January 23, 2018 1/29

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity

Sven Verdoolaege' Alexandre Isoard?®

KU Leuven and Polly Labs

2Xilinx

January 23, 2018
[=] ;i =]
ORL

Outline

a Introduction
@ Consecutivity Concept
@ Pluto-Style Polyhedral Scheduling
@ Consecutivity Criterion
@ Related Work

e Intra-Statement Consecutivity
@ Consecutivity Criterion
@ Specifying Schedule Constraints
@ Transformation to Constraints on Schedule Coefficients
@ Solving Constraints on Schedule Coefficients (isl)

@ Inter-Statement Consecutivity
6 Local Rescheduling
G Conclusions and Future Work

Introduction January 23, 2018 3/29

Outline

a Introduction
@ Consecutivity Concept
@ Pluto-Style Polyhedral Scheduling
@ Consecutivity Criterion
@ Related Work

Introduction Consecutivity Concept January 23, 2018 4/29

Consecutivity Concept

@ Temporal Locality memory
Consecutive operations access
the same memory element

= reuse of data in cache or registers

Introduction

Consecutivity Concept
Spatial Locality

Consecutive operations access
neighboring memory elements

Consecutivity Concept

= reuse of cache lines

@ Temporal Locality

Consecutive operations access
the same memory element

= reuse of data in cache or registers

January 23, 2018 4/29

memory

memory

Introduction Consecutivity Concept January 23, 2018 4/29

Consecutivity Concept

Spatial Locality memory
Consecutive operations access
neighboring memory elements

= reuse of cache lines

@ Temporal Locality memory
Consecutive operations access
the same memory element

= reuse of data in cache or registers

@ Consecutivity memory
Consecutive operations access
consecutive memory elements

= vectorization
= hardware cache prefetcher
= burst accesses, e.g., on FPGA (Xilinx)

Introduction Consecutivity Concept January 23, 2018 4/29

Consecutivity Concept

Spatial Locality memory
Consecutive operations access
neighboring memory elements

= reuse of cache lines

@ Temporal Locality memory
Consecutive operations access
the same memory element

= reuse of data in cache or registers

@ Consecutivity memory
Consecutive operations access
consecutive memory elements

= vectorization
= hardware cache prefetcher
= burst accesses, e.g., on FPGA (Xilinx)

Introduction Consecutivity Concept January 23, 2018 5/29

Burst Accesses (Sketch)

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

C[jl1[i] =
A[i] *
B[j]l ;

u]
o)
I
"
it
1

Introduction Consecutivity Concept January 23, 2018

Burst Accesses (Sketch)

AA = burst_read_start(A, N);
for (int i = 0; i < N; ++1i) {
BB = burst_read_start(B, M);
for (int j = 0; j < M; ++j) {
Cljlli]l =
burst_read_iter (AA, &A[i]) *
burst_read_iter (BB, &B[j]l);
}
burst_read_end (BB, M);

}
burst_read_end(AA, N);

Introduction Consecutivity Concept January 23, 2018

Burst Accesses (Sketch)

AA = burst_read_start(A, N);
for (int i = 0; i < N; ++1i) {
BB = burst_read_start(B, M);
for (int j = 0; j < M; ++j) {
Cljlli]l =
burst_read_iter (AA, &A[i]) *
burst_read_iter (BB, &B[j]l);
}
burst_read_end (BB, M);

}
burst_read_end(AA, N);

No burst accesses on C

Introduction Consecutivity Concept January 23, 2018 5/29

Burst Accesses (Sketch)

Qfor (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {
CLillil =
A[i] *

B[j]l ;

No burst accesses on C

u]
o)
I
"
it
1

Introduction Consecutivity Concept January 23, 2018 6/29

Burst Accesses (Sketch)

Qfor (int j = 0; j < M; ++j) {
for (int i = 0; i < N; ++i) {

C[jl1[i] =
A[i] *
B[j]l ;

u]
o)
I
"
it
1
<
¢

Introduction Consecutivity Concept January 23, 2018

Burst Accesses (Sketch)

