of the array and the goal is to

obtain code as in Listing 6, with loop interchange and an

appropriate interleaving of the statement instances.

4.1 Objective
An inter-statement consecutivity schedule constraint con-

sists of a pair of intra-statement consecutivity schedule con-

straints for two distinct statements S1 and S2, with reference

matrices F1 and F2 with an equal number of final rows f ,
along with a binary relation between the two statements,

specifying instances that access consecutive elements at the

f -th innermost index expression. In the PPCG implemen-

tation, such pairs are only constructed for references that

access elements once, only between pairs of reads or pairs

of writes and only if there is no intermediate kill. See Ver-

doolaege and Isoard (2017, Section 3.2.2) for details. The

objective is for these pairs of instances to be executed at a

distance of 1 along the schedule dimension that is aligned

with the f -th innermost index expression. That is, the sched-

ule T mapping S1 and S2 to a common space should have

9

void unroll(int N, int M, float A[N][M],
 __pencil_consecutive float B[M][N])
{
 __builtin_assume(N%2 == 0 && M%2 == 0);
 for (int i = 0; i < N; i += 2) {
 for (int j = 0; j < M; j += 2) {
S00: B[j + 0][i + 0] = A[i + 0][j + 0];
S01: B[j + 1][i + 0] = A[i + 0][j + 1];
S10: B[j + 0][i + 1] = A[i + 1][j + 0];
S11: B[j + 1][i + 1] = A[i + 1][j + 1];
 }
 }
}

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

linear partsT1 for S1 andT2 for S2 that both satisfy the corre-

sponding intra-statement consecutivity schedule constraint

with the same number of zero columns t and for each pair of

instances (x1, x2) ∈ R, there should be some z ∈ Zf +t−1 such
that

T (x2) −T (x1) =
[
0 1 z

]
t

. (26)

4.2 Strategy
The two referenced intra-statement consecutivity schedule

constraints are treated like any other intra-statement consec-

utivity schedule constraint. Additional constraints are added

depending on the state of handling these intra-statement

consecutivity schedule constraints. In particular, if either of

the two intra-statement consecutivity schedule constraints

has failed, then the inter-statement consecutivity schedule

constraint is considered to have failed as well. Furthermore,

additional constraints are only added when the number hi
of schedule rows made equal to Hi (plus some linear com-

bination) is still zero for both intra-statement consecutivity

schedule constraints. Specifically, as long as either of the

intra-statement consecutivity schedule constraints is still in

the process of constructing T1, the schedule distance of the
constructed schedule row is set to 0, i.e.,

∀a→ b ∈ R : f (b) − f (a) = 0. (27)

As soon as both have completed the linear schedule to cover

Gi , the distance is set to 1, i.e.,

∀a→ b ∈ R : f (b) − f (a) = 1. (28)

In accordance with (26), this distance-1 constraint is only

applied for a single schedule row. The inter-statement con-

secutivity schedule constraint is ignored for any subsequent

schedule rows.

Any two statements connected by an inter-statement con-

secutivity schedule constraint are considered to belong to the

same component for the purpose of incremental scheduling.

This ensures that there are no inter-statement consecutivity

schedule constraints across components, but reduces the ad-

vantage of the incremental scheduling. No special treatment

is required to preserve the satisfied inter-statement consecu-

tivity schedule constraints inside the resulting components

since the relative positions are not modified and the refer-

enced intra-statement consecutivity schedule constraints are

already preserved, ensuring that a distance-1 direction does

not get mixed in with distance-0 directions.

4.3 Solution
Constraints (27) and (28) are imposed by requiring the sched-

ule coefficients (minus one) to be a linear combination of

the affine hull of R, in particular by adding an (optional)

constraint on these coefficients to be orthogonal to the or-

thogonal complement of the coefficients of this affine hull.

See Verdoolaege and Isoard (2017, Section 3.4.3) for details.

Just like any other optional schedule coefficient constraint

with a fixed value and no linear independence, this constraint

can be in two states after it has been activated: the fixed

value is enforced, or it has been disabled. In principle, the

fixed value derived from an inter-statement consecutivity

schedule constraint should only be enforced if the constraints

of the corresponding intra-statement consecutivity schedule

constraints are satisfied, but the current implementation does

not explicitly check for this condition as it was not needed

in the limited experiments performed with this feature.

