
January 23, 2018 1 / 29

Extending Pluto-Style Polyhedral Scheduling
with Consecutivity

Sven Verdoolaege1 Alexandre Isoard2

1KU Leuven and Polly Labs

2Xilinx

January 23, 2018



January 23, 2018 2 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Introduction January 23, 2018 3 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Introduction Consecutivity Concept January 23, 2018 4 / 29

Consecutivity Concept

Spatial Locality memory

Consecutive operations access
neighboring memory elements

⇒ reuse of cache lines

Temporal Locality memory

Consecutive operations access
the same memory element

⇒ reuse of data in cache or registers

Consecutivity memory

Consecutive operations access
consecutive memory elements

⇒ vectorization
⇒ hardware cache prefetcher
⇒ burst accesses, e.g., on FPGA (Xilinx)



Introduction Consecutivity Concept January 23, 2018 4 / 29

Consecutivity Concept
Spatial Locality memory

Consecutive operations access
neighboring memory elements

⇒ reuse of cache lines

Temporal Locality memory

Consecutive operations access
the same memory element

⇒ reuse of data in cache or registers

Consecutivity memory

Consecutive operations access
consecutive memory elements

⇒ vectorization
⇒ hardware cache prefetcher
⇒ burst accesses, e.g., on FPGA (Xilinx)



Introduction Consecutivity Concept January 23, 2018 4 / 29

Consecutivity Concept
Spatial Locality memory

Consecutive operations access
neighboring memory elements

⇒ reuse of cache lines

Temporal Locality memory

Consecutive operations access
the same memory element

⇒ reuse of data in cache or registers

Consecutivity memory

Consecutive operations access
consecutive memory elements

⇒ vectorization
⇒ hardware cache prefetcher
⇒ burst accesses, e.g., on FPGA (Xilinx)



Introduction Consecutivity Concept January 23, 2018 4 / 29

Consecutivity Concept
Spatial Locality memory

Consecutive operations access
neighboring memory elements

⇒ reuse of cache lines

Temporal Locality memory

Consecutive operations access
the same memory element

⇒ reuse of data in cache or registers

Consecutivity memory

Consecutive operations access
consecutive memory elements

⇒ vectorization
⇒ hardware cache prefetcher
⇒ burst accesses, e.g., on FPGA (Xilinx)



Introduction Consecutivity Concept January 23, 2018 5 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(BB, M);

}

burst_read_end(AA, N);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Consecutivity Concept January 23, 2018 5 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(BB, M);

}

burst_read_end(AA, N);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Consecutivity Concept January 23, 2018 5 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(BB, M);

}

burst_read_end(AA, N);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Consecutivity Concept January 23, 2018 5 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(BB, M);

}

burst_read_end(AA, N);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Consecutivity Concept January 23, 2018 6 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(AA, N);

}

burst_read_end(BB, M);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Consecutivity Concept January 23, 2018 6 / 29

Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(AA, N);

}

burst_read_end(BB, M);

burst_write_end(CC, M * N);

No burst accesses on C



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7 / 29

Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
instance set: set of schedulable statement instances
access relations: map instances to memory locations
dependence relations:
⇒ pairs of instances that need to be executed in order
⇒ derived from access relations and original schedule

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7 / 29

Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
instance set: set of schedulable statement instances
access relations: map instances to memory locations
dependence relations:
⇒ pairs of instances that need to be executed in order
⇒ derived from access relations and original schedule

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7 / 29

Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7 / 29

Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 7 / 29

Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 8 / 29

Pluto-Style Polyhedral Scheduling
Main optimization criteria:

parallelism
temporal locality
permutability⇒ tiling

Remaining freedom (if any)
⇒ isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

S: A[i][j] = 0;

S[i, j]→ [i, j]

consecutive (by chance)

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

T: B[j][i] = 0;

T[i, j]→ [i, j]

not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in isl (roughly):
permutability > parallelism > consecutivity > temporal locality



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 8 / 29

Pluto-Style Polyhedral Scheduling
Main optimization criteria:

parallelism
temporal locality
permutability⇒ tiling

Remaining freedom (if any)
⇒ isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

S: A[i][j] = 0;