CcC burst_write_start(C, M * N);
BB burst_read_start (B, M);
for (int j = 0; j < M; ++j) {
AA = burst_read_start(A, N);
for (int i = 0; i < N; ++1) {
burst_write_iter(CC, &C[j][i]) =
burst_read_iter (AA, &A[i]) *
burst_read_iter (BB, &B[j]l);

}
burst_read_end(AA, N);

}
burst_read_end (BB, M);
burst_write_end(CC, M * N);

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7/29

Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7/29

Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
@ instance set: set of schedulable statement instances
@ access relations: map instances to memory locations
@ dependence relations:
= pairs of instances that need to be executed in order
= derived from access relations and original schedule

Introduction Pluto-Style Polyhedral Scheduling

Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances

@ original schedule (if any) derived from input

@ target schedule computed by scheduler
A polyhedral scheduler computes schedule using polyhedral model
Result (typically):

@ multiple (quasi) affine functions on instance set

@ hierarchically organized (sequence, tree)
Types:

@ Farkas based schedulers (Feautrier 1992)

= use Farkas to transform dependences
into constraints on schedule coefficients

> Pluto-style schedulers, e.g., Pluto, isl
= compute affine functions one by one

January 23, 2018 7129

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7/29

Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
Result (typically):
@ multiple (quasi) affine functions on instance set

@ hierarchically organized (sequence, tree)
Types:

@ Farkas based schedulers (Feautrier 1992)

= use Farkas to transform dependences
into constraints on schedule coefficients

> Pluto-style schedulers, e.g., Pluto, isl
= compute affine functions one by one

» one-shot schedulers (Vasilache 2007)
= compute entire schedule as a whole

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7/29

Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
Result (typically):
@ multiple (quasi) affine functions on instance set

@ hierarchically organized (sequence, tree)
Types:

@ Farkas based schedulers (Feautrier 1992)

= use Farkas to transform dependences
into constraints on schedule coefficients

> Pluto-style schedulers, e.g., Pluto, isl
= compute affine functions one by one

» one-shot schedulers (Vasilache 2007)
= compute entire schedule as a whole

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 8/29

Pluto-Style Polyhedral Scheduling
Main optimization criteria:

@ parallelism

@ temporal locality

@ permutability = tiling

u]
o)
I
"
it
1

Introduction

Pluto-Style Polyhedral Scheduling

Pluto-Style Polyhedral Scheduling

Main optimization criteria:
@ parallelism
@ temporal locality
@ permutability = tiling

Remaining freedom (if any)

= 1isl scheduler tends towards lexicographic ordering of instances

Extreme example:
for (i=0; i<M; ++1)
for (j=0; j<N; ++j)
S: A[il[j] = 0;
Sti-j] = [iiJ]

consecutive (by chance)

for (i=0; i<M; ++1)
for (j=0; j<N; ++j)
T: B[jl[i] = O;
(i, j] = [i.]]

not consecutive

January 23, 2018

8/29

Introduction Pluto-Style Polyhedral Scheduling January 23, 2018

8/29

Pluto-Style Polyhedral Scheduling
Main optimization criteria:
@ parallelism
@ temporal locality
@ permutability = tiling
Remaining freedom (if any)
= 1isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i) for (i=0; i<M; ++1i)
for (j=0; j<N; ++j) for (j=0; j<N; ++3j)
S: A[i][j]l = 0; T: B[jl[i] = O;
S[i.j] = [i.]] T[i.j] — [i.]]
consecutive (by chance) not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in is1 (roughly):
permutability > parallelism > consecutivity > temporal locality

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion
Consecutive operations access consecutive memory elements
Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement)

@ row-major array layout

@ purely affine access function F

@ purely affine per-statement schedule T

9/29

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement) L.')