5 Local Rescheduling
Since consecutivity schedule constraints take precedence

over proximity schedule constraints, setting the former dur-

ing the computation of a global schedule may cause some

pairs of statement instances to be moved apart. For example,

they cause the loop in Listing 1 to be fully distributed, result-

ing in higher memory requirements for tmp (after memory

requirement optimization, Darte et al. 2005). The prototype

PPCG implementation therefore also allows consecutivity

schedule constraints to only be considered in a rescheduling

of the point band after tiling. This causes the statements to

be distributed inside the tile, resulting in modest memory

requirements for tmp (the size of a tile) and consecutivity

within a tile. Verdoolaege and Isoard (2017, Section 4) de-

scribe the rescheduling support in isl.

6 Conclusion and Future Work
Consecutivity of accesses can be exploited in performance-

improving burst accesses. This paper describes how to steer

the scheduler towards consecutivity both within and across

statements within a particular approach for polyhedral com-

pilation, involving both specific consecutivity support in the

core scheduler and an appropriate use of this support by the

polyhedral compiler. In the current implementation, priority

is given to coincidence over consecutivity, meaning that this

support is mostly useful in cases where the innermost loops

end up being fully parallel and where, without consecutivity

constraints, the scheduler would not have good criteria to

schedule those inner loops.

Given that the current scheduler tries to place parallel

schedule rows outermost, while consecutive rows are placed

innermost, further modifications may be required for vector-

ization. The scheduler would have to either allow consecu-

tivity schedule constraints to overrule a choice for an (outer)

parallel row, or to compute the innermost rows (that are

both parallel and consecutive) first. Allowing consecutivity

schedule constraints to take priority over coincidence sched-

ule constraints could be achieved by not adding the schedule

coefficient constraints corresponding to the latter directly to

the ILP, but instead to add them as a single optional schedule

coefficient constraint after those corresponding to consecu-

tivity schedule constraints. This is left for future work.

10

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity IMPACT 2018, January 23, 2018, Manchester, United Kingdom

Initialize empty band

Coincidence← true

while band not full-dimensional do
Set up ILP

Solve ILP (Algorithm 2)

if no solution then
if Coincidence then

Coincidence← false

continue

else
break

Add ILP solution to current band

return current band

Algorithm 1: Compute band schedule for component

Add optional schedule coefficient constraints (Table 2)

Add linear independence schedule coefficient

constraints

Compute constrained lexmin (Algorithm 3)

Update consecutivity data

Algorithm 2: Solve ILP

Acknowledgments
This research was supported by Xilinx.

A Sketch of isl scheduling algorithm
This appendix provides a sketch of the core isl scheduling

algorithm. In particular, Algorithm 1 shows how a sched-

ule band is computed for a strongly connected component

in the statement-level schedule constraint graph. This algo-

rithm calls Algorithm 2 to solve the ILP problem it creates,

which in turn calls Algorithm 3 to compute a constrained

lexicographically minimal solution. Some details such as how

constraints are removed during backtracking are not shown

to avoid clutter. Algorithm 1 also abstracts away the support

for live-range reordering (Verdoolaege and Cohen 2016). The

highlighted lines are specific to the handling of consecutiv-

ity constraints. The step “Find first violated constraint” of

Algorithm 3 deals with disjunctive and conditional schedule

coefficient constraints.

References
Anderson, Jennifer M., Saman P. Amarasinghe, and Monica

S. Lam (1995). “Data and Computation Transformations

for Multiprocessors”. In: Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming. PPOPP ’95. Santa Barbara, California, USA:

ACM, pp. 166–178. doi: 10.1145/209936.209954.

while level ≥ 0 do
if entering level then

if empty then
Backtrack

Find first violated constraint

if no violated constraint then
Update best solution

if solution is optimal then
return best solution

Backtrack

Set fixed part of constraint

if all cases handled then
if constraint disabled or not optional then

Backtrack

Disable constraint

Force better solution than current best

Move to next case ((5) or disabled)

Enter next level

return best solution

Algorithm 3: Compute constrained lexmin

Bastoul, Cédric and Paul Feautrier (Aug. 2004). “More Le-

gal Transformations for Locality”. In: Euro-Par’10 Inter-
national Euro-Par conference. Vol. 3149. Lecture Notes in
Computer Science. Pisa, pp. 272–283. doi: 10.1007/978-3-
540-27866-5_36.

Bielecki, Wlodzimierz, Marek Palkowski, and Piotr Skotnicki

(Oct. 2017). “Generation of parallel synchronization-free

tiled code”. In: Computing. doi: 10.1007/s00607-017-0576-
3.

