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Consecutivity Concept

@ Temporal Locality memory
Consecutive operations access
the same memory element

= reuse of data in cache or registers
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Burst Accesses (Sketch)

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

C[jl1[i] =
A[i] *
B[j]l ;
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Burst Accesses (Sketch)

AA = burst_read_start(A, N);
for (int i = 0; i < N; ++1i) {
BB = burst_read_start(B, M);
for (int j = 0; j < M; ++j) {
Cljlli]l =
burst_read_iter (AA, &A[i]) *
burst_read_iter (BB, &B[j]l);
}
burst_read_end (BB, M);

}
burst_read_end(AA, N);
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Burst Accesses (Sketch)

CcC burst_write_start(C, M * N);
BB burst_read_start (B, M);
for (int j = 0; j < M; ++j) {
AA = burst_read_start(A, N);
for (int i = 0; i < N; ++1) {
burst_write_iter(CC, &C[j][i]) =
burst_read_iter (AA, &A[i]) *
burst_read_iter (BB, &B[j]l);

}
burst_read_end(AA, N);

}
burst_read_end (BB, M);
burst_write_end(CC, M * N);
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Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler
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Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances
@ original schedule (if any) derived from input
@ target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
@ instance set: set of schedulable statement instances
@ access relations: map instances to memory locations
@ dependence relations:
= pairs of instances that need to be executed in order
= derived from access relations and original schedule
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Pluto-Style Polyhedral Scheduling

A schedule assigns an execution order to statement instances

@ original schedule (if any) derived from input

@ target schedule computed by scheduler
A polyhedral scheduler computes schedule using polyhedral model
Result (typically):

@ multiple (quasi) affine functions on instance set

@ hierarchically organized (sequence, tree)
Types:

@ Farkas based schedulers (Feautrier 1992)

= use Farkas to transform dependences
into constraints on schedule coefficients

> Pluto-style schedulers, e.g., Pluto, isl
= compute affine functions one by one
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Pluto-Style Polyhedral Scheduling
Main optimization criteria:

@ parallelism

@ temporal locality

@ permutability = tiling
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Pluto-Style Polyhedral Scheduling

Main optimization criteria:
@ parallelism
@ temporal locality
@ permutability = tiling

Remaining freedom (if any)

= 1isl scheduler tends towards lexicographic ordering of instances

Extreme example:
for (i=0; i<M; ++1)
for (j=0; j<N; ++j)
S: A[il[j] = 0;
Sti-j] = [iiJ]

consecutive (by chance)

for (i=0; i<M; ++1)
for (j=0; j<N; ++j)
T: B[jl[i] = O;
(i, j] = [i.]]

not consecutive
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Pluto-Style Polyhedral Scheduling
Main optimization criteria:
@ parallelism
@ temporal locality
@ permutability = tiling
Remaining freedom (if any)
= 1isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i) for (i=0; i<M; ++1i)
for (j=0; j<N; ++j) for (j=0; j<N; ++3j)
S: A[i][j]l = 0; T: B[jl[i] = O;
S[i.j] = [i.]] T[i.j] — [i.]]
consecutive (by chance) not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in is1 (roughly):
permutability > parallelism > consecutivity > temporal locality
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Consecutivity Criterion
Consecutive operations access consecutive memory elements
Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement)

@ row-major array layout

@ purely affine access function F

@ purely affine per-statement schedule T



9/29

Introduction Consecutivity Criterion January 23, 2018

Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement) L.')

@ row-major array layout T F

@ purely affine access function F ®
S(x) A

@ purely affine per-statement schedule T
Transformed access function F T~ exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
[+ 0in]. o [oe 4 O] .. + Tin]
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Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

@ intra-statement consecutivity (= per statement) L.')