@ row-major array layout T F

@ purely affine access function F ®
S(x) A

@ purely affine per-statement schedule T
Transformed access function F T~ exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
[+ 0in]. o [oe 4 O] .. + Tin]

9/29

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement) L.')

@ row-major array layout T F

@ purely affine access function F ®
S(x) A

@ purely affine per-statement schedule T
Transformed access function F T~ exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
[+ 0in]. o [oe 4 O] .. + Tin]

M 0
N 1

9/29

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement) L.')

@ row-major array layout T F

@ purely affine access function F = [G; H] °
S(x) A

@ purely affine per-statement schedule T = [Ty; Ty]
Transformed access function F T~ exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
[...4+0ip]...[-.. + Oig][-.. + 1in]

-1

Fri_ |G| _ M o

H||T> N 1

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
ET-1 = G|| T4 _ M 0
H|[T2 N 1

Introduction Consecutivity Criterion January 23, 2018 10/29

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[T> N 1
@ Ggq=0 (with q the final columns of T~)
Note: Ti| 7-1 o
To ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)

That is, rows of G need to be linear combinations of rows of T4
G=AT;

Introduction Consecutivity Criterion January 23, 2018 11/29

Consecutivity Criterion and Spatial Locality

@ Consecutivity

u]
o)
I
"
it
1
<
¢

11/29

Introduction Consecutivity Criterion

Consecutivity Criterion and Spatial Locality

Spatial Locality
Fri=|M 0
N x
@ Consecutivity
Fri=|M 0
N A

January 23, 2018

Introduction

Consecutivity Criterion and Spatial Locality

Spatial Locality

@ Temporal Locality

@ Consecutivity

Consecutivity Criterion

FT'=

FT

FT' =

=

= =

M 0

X

=

January 23, 2018

11/29

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion and Spatial Locality
Spatial Locality

Fri=|M 0

N x
@ Temporal Locality - 1
Fr-1-|M O
[N 0
@ Consecutivity - 7
Fri=|M 0
[N 1]

in case of innermost temporal locality
= consecutivity on next innermost loop iterator

FT' =
N 1 0
(Kandemir, Ramanujam, and Choudhary 1999)

MOOI

Introduction Related Work January 23, 2018 12/29

Related Work on Spatial Locality

Loop nest transformations (not per-statement)

@ Wolf and Lam (1991)
» define temporal (ker F) and spatial (ker G) reuse directions
» partition original loop iterators

@ Kandemir, Ramanujam, and Choudhary (1999)
> aim: spatial locality
> criterion more strict than required (ensures consecutivity)
» incrementally fix elements of T~

@ Kandemir, Ramanujam, Choudhary, and Banerjee (2001)
> pick (second to) last column of T~' from ker G

Introduction Related Work January 23, 2018

Related Work on Spatial Locality

Per-statement schedulers

@ Bastoul and Feautrier (2004)
» pick proto-schedule T orthogonal to element from ker G (or ker F)
» construct valid schedule C T
> imposing constraints on linear combinations
= not directly applicable in isl
@ Vasilache et al. (2012)
» aim: spatial locality (ker Ty C ker G)
» one-shot scheduler called multiple times
» soft constraints encoded in ILP
@ Pluto (2012) post scheduling intra-tile interchange
@ Kong et al. (2013)
» aim: consecutivity (stride-1 or stride-0)
» partition original loop iterators
» soft constraints encoded in ILP
@ Zinenko et al. (2018)
» spatial locality through spatial proximity constraints
» soft constraints encoded in ILP

13/29

Introduction Related Work January 23, 2018 14 /29

Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows

Introduction Related Work January 23, 2018 14 /29

Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows

» consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)
> how to handle iterators that appear in both?
for (int i = 0; i < M; ++1i)
for (int j = 0; j < N; ++j)
S: A[jI0j - il = £, 3);