Bondhugula, Uday, Muthu Baskaran, Sriram Krishnamoor-

thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan

(Apr. 2008). “Automatic Transformations for Communica-

tion-Minimized Parallelization and Locality Optimization

in the Polyhedral Model”. In: International Conference on
Compiler Construction (ETAPS CC). doi: 10.1007/978-3-
540-78791-4_9.

Bondhugula, Uday, Albert Hartono, J. Ramanujam, and P.

Sadayappan (2008). “A practical automatic polyhedral par-

allelizer and locality optimizer”. In: Proceedings of the 2008
ACM SIGPLAN conference on Programming language de-
sign and implementation. PLDI ’08. Tucson, AZ, USA: ACM,

pp. 101–113. doi: 10.1145/1375581.1375595.
Darte, Alain, Robert Schreiber, and Gilles Villard (2005).

“Lattice-Based Memory Allocation”. In: IEEE Trans. Com-
put. 54.10, pp. 1242–1257. doi: 10.1109/TC.2005.167.

Feautrier, Paul (Oct. 1992a). “Some Efficient Solutions to

the Affine Scheduling Problem. Part I. One-dimensional

Time”. In: International Journal of Parallel Programming
21.5, pp. 313–348. doi: 10.1007/BF01407835.

11

https://doi.org/10.1145/209936.209954
https://doi.org/10.1007/978-3-540-27866-5_36
https://doi.org/10.1007/978-3-540-27866-5_36
https://doi.org/10.1007/s00607-017-0576-3
https://doi.org/10.1007/s00607-017-0576-3
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1109/TC.2005.167
https://doi.org/10.1007/BF01407835

IMPACT 2018, January 23, 2018, Manchester, United Kingdom Sven Verdoolaege and Alexandre Isoard

Feautrier, Paul (Dec. 1992b). “Some Efficient Solutions to

the Affine Scheduling Problem. Part II. Multidimensional

Time”. In: International Journal of Parallel Programming
21.6, pp. 389–420. doi: 10.1007/BF01379404.

Grosser, Tobias, Armin Größlinger, and Christian Lengauer

(2012). “Polly - Performing polyhedral optimizations on

a low-level intermediate representation”. In: Parallel Pro-
cessing Letters 22.04. doi: 10.1142/S0129626412500107.

Kandemir, Mahmut T., J. Ramanujam, and Alok N. Choud-

hary (Feb. 1999). “Improving Cache Locality by a Combi-

nation of Loop and Data Transformation”. In: IEEE Trans-
actions on Computers 48.2, pp. 159–167. doi: 10.1109/12.
752657.

Kandemir, Mahmut T., J. Ramanujam, Alok N. Choudhary,

and Prithviraj Banerjee (Dec. 2001). “A Layout-Conscious

Iteration Space Transformation Technique”. In: IEEE Trans-
actions on Computers 50.12, pp. 1321–1335. doi: 10.1109/
TC.2001.970571.

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti,

Louis-Noël Pouchet, and P. Sadayappan (2013). “When

polyhedral transformations meet SIMD code generation”.

In: Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation. PLDI
’13. Seattle, Washington, USA: ACM, pp. 127–138. doi:

10.1145/2491956.2462187.
Pouchet, Louis-Noël, Uday Bondhugula, Cédric Bastoul, Al-

bert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas

Vasilache (Jan. 2011). “Loop Transformations: Convexity,

Pruning and Optimization”. In: Proceedings of the 38th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’11. Austin, TX, pp. 549–

562. doi: 10.1145/1926385.1926449.
Schrijver, Alexander (1986). Theory of Linear and Integer

Programming. John Wiley & Sons.

Trifunovic, Konrad, Albert Cohen, David Edelsohn, Feng Li,

Tobias Grosser, Harsha Jagasia, Razya Ladelsky, Sebas-

tian Pop, Jan Sjödin, and Ramakrishna Upadrasta (2010).

“GRAPHITE two years after: First lessons learned from

real-world polyhedral compilation”. In: GCC Research Op-
portunities Workshop (GROW’10).

Trifunovic, Konrad, Dorit Nuzman, Albert Cohen, Ayal Zaks,

and Ira Rosen (2009). “Polyhedral-model guided loop-nest

auto-vectorization”. In: Parallel Architectures and Compi-
lation Techniques, 2009. PACT’09. 18th International Con-
ference on. IEEE, pp. 327–337. doi: 10.1109/PACT.2009.18.