S[i, j]→ [i, j]

consecutive (by chance)

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

T: B[j][i] = 0;

T[i, j]→ [i, j]

not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in isl (roughly):
permutability > parallelism > consecutivity > temporal locality



Introduction Pluto-Style Polyhedral Scheduling January 23, 2018 8 / 29

Pluto-Style Polyhedral Scheduling
Main optimization criteria:

parallelism
temporal locality
permutability⇒ tiling

Remaining freedom (if any)
⇒ isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

S: A[i][j] = 0;

S[i, j]→ [i, j]

consecutive (by chance)

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

T: B[j][i] = 0;

T[i, j]→ [i, j]

not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in isl (roughly):
permutability > parallelism > consecutivity > temporal locality



Introduction Consecutivity Criterion January 23, 2018 9 / 29

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

intra-statement consecutivity (⇒ per statement)

row-major array layout

purely affine access function F

= [G;H]

purely affine per-statement schedule T

= [T1;T2]
S(x)

L(i)

A

F
T

Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator

innermost index expression proportional to innermost loop iterator

[. . .+ 0in] . . . [. . .+ 0in][. . .+ 1in]

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1





Introduction Consecutivity Criterion January 23, 2018 9 / 29

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

intra-statement consecutivity (⇒ per statement)

row-major array layout

purely affine access function F

= [G;H]

purely affine per-statement schedule T

= [T1;T2]

S(x)

L(i)

A

F
T

Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator

innermost index expression proportional to innermost loop iterator

[. . .+ 0in] . . . [. . .+ 0in][. . .+ 1in]

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1





Introduction Consecutivity Criterion January 23, 2018 9 / 29

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

intra-statement consecutivity (⇒ per statement)

row-major array layout

purely affine access function F

= [G;H]

purely affine per-statement schedule T

= [T1;T2]

S(x)

L(i)

A

F
T

Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator

innermost index expression proportional to innermost loop iterator

[. . .+ 0in] . . . [. . .+ 0in][. . .+ 1in]

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1





Introduction Consecutivity Criterion January 23, 2018 9 / 29

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

intra-statement consecutivity (⇒ per statement)

row-major array layout

purely affine access function F = [G;H]

purely affine per-statement schedule T = [T1;T2]
S(x)

L(i)

A

F
T

Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator

innermost index expression proportional to innermost loop iterator

[. . .+ 0in] . . . [. . .+ 0in][. . .+ 1in]

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1





Introduction Consecutivity Criterion January 23, 2018 10 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1



G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Introduction Consecutivity Criterion January 23, 2018 10 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Introduction Consecutivity Criterion January 23, 2018 11 / 29

Consecutivity Criterion and Spatial Locality

Spatial Locality

F T−1 =

M 0

N x


Temporal Locality

F T−1 =

M 0

N 0



Consecutivity

F T−1 =

M 0

N 1



in case of innermost temporal locality
⇒ consecutivity on next innermost loop iterator

F T−1 =

M 0 0

N 1 0


(Kandemir, Ramanujam, and Choudhary 1999)



Introduction Consecutivity Criterion January 23, 2018 11 / 29

Consecutivity Criterion and Spatial Locality
Spatial Locality

F T−1 =

M 0

N x



Temporal Locality

F T−1 =

M 0

N 0



Consecutivity

F T−1 =

M 0

N 1



in case of innermost temporal locality
⇒ consecutivity on next innermost loop iterator

F T−1 =

M 0 0

N 1 0


(Kandemir, Ramanujam, and Choudhary 1999)



Introduction Consecutivity Criterion January 23, 2018 11 / 29

Consecutivity Criterion and Spatial Locality
Spatial Locality

F T−1 =

M 0

N x


Temporal Locality

F T−1 =

M 0

N 0


Consecutivity

F T−1 =

M 0

N 1



in case of innermost temporal locality
⇒ consecutivity on next innermost loop iterator

F T−1 =

M 0 0

N 1 0


(Kandemir, Ramanujam, and Choudhary 1999)