Introduction Related Work January 23, 2018 14 /29

Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows

» consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)
> how to handle iterators that appear in both?
for (int i = 0; i < M; ++1i)
for (int j = 0; j < N; ++j)
S: A[JI0) - i1 = £(@1, j);

Introduction Related Work January 23, 2018 14 /29

Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows

» consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)
» how to handle iterators that appear in both?

for (int i = 0; i < M; ++1i)
for (int j = 0; j < N; ++j)
S: A[jJI0] - il = £, 3);
Other approaches, e.g., using S[i, j] — [, —]:
for (int c® = 0; c® < N; c® += 1)

for (int c1 -c®; cl <= 0; cl1 += 1)
A[cO][c® + cl] = f(-cl, c0);

Introduction Related Work January 23, 2018 15/29

Limitations

@ post-schedule interchange
» does not perform reversal, skewing
» does not differentiate between statements
» does not affect shape of schedule (e.g., distribution)

Introduction Related Work January 23, 2018 15/29

Limitations

@ post-schedule interchange
» does not perform reversal, skewing
» does not differentiate between statements
» does not affect shape of schedule (e.g., distribution)

void trps(int N, __pencil_consecutive float A[N][N],
__pencil_consecutive float C[N][N])
{
float tmp[N][N];
for (int i = 0; i < N; 1i++)
for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: CLj10i] = tmp[il[]];
}

}

» without consecutivity:
= temporal locality on tmp prevents loop distribution
» with consecutivity:

= consecutivity requires different transformation per statement
= loop distribution

Intra-Statement Consecutivity January 23, 2018 16/29

Outline

e Intra-Statement Consecutivity
@ Consecutivity Criterion
@ Specifying Schedule Constraints
@ Transformation to Constraints on Schedule Coefficients
@ Solving Constraints on Schedule Coefficients (isl)

Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018 17/29

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[T> N 1
@ Ggq=0 (with q the final columns of T~)
Note: Ti| 7-1 o
To ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)

That is, rows of G need to be linear combinations of rows of T4
G=AT;

Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[T N A1
@ Ggq=0 (with q the final columns of T~)
Note: T T o
T ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T;
G=AT;
@ Hg=1

H=T,+ BT;

Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

FT1 — G|| Ty _ M 0
H|[T N A1
@ Ggq=0 (with q the final columns of T~)
Note: T T = l ! 0}
T ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T;
G=AT;
@ Hg=1
H=T,+BT;

= H needs to be linearly independent of G

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C

H

given
> Hlinearly independent of G

Goal:
» @G linear combination of outer schedule rows: G = A T4
» H equal to innermost schedulerow : H= T, + B T;

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C

H

given
> Hlinearly independent of G

Goal:
» G linear combination of outer schedule rows: G =A T,
» H equal to innermost schedulerow : H= T, + B T;

@ multiple references per statement

= potential conflicts

Possible resolutions:
» maximize number of satisfied consecutivity constraints
» consider constraints in order specified by user

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C

H

given
> Hlinearly independent of G

Goal:
» G linear combination of outer schedule rows: G =A T,
» H equal to innermost schedulerow : H= T, + B T;

@ multiple references per statement

= potential conflicts

Possible resolutions:
» maximize number of satisfied consecutivity constraints
» consider constraints in order specified by user

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C@

H

given
> Hlinearly independent of G
» rows of H linearly independent

Goal:
» G linear combination of outer schedule rows: G =A T,
» H equal to innermost schedule rows: H= T, + B T;

@ multiple references per statement

= potential conflicts

Possible resolutions:
» maximize number of satisfied consecutivity constraints
» consider constraints in order specified by user

= some constraints may be combined constraints with multi-row H

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)
for (int j = 0; j < M; ++j)
for (int k = 0; k < K; ++k)
CLil[j1 += A[i][k] * BL[kI[jl;

19/29

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++1)
for (int j = 0; j < M; ++j)
for (int k = 0; k < K; ++k)
CLil[j1 += A[i][k] * B[kI[jl;