Vasilache, Nicolas (Sept. 2007). “Scalable Program Optimiza-

tion Techniques in the Polyhedral Model”. PhD thesis.

Université Paris Sud XI, Orsay.

Vasilache, Nicolas, Benoît Meister, Muthu Baskaran, and

Richard Lethin (Jan. 2012). “Joint Scheduling and Lay-

out Optimization to Enable Multi-Level Vectorization”.

In: IMPACT-2: 2nd International Workshop on Polyhedral
Compilation Techniques. Paris, France.

Verdoolaege, Sven (2010). “isl: An Integer Set Library for the

Polyhedral Model”. In:Mathematical Software - ICMS 2010.
Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and

Nobuki Takayama. Vol. 6327. Lecture Notes in Computer

Science. Springer, pp. 299–302. doi: 10.1007/978-3-642-
15582-6_49.

Verdoolaege, Sven and Albert Cohen (Jan. 2016). “Live-Range

Reordering”. In: Proceedings of the sixth InternationalWork-
shop on Polyhedral Compilation Techniques. Prague, Czech
Republic. doi: 10.13140/RG.2.1.3272.9680.

Verdoolaege, Sven and Alexandre Isoard (Nov. 2017). Con-
secutivity in the isl Polyhedral Scheduler. Report CW 709.

Leuven, Belgium: Department of Computer Science, KU

Leuven. doi: 10.13140/RG.2.2.15009.10082.
Verdoolaege, Sven and Gerda Janssens (June 2017). Schedul-
ing for PPCG. Report CW 706. Leuven, Belgium: Depart-

ment of Computer Science, KU Leuven. doi: 10.13140/RG.
2.2.28998.68169.

Verdoolaege, Sven, Juan Carlos Juega, Albert Cohen, José

Ignacio Gómez, Christian Tenllado, and Francky Catthoor

(2013). “Polyhedral parallel code generation for CUDA”.

In: ACM Trans. Archit. Code Optim. 9.4, p. 54. doi: 10.1145/
2400682.2400713.

Wolf, Michael E. and Monica S. Lam (June 1991a). “A Data Lo-

cality Optimizing Algorithm”. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’91. Toronto, Ontario, Canada:
ACM, pp. 30–44. doi: 10.1145/113445.113449.

Wolf, Michael E. and Monica S. Lam (Oct. 1991b). “A Loop

Transformation Theory and an Algorithm to Maximize

Parallelism”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 2.4, pp. 452–471. doi: 10.1109/71.97902.

Wolfe, Michael Joseph (1996).High Performance Compilers for
Parallel Computing. Redwood City, CA: Addison Wesley.

Xilinx (Mar. 2017). Available from https : / / www . xilinx .
com/support/documentation/sw_manuals/xilinx2016_
4 / ug1207 - sdaccel - optimization - guide . pdf. UG1207
(v2016.4).

Zinenko, Oleksandr, Sven Verdoolaege, Chandan Reddy, Jun

Shirako, Tobias Grosser, Vivek Sarkar, and Albert Cohen

(2018). “Modeling the Conflicting Demands of Multi-Level

Parallelism and Temporal/Spatial Locality in Affine Sched-

uling”. In: Proceedings of the 27th International Conference
on Compiler Construction. CC 2018. accepted.

12

https://doi.org/10.1007/BF01379404
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1109/12.752657
https://doi.org/10.1109/12.752657
https://doi.org/10.1109/TC.2001.970571
https://doi.org/10.1109/TC.2001.970571
https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1145/1926385.1926449
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.1.3272.9680
https://doi.org/10.13140/RG.2.2.15009.10082
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/113445.113449
https://doi.org/10.1109/71.97902
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf

	Abstract
	1 Introduction and Motivation
	2 Background
	2.1 Terminology
	2.2 The Verdoolaege2010islisl Scheduler
	2.3 Spatial Locality

	3 Intra-Statement Consecutivity
	3.1 Objective
	3.2 Strategy
	3.3 Solution
	3.4 Multiple References
	3.5 Incremental Scheduling

	4 Inter-Statement Consecutivity
	4.1 Objective
	4.2 Strategy
	4.3 Solution

	5 Local Rescheduling
	6 Conclusion and Future Work
	A Sketch of Verdoolaege2010islisl scheduling algorithm