Introduction Consecutivity Criterion January 23, 2018 11 / 29

Consecutivity Criterion and Spatial Locality
Spatial Locality

F T−1 =

M 0

N x


Temporal Locality

F T−1 =

M 0

N 0


Consecutivity

F T−1 =

M 0

N 1


in case of innermost temporal locality
⇒ consecutivity on next innermost loop iterator

F T−1 =

M 0 0

N 1 0


(Kandemir, Ramanujam, and Choudhary 1999)



Introduction Related Work January 23, 2018 12 / 29

Related Work on Spatial Locality

Loop nest transformations (not per-statement)

Wolf and Lam (1991)
I define temporal (ker F) and spatial (kerG) reuse directions
I partition original loop iterators

Kandemir, Ramanujam, and Choudhary (1999)
I aim: spatial locality
I criterion more strict than required (ensures consecutivity)
I incrementally fix elements of T−1

Kandemir, Ramanujam, Choudhary, and Banerjee (2001)
I pick (second to) last column of T−1 from kerG



Introduction Related Work January 23, 2018 13 / 29

Related Work on Spatial Locality
Per-statement schedulers

Bastoul and Feautrier (2004)
I pick proto-schedule T orthogonal to element from kerG (or ker F)
I construct valid schedule C T
I imposing constraints on linear combinations
⇒ not directly applicable in isl

Vasilache et al. (2012)
I aim: spatial locality (ker T1 ⊆ kerG)
I one-shot scheduler called multiple times
I soft constraints encoded in ILP

Pluto (2012) post scheduling intra-tile interchange
Kong et al. (2013)

I aim: consecutivity (stride-1 or stride-0)
I partition original loop iterators
I soft constraints encoded in ILP

Zinenko et al. (2018)
I spatial locality through spatial proximity constraints
I soft constraints encoded in ILP



Introduction Related Work January 23, 2018 14 / 29

Limitations
partition original loop iterators
Kong et al. (2013)

I loop iterators in outer index expressions appear in outer schedule rows
I loop iterators in innermost index expression

do not appear in outer schedule rows

I consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)

I how to handle iterators that appear in both?

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

S: A[j][j - i] = f(i, j);

Other approaches, e.g., using S[i, j]→ [j,−i]:

for (int c0 = 0; c0 < N; c0 += 1)
for (int c1 = -c0; c1 <= 0; c1 += 1)
A[c0][c0 + c1] = f(-c1, c0);



Introduction Related Work January 23, 2018 14 / 29

Limitations
partition original loop iterators
Kong et al. (2013)

I loop iterators in outer index expressions appear in outer schedule rows
I loop iterators in innermost index expression

do not appear in outer schedule rows

I consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)

I how to handle iterators that appear in both?

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

S: A[j][j - i] = f(i, j);

Other approaches, e.g., using S[i, j]→ [j,−i]:

for (int c0 = 0; c0 < N; c0 += 1)
for (int c1 = -c0; c1 <= 0; c1 += 1)
A[c0][c0 + c1] = f(-c1, c0);



Introduction Related Work January 23, 2018 14 / 29

Limitations
partition original loop iterators
Kong et al. (2013)

I loop iterators in outer index expressions appear in outer schedule rows
I loop iterators in innermost index expression

do not appear in outer schedule rows

I consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)

I how to handle iterators that appear in both?

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

S: A[j][j - i] = f(i, j);

Other approaches, e.g., using S[i, j]→ [j,−i]:

for (int c0 = 0; c0 < N; c0 += 1)
for (int c1 = -c0; c1 <= 0; c1 += 1)
A[c0][c0 + c1] = f(-c1, c0);



Introduction Related Work January 23, 2018 14 / 29

Limitations
partition original loop iterators
Kong et al. (2013)

I loop iterators in outer index expressions appear in outer schedule rows
I loop iterators in innermost index expression

do not appear in outer schedule rows

I consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)

I how to handle iterators that appear in both?