January 23, 2018

Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)
for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)
CLil[j1 += A[i][k] * B[kI[jl;

19/29

January 23, 2018

Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)

for (int j = 0; j < M; ++3)
for (int k = 0; k < K; ++k)
CLil[j]1 += A[il[k] * B[kI[jl;

F_| 100 o0 1 100
A7 10 o 1 P lo 1 0 ““lo 1 0
0 0 1 100
Fee=|1 0 O Faec=|0 0 1
01 0 010

19/29

January 23, 2018 19/29

Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)

for (int j = 0; j < M; ++3)
for (int k = 0; k < K; ++k)
CLil[j]1 += A[il[k] * B[kI[jl;

F_| 100 (oo 1 100
A7 10 o 1 P lo 1 0 ““lo 1 0
0 0 1 100
Fee=|1 0 0 Faec=|0 0 1
01 0 010

List: Fagc, Fac, Fag, Fec, Fa, Fs, Fc

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 20/29

Multiple Final Rows
@ single final row

Fri=|M 0 oo FT'=

N 1 N 10

u]
o)
I
"
it
1
<
¢

Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 20/29

Multiple Final Rows
@ single final row

Fri=|M 0 oo FT'=

@ multiple final rows

0 0 A . 0
L AY0oso00go0
RN '
L el 0
[E 1

» multiple levels of consecutivity
» multiple levels of temporal locality (optional)

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 21/29

Constraints on Schedule Coefficients
Affine schedule row:

50 H

Constraints:

@ validity: fr(y) —fs(x) >0
Farkas — constraints on Cgs and ds

@ proximity (temporal locality): fr(y) — fs(x) small
Farkas — constraints on Cg and ds

@ coincidence (parallelism): fr(y) —fs(x) =0
Farkas — constraints on Cs and ds

@ linear independence of previous rows (Ts): Cs # YTsp

= compute orthogonal complement of Tso: Us Té,o =0
= impose Us Cg # 0

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22/29

Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, 4+ B T;

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22/29

Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and T,

H

AC # Y[TO]

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22/29

Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)

= but linearly independent of H and Ty T

@ G is linear combination of Ty C=Hp+X [H1]

= take C equal to next row of H <h

H

AC # Y[TO]

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22/29

Constraints on Schedule Coefficients for Consecutivity

@ G linear combination of outer schedule rows: G = A T;
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and Ty T
@ G is linear combination of Ty C=Hp+X [H1]
= take C equal to next row of H <h
@ all rows of H have been handled
= no further constraints (final zero columns in F T~1)

H

AC # Y[TO]

Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22/29

Constraints on Schedule Coefficients for Consecutivity

@ G linear combination of outer schedule rows: G = A T;
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and Ty T
@ G is linear combination of Ty C=Hp+X [H1]
= take C equal to next row of H <h
@ all rows of H have been handled
= no further constraints (final zero columns in F T~1)

H

AC # Y[TO]

At any stage To
@ C may also be C+Y|G
linearly independent of Ty, G and H H

(intermediate zero columns in F T~)
@ C of lower-dimensional statement may be

linear combination of T C = XTo

Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018

Solving Constraints on Schedule Coefficients (isl)

@ validity, proximity, coincidence
= encoded in ILP
@ linear independence
C#YTo - UC'#0
= not linear
= backtracking search (in isl): UiC' >1 or U;C'< -1

Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018

Solving Constraints on Schedule Coefficients (isl)

@ validity, proximity, coincidence
= encoded in ILP
@ linear independence
C#YTo - UC'#0
= not linear
= backtracking search (in isl): UiC' >1 or U;C'< -1
@ consecutivity

T
C= X[C;‘)] - UC'=0 linear
C + Y[-II:(I)] — U’Ct#0 backtracking
Note:

» extra rows H = fewer rows in U” = fewer backtracking cases
» no extra ILP variables, but possibly more backtracking

Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018

Solving Constraints on Schedule Coefficients (isl)