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

S: A[j][j - i] = f(i, j);

Other approaches, e.g., using S[i, j]→ [j,−i]:

for (int c0 = 0; c0 < N; c0 += 1)
for (int c1 = -c0; c1 <= 0; c1 += 1)
A[c0][c0 + c1] = f(-c1, c0);



Introduction Related Work January 23, 2018 15 / 29

Limitations
post-schedule interchange

I does not perform reversal, skewing
I does not differentiate between statements
I does not affect shape of schedule (e.g., distribution)

void trps(int N, __pencil_consecutive float A[N][N],
__pencil_consecutive float C[N][N])

{

float tmp[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: C[j][i] = tmp[i][j];

}

}

I without consecutivity:
⇒ temporal locality on tmp prevents loop distribution

I with consecutivity:
⇒ consecutivity requires different transformation per statement
⇒ loop distribution



Introduction Related Work January 23, 2018 15 / 29

Limitations
post-schedule interchange

I does not perform reversal, skewing
I does not differentiate between statements
I does not affect shape of schedule (e.g., distribution)

void trps(int N, __pencil_consecutive float A[N][N],
__pencil_consecutive float C[N][N])

{

float tmp[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: C[j][i] = tmp[i][j];

}

}

I without consecutivity:
⇒ temporal locality on tmp prevents loop distribution

I with consecutivity:
⇒ consecutivity requires different transformation per statement
⇒ loop distribution



Intra-Statement Consecutivity January 23, 2018 16 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018 17 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018 17 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018 17 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 18 / 29

Multiple References
single reference per statement
Consecutivity constraint equal to index expression

F =

G
H


given

I H linearly independent of G

I rows of H linearly independent

Goal:
I G linear combination of outer schedule rows: G = A T1
I H equal to innermost schedule row

s

: H = T2 + B T1

multiple references per statement
⇒ potential conflicts
Possible resolutions:

I maximize number of satisfied consecutivity constraints
I consider constraints in order specified by user

⇒ some constraints may be combined constraints with multi-row H



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 18 / 29

Multiple References
single reference per statement
Consecutivity constraint equal to index expression

F =

G
H


given

I H linearly independent of G

I rows of H linearly independent

Goal:
I G linear combination of outer schedule rows: G = A T1
I H equal to innermost schedule row

s

: H = T2 + B T1

multiple references per statement
⇒ potential conflicts
Possible resolutions:

I maximize number of satisfied consecutivity constraints
I consider constraints in order specified by user

⇒ some constraints may be combined constraints with multi-row H



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 18 / 29

Multiple References
single reference per statement
Consecutivity constraint equal to index expression

F =

G
H


given

I H linearly independent of G

I rows of H linearly independent

Goal:
I G linear combination of outer schedule rows: G = A T1
I H equal to innermost schedule row

s

: H = T2 + B T1

multiple references per statement
⇒ potential conflicts
Possible resolutions:

I maximize number of satisfied consecutivity constraints
I consider constraints in order specified by user

⇒ some constraints may be combined constraints with multi-row H



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 18 / 29

Multiple References
single reference per statement
Consecutivity constraint equal to index expression

F =

G
H


given

I H linearly independent of G
I rows of H linearly independent

Goal:
I G linear combination of outer schedule rows: G = A T1
I H equal to innermost schedule rows: H = T2 + B T1

multiple references per statement
⇒ potential conflicts
Possible resolutions:

I maximize number of satisfied consecutivity constraints
I consider constraints in order specified by user
⇒ some constraints may be combined constraints with multi-row H



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 19 / 29

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0


FBC =


0 0 1
1 0 0

0 1 0

 FABC =


1 0 0

0 0 1
0 1 0


List: FABC,FAC,FAB,FBC,FA,FB,FC



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 19 / 29

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0



FBC =


0 0 1
1 0 0

0 1 0

 FABC =


1 0 0

0 0 1
0 1 0


List: FABC,FAC,FAB,FBC,FA,FB,FC



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 19 / 29

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0


FBC =


0 0 1
1 0 0

0 1 0



FABC =


1 0 0

0 0 1
0 1 0


List: FABC,FAC,FAB,FBC,FA,FB,FC



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 19 / 29

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0


FBC =


0 0 1
1 0 0

0 1 0

 FABC =


1 0 0

0 0 1
0 1 0



List: FABC,FAC,FAB,FBC,FA,FB,FC



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 19 / 29

Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0


FBC =


0 0 1
1 0 0

0 1 0

 FABC =


1 0 0

0 0 1
0 1 0


List: FABC,FAC,FAB,FBC,FA,FB,FC



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 20 / 29

Multiple Final Rows
single final row

F T−1 =

M 0

N 1

 or F T−1 =

M 0 0

N 1 0



multiple final rows

F T−1 =



0

0

0

0

. . .