@ validity, proximity, coincidence
= encoded in ILP
@ linear independence
C#YTo - UC'#0
= not linear
= backtracking search (in isl): UiC' >1 or U;C'< -1
@ consecutivity

T
C:X[GO] S UCt=0 linear
C + Y[-II:(I)] -~ U’C'+0 backtracking
Note:

» extra rows H = fewer rows in U” = fewer backtracking cases

» no extra ILP variables, but possibly more backtracking
Differences with linear independence handling:

> optional

» fixed part that applies in each backtracking case

» disjunctive (independent or dependent rows)

» conditional (multiple consecutivity constraints)

Inter-Statement Consecutivity

Outline

January 23, 2018

24 /29

© Inter-Statement Consecutivity

N

Inter-Statement Consecutivity January 23, 2018 25/29

Inter-Statement Consecutivity
Input:
for (int i = 0; i < N; 1 += 2)
for (int j = 0; j < M; j += 2) {

B[j + O][i + 0] = A[i + O][j + 0];
B[j + 1][i + 0] = A[i + OI[j + 11;
B[j + O][i + 1] = A[i + 11[j + 01;
B[j + 1]1[i + 1] = A[i + 11[j + 11;

3

Output (try and obtain distances 0 and 1):
for (int c® = 0; c® < M - 1; c® += 2) {
for (int cl = 0; cl < N - 1; cl += 2) {
B[c®][cl] A[cl][cO0];
B[cOI[cl + 1] = A[cl + 1][cO];
}
for (int cl = 0; cl < N - 1; cl += 2) {
B[cO + 1][cl] = A[cl][c® + 1];
B[c® + 1][cl + 1] = A[cl + 1][c® + 1];
3

Local Rescheduling

Outline

January 23, 2018

26 /29

o Local Rescheduling

Local Rescheduling January 23, 2018 27/29

Local Rescheduling

Consecutivity usually only important inside tiles
@ compute schedule without consecutivity (or lower priority)
Q tile

© recompute schedule inside tile with consecutivity

Local Rescheduling January 23, 2018 27/29

Local Rescheduling

Consecutivity usually only important inside tiles

@ compute schedule without consecutivity (or lower priority)
Q tile
© recompute schedule inside tile with consecutivity

On trps:

float tmp[N][N];
for (int c® = 0; c® < N; cO® += 32)
for (int cl1 = 0; cl < N; cl += 32) {
for (int c2 = c®; c2 <= min(N - 1, c® + 31); c2 += 1)
for (int c3 = cl; ¢3 <= min(N - 1, cl1 + 31); c3 += 1)
tmp[c2][c3] = A[c2][c3];
for (int c2 = cl1; c2 <= min(N - 1, cl1 + 31); c2 += 1)
for (int c3 = c®; ¢c3 <= min(N - 1, c® + 31); c3 += 1)
C[c2][c3] tmp[c3][c2];

Conclusions and Future Work

Outline

January 23, 2018

28/29

Q Conclusions and Future Work

N

Conclusions and Future Work January 23, 2018 29/29

Conclusions and Future Work
Conclusions:

@ slightly generalized criterion for consecutivity

@ combining multiple references per statement

@ approach for integration in Pluto-style scheduler

@ implementation in is1/PPCG (branch consecutivity_CW_709)
Future work:

@ experiment and fine-tune

January 23, 2018 1/4

References |

Bastoul, Cédric and Paul Feautrier (2004). “More Legal Transformations
for Locality”. In: Euro-Par’10 International Euro-Par conference.

Vol. 3149. Lecture Notes in Computer Science. Pisa, pp. 272—283. bo:
10.1007/978-3-540-27866-5_36.

Bondhugula, Uday, Albert Hartono, J. Ramanujam, and P. Sadayappan
(2008). “A practical automatic polyhedral parallelizer and locality
optimizer”. In: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation. PLDI ’08. Tucson,
AZ, USA: ACM, pp. 101-113. por: 10.1145/1375581.1375595.