0

0

0A

...
...

...

0 0 . . . 0
1 0 . . . 0

1
. . .

...

L
. . . 0

1


I multiple levels of consecutivity
I



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 20 / 29

Multiple Final Rows
single final row

F T−1 =

M 0

N 1

 or F T−1 =

M 0 0

N 1 0


multiple final rows

F T−1 =



0

0

0

0

. . .

0

0

0A

...
...

...

0 0 . . . 0
1 0 . . . 0

1
. . .

...

L
. . . 0

1


I multiple levels of consecutivity
I multiple levels of temporal locality (optional)



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 21 / 29

Constraints on Schedule Coefficients
Affine schedule row:

fS(x) = CS x + dS

Constraints:

validity: fT (y) − fS(x) ≥ 0
Farkas→ constraints on CS and dS

proximity (temporal locality): fT (y) − fS(x) small
Farkas→ constraints on CS and dS

coincidence (parallelism): fT (y) − fS(x) = 0
Farkas→ constraints on CS and dS

linear independence of previous rows (TS,0): CS , YTS,0

⇒ compute orthogonal complement of TS,0: US T t
S,0 = 0

⇒ impose US C t
S , 0



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22 / 29

Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]
3 all rows of H have been handled

⇒ no further constraints (final zero columns in F T−1)

At any stage
C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22 / 29

Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]
3 all rows of H have been handled

⇒ no further constraints (final zero columns in F T−1)
At any stage

C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22 / 29

Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]

3 all rows of H have been handled
⇒ no further constraints (final zero columns in F T−1)

At any stage
C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22 / 29

Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]
3 all rows of H have been handled

⇒ no further constraints (final zero columns in F T−1)

At any stage
C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0



Intra-Statement Consecutivity Transformation to Constraints on Schedule Coefficients January 23, 2018 22 / 29

Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]
3 all rows of H have been handled

⇒ no further constraints (final zero columns in F T−1)
At any stage

C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0



Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018 23 / 29

Solving Constraints on Schedule Coefficients (isl)
validity, proximity, coincidence
⇒ encoded in ILP

linear independence
C , YT0 → U C t , 0

⇒ not linear
⇒ backtracking search (in isl): UiC t ≥ 1 or UiC t ≤ −1

consecutivity

C = X
[
T0

G

]
→ U′C t = 0 linear

C , Y
[
T0

H

]
→ U′′C t , 0 backtracking

Note:
I extra rows H ⇒ fewer rows in U′′ ⇒ fewer backtracking cases
I no extra ILP variables, but possibly more backtracking

Differences with linear independence handling:
I optional
I fixed part that applies in each backtracking case
I disjunctive (independent or dependent rows)
I conditional (multiple consecutivity constraints)



Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018 23 / 29

Solving Constraints on Schedule Coefficients (isl)
validity, proximity, coincidence
⇒ encoded in ILP

linear independence
C , YT0 → U C t , 0

⇒ not linear
⇒ backtracking search (in isl): UiC t ≥ 1 or UiC t ≤ −1

consecutivity

C = X
[
T0

G

]
→ U′C t = 0 linear

C , Y
[
T0

H

]
→ U′′C t , 0 backtracking

Note:
I extra rows H ⇒ fewer rows in U′′ ⇒ fewer backtracking cases
I no extra ILP variables, but possibly more backtracking

Differences with linear independence handling:
I optional
I fixed part that applies in each backtracking case
I disjunctive (independent or dependent rows)
I conditional (multiple consecutivity constraints)



Intra-Statement Consecutivity Solving Constraints on Schedule Coefficients (isl) January 23, 2018 23 / 29

Solving Constraints on Schedule Coefficients (isl)
validity, proximity, coincidence
⇒ encoded in ILP

linear independence
C , YT0 → U C t , 0

⇒ not linear
⇒ backtracking search (in isl): UiC t ≥ 1 or UiC t ≤ −1

consecutivity

C = X
[
T0

G

]
→ U′C t = 0 linear

C , Y
[
T0

H

]
→ U′′C t , 0 backtracking

Note:
I extra rows H ⇒ fewer rows in U′′ ⇒ fewer backtracking cases
I no extra ILP variables, but possibly more backtracking

Differences with linear independence handling:
I optional
I fixed part that applies in each backtracking case
I disjunctive (independent or dependent rows)
I conditional (multiple consecutivity constraints)



Inter-Statement Consecutivity January 23, 2018 24 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Inter-Statement Consecutivity January 23, 2018 25 / 29

Inter-Statement Consecutivity
Input:
for (int i = 0; i < N; i += 2)

for (int j = 0; j < M; j += 2) {
B[j + 0][i + 0] = A[i + 0][j + 0];

B[j + 1][i + 0] = A[i + 0][j + 1];

B[j + 0][i + 1] = A[i + 1][j + 0];

B[j + 1][i + 1] = A[i + 1][j + 1];

}

Output (try and obtain distances 0 and 1):
for (int c0 = 0; c0 < M - 1; c0 += 2) {
for (int c1 = 0; c1 < N - 1; c1 += 2) {
B[c0][c1] = A[c1][c0];

B[c0][c1 + 1] = A[c1 + 1][c0];

}

for (int c1 = 0; c1 < N - 1; c1 += 2) {
B[c0 + 1][c1] = A[c1][c0 + 1];

B[c0 + 1][c1 + 1] = A[c1 + 1][c0 + 1];

}

}



Local Rescheduling January 23, 2018 26 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Local Rescheduling January 23, 2018 27 / 29

Local Rescheduling
Consecutivity usually only important inside tiles

1 compute schedule without consecutivity (or lower priority)
2 tile
3 recompute schedule inside tile with consecutivity

On trps:

float tmp[N][N];
for (int c0 = 0; c0 < N; c0 += 32)
for (int c1 = 0; c1 < N; c1 += 32) {
for (int c2 = c0; c2 <= min(N - 1, c0 + 31); c2 += 1)
for (int c3 = c1; c3 <= min(N - 1, c1 + 31); c3 += 1)
tmp[c2][c3] = A[c2][c3];

for (int c2 = c1; c2 <= min(N - 1, c1 + 31); c2 += 1)
for (int c3 = c0; c3 <= min(N - 1, c0 + 31); c3 += 1)
C[c2][c3] = tmp[c3][c2];

}



Local Rescheduling January 23, 2018 27 / 29

Local Rescheduling
Consecutivity usually only important inside tiles

1 compute schedule without consecutivity (or lower priority)
2 tile
3 recompute schedule inside tile with consecutivity

On trps:

float tmp[N][N];
for (int c0 = 0; c0 < N; c0 += 32)
for (int c1 = 0; c1 < N; c1 += 32) {
for (int c2 = c0; c2 <= min(N - 1, c0 + 31); c2 += 1)
for (int c3 = c1; c3 <= min(N - 1, c1 + 31); c3 += 1)
tmp[c2][c3] = A[c2][c3];

for (int c2 = c1; c2 <= min(N - 1, c1 + 31); c2 += 1)
for (int c3 = c0; c3 <= min(N - 1, c0 + 31); c3 += 1)
C[c2][c3] = tmp[c3][c2];

}



Conclusions and Future Work January 23, 2018 28 / 29

Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work



Conclusions and Future Work January 23, 2018 29 / 29

Conclusions and Future Work
Conclusions:

slightly generalized criterion for consecutivity

combining multiple references per statement

approach for integration in Pluto-style scheduler

implementation in isl/PPCG (branch consecutivity_CW_709)

Future work:

experiment and fine-tune



January 23, 2018 1 / 4

References I

Bastoul, Cédric and Paul Feautrier (2004). “More Legal Transformations
for Locality”. In: Euro-Par’10 International Euro-Par conference.
Vol. 3149. Lecture Notes in Computer Science. Pisa, pp. 272–283. doi:
10.1007/978-3-540-27866-5_36.