Feautrier, Paul (1992). “Some Efficient Solutions to the Affine Scheduling
Problem. Part I. One-dimensional Time”. In: International Journal of
Parallel Programming 21.5, pp. 313-348. poi: 10.1007/BF01407835.

Kandemir, Mahmut T., J. Ramanujam, and Alok N. Choudhary (1999).
“Improving Cache Locality by a Combination of Loop and Data
Transformation”. In: IEEE Transactions on Computers 48.2,
pp. 159—167. por: 10.1109/12.752657.

https://doi.org/10.1007/978-3-540-27866-5_36
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/BF01407835
https://doi.org/10.1109/12.752657

January 23, 2018 2/4

References Il

| Kandemir, Mahmut T., J. Ramanujam, Alok N. Choudhary, and
Prithviraj Banerjee (2001). “A Layout-Conscious lteration Space
Transformation Technique”. In: [EEE Transactions on Computers 50.12,
pp. 1321-1335. poi: 10.1109/TC.2001.970571.

| Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti,
Louis-Noél Pouchet, and P. Sadayappan (2013). “When polyhedral
transformations meet SIMD code generation”. In: Proceedings of the
34th ACM SIGPLAN conference on Programming language design and
implementation. PLDI ’13. Seattle, Washington, USA: ACM,
pp. 127—138. poi: 10.1145/2491956.2462187.

V., Sven (2010). “isl: An Integer Set Library for the Polyhedral Model”. In:
Mathematical Software - ICMS 2010. Ed. by Komei Fukuda,
Joris Hoeven, Michael Joswig, and Nobuki Takayama. Vol. 6327.
Lecture Notes in Computer Science. Springer, pp. 299-302. poi:
10.1007/978-3-642-15582-6_49.

u]
o)
I
"
it
1

https://doi.org/10.1109/TC.2001.970571
https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1007/978-3-642-15582-6_49

January 23, 2018 3/4

References Il

V., Sven, Juan Carlos Juega, Albert Cohen, José Ignacio Gémez,
Christian Tenllado, and Francky Catthoor (2013). “Polyhedral parallel
code generation for CUDA”. In: ACM Trans. Archit. Code Optim. 9.4,

p. 54.poi: 10.1145/2400682.2400713.

| Vasilache, Nicolas (2007). “Scalable Program Optimization Techniques in
the Polyhedral Model”. PhD thesis. Université Paris Sud XI, Orsay.

| Vasilache, Nicolas, Benoit Meister, Muthu Baskaran, and Richard Lethin
(2012). “Joint Scheduling and Layout Optimization to Enable Multi-Level
Vectorization”. In: IMPACT-2: 2nd International Workshop on Polyhedral
Compilation Techniques. Paris, France.

| Wolf, Michael E. and Monica S. Lam (1991). “A Data Locality Optimizing
Algorithm”. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI '91. Toronto,
Ontario, Canada: ACM, pp. 30—44. poi: 10.1145/113445.113449.

https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/113445.113449

January 23, 2018 4/4

References IV

| Zinenko, Oleksandr, Sven V., Chandan Reddy, Jun Shirako,
Tobias Grosser, Vivek Sarkar, and Albert Cohen (2018). “Modeling the
Conflicting Demands of Multi-Level Parallelism and Temporal/Spatial
Locality in Affine Scheduling”. In: Proceedings of the 27th International
Conference on Compiler Construction. CC 2018. accepted.

	Introduction
	Consecutivity Concept
	Pluto-Style Polyhedral Scheduling
	Consecutivity Criterion
	Related Work

	Intra-Statement Consecutivity
	Consecutivity Criterion
	Specifying Schedule Constraints
	Transformation to Constraints on Schedule Coefficients
	Solving Constraints on Schedule Coefficients (Verdoolaege2010islislVerdoolaege2010isl)

	Inter-Statement Consecutivity
	Local Rescheduling
	Conclusions and Future Work
	Appendix