Bondhugula, Uday, Albert Hartono, J. Ramanujam, and P. Sadayappan
(2008). “A practical automatic polyhedral parallelizer and locality
optimizer”. In: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation. PLDI ’08. Tucson,
AZ, USA: ACM, pp. 101–113. doi: 10.1145/1375581.1375595.

Feautrier, Paul (1992). “Some Efficient Solutions to the Affine Scheduling
Problem. Part I. One-dimensional Time”. In: International Journal of
Parallel Programming 21.5, pp. 313–348. doi: 10.1007/BF01407835.

Kandemir, Mahmut T., J. Ramanujam, and Alok N. Choudhary (1999).
“Improving Cache Locality by a Combination of Loop and Data
Transformation”. In: IEEE Transactions on Computers 48.2,
pp. 159–167. doi: 10.1109/12.752657.

https://doi.org/10.1007/978-3-540-27866-5_36
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/BF01407835
https://doi.org/10.1109/12.752657


January 23, 2018 2 / 4

References II

Kandemir, Mahmut T., J. Ramanujam, Alok N. Choudhary, and
Prithviraj Banerjee (2001). “A Layout-Conscious Iteration Space
Transformation Technique”. In: IEEE Transactions on Computers 50.12,
pp. 1321–1335. doi: 10.1109/TC.2001.970571.

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti,
Louis-Noël Pouchet, and P. Sadayappan (2013). “When polyhedral
transformations meet SIMD code generation”. In: Proceedings of the
34th ACM SIGPLAN conference on Programming language design and
implementation. PLDI ’13. Seattle, Washington, USA: ACM,
pp. 127–138. doi: 10.1145/2491956.2462187.

V., Sven (2010). “isl: An Integer Set Library for the Polyhedral Model”. In:
Mathematical Software - ICMS 2010. Ed. by Komei Fukuda,
Joris Hoeven, Michael Joswig, and Nobuki Takayama. Vol. 6327.
Lecture Notes in Computer Science. Springer, pp. 299–302. doi:
10.1007/978-3-642-15582-6_49.

https://doi.org/10.1109/TC.2001.970571
https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1007/978-3-642-15582-6_49


January 23, 2018 3 / 4

References III

V., Sven, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez,
Christian Tenllado, and Francky Catthoor (2013). “Polyhedral parallel
code generation for CUDA”. In: ACM Trans. Archit. Code Optim. 9.4,
p. 54. doi: 10.1145/2400682.2400713.

Vasilache, Nicolas (2007). “Scalable Program Optimization Techniques in
the Polyhedral Model”. PhD thesis. Université Paris Sud XI, Orsay.

Vasilache, Nicolas, Benoı̂t Meister, Muthu Baskaran, and Richard Lethin
(2012). “Joint Scheduling and Layout Optimization to Enable Multi-Level
Vectorization”. In: IMPACT-2: 2nd International Workshop on Polyhedral
Compilation Techniques. Paris, France.

Wolf, Michael E. and Monica S. Lam (1991). “A Data Locality Optimizing
Algorithm”. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’91. Toronto,
Ontario, Canada: ACM, pp. 30–44. doi: 10.1145/113445.113449.

https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/113445.113449


January 23, 2018 4 / 4

References IV

Zinenko, Oleksandr, Sven V., Chandan Reddy, Jun Shirako,
Tobias Grosser, Vivek Sarkar, and Albert Cohen (2018). “Modeling the
Conflicting Demands of Multi-Level Parallelism and Temporal/Spatial
Locality in Affine Scheduling”. In: Proceedings of the 27th International
Conference on Compiler Construction. CC 2018. accepted.


	Introduction
	Consecutivity Concept
	Pluto-Style Polyhedral Scheduling
	Consecutivity Criterion
	Related Work

	Intra-Statement Consecutivity
	Consecutivity Criterion
	Specifying Schedule Constraints
	Transformation to Constraints on Schedule Coefficients
	Solving Constraints on Schedule Coefficients (Verdoolaege2010islislVerdoolaege2010isl)

	Inter-Statement Consecutivity
	Local Rescheduling
	Conclusions and Future Work
	Appendix