@ row-major array layout T F

@ purely affine access function F = [G; H] °
S(x) A

@ purely affine per-statement schedule T = [Ty; Ty]
Transformed access function F T~ exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
[...4+0ip]...[-.. + Oig][-.. + 1in]

-1

Fri_ |G| _ M o

H||T> N 1
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Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator
ET-1 = G|| T4 _ M 0
H|[ T2 N 1
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Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[T> N 1
@ Ggq=0 (with q the final columns of T~)
Note: Ti| 7-1 o
To ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)

That is, rows of G need to be linear combinations of rows of T4
G=AT;
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Consecutivity Criterion and Spatial Locality

@ Consecutivity
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Introduction Consecutivity Criterion

Consecutivity Criterion and Spatial Locality

Spatial Locality
Fri=|M 0
N x
@ Consecutivity
Fri=|M 0
N A

January 23, 2018
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Consecutivity Criterion and Spatial Locality

Spatial Locality

@ Temporal Locality

@ Consecutivity

Consecutivity Criterion

FT'=

FT

FT' =

=

= =

M 0

X

=
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Consecutivity Criterion and Spatial Locality
Spatial Locality

Fri=|M 0

N x
@ Temporal Locality - 1
Fr-1-|M O
[N 0
@ Consecutivity - 7
Fri=|M 0
[N 1]

in case of innermost temporal locality
= consecutivity on next innermost loop iterator

FT' =
N 1 0
(Kandemir, Ramanujam, and Choudhary 1999)

MOOI
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Related Work on Spatial Locality

Loop nest transformations (not per-statement)

@ Wolf and Lam (1991)
» define temporal (ker F) and spatial (ker G) reuse directions
» partition original loop iterators

@ Kandemir, Ramanujam, and Choudhary (1999)
> aim: spatial locality
> criterion more strict than required (ensures consecutivity)
» incrementally fix elements of T~

@ Kandemir, Ramanujam, Choudhary, and Banerjee (2001)
> pick (second to) last column of T~' from ker G
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Related Work on Spatial Locality

Per-statement schedulers

@ Bastoul and Feautrier (2004)
» pick proto-schedule T orthogonal to element from ker G (or ker F)
» construct valid schedule C T
> imposing constraints on linear combinations
= not directly applicable in isl
@ Vasilache et al. (2012)
» aim: spatial locality (ker Ty C ker G)
» one-shot scheduler called multiple times
» soft constraints encoded in ILP
@ Pluto (2012) post scheduling intra-tile interchange
@ Kong et al. (2013)
» aim: consecutivity (stride-1 or stride-0)
» partition original loop iterators
» soft constraints encoded in ILP
@ Zinenko et al. (2018)
» spatial locality through spatial proximity constraints
» soft constraints encoded in ILP

13/29
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Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows
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» consecutivity requires innermost index expression to be equal to
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Limitations

@ partition original loop iterators
Kong et al. (2013)
>~ loop iterators in outer index expressions appear in outer schedule rows
> loop iterators in innermost index expression
do not appear in outer schedule rows

» consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)
» how to handle iterators that appear in both?

for (int i = 0; i < M; ++1i)
for (int j = 0; j < N; ++j)
S: A[jJI0] - il = £, 3);
Other approaches, e.g., using S[i, j] — [, —]:
for (int c® = 0; c® < N; c® += 1)

for (int c1 -c®; cl <= 0; cl1 += 1)
A[cO][c® + cl] = f(-cl, c0);
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Limitations

@ post-schedule interchange
» does not perform reversal, skewing
» does not differentiate between statements
» does not affect shape of schedule (e.g., distribution)
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Limitations

@ post-schedule interchange
» does not perform reversal, skewing
» does not differentiate between statements
» does not affect shape of schedule (e.g., distribution)

void trps(int N, __pencil_consecutive float A[N][N],
__pencil_consecutive float C[N][N])
{
float tmp[N][N];
for (int i = 0; i < N; 1i++)
for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: CLj10i] = tmp[il[]];
}

}

» without consecutivity:
= temporal locality on tmp prevents loop distribution
» with consecutivity:

= consecutivity requires different transformation per statement
= loop distribution
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Outline

e Intra-Statement Consecutivity
@ Consecutivity Criterion
@ Specifying Schedule Constraints
@ Transformation to Constraints on Schedule Coefficients
@ Solving Constraints on Schedule Coefficients (isl)
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Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[T> N 1
@ Ggq=0 (with q the final columns of T~)
Note: Ti| 7-1 o
To ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)

That is, rows of G need to be linear combinations of rows of T4
G=AT;
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Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

G| T4 M 0

FT' = =
H|[ T N A1
@ Ggq=0 (with q the final columns of T~)
Note: T T o
T ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T;
G=AT;
@ Hg=1

H=T,+ BT;



Intra-Statement Consecutivity Consecutivity Criterion January 23, 2018

Consecutivity Criterion Reformulation
Transformed access function F T~! exhibits consecutivity if
@ outer index expressions independent of innermost loop iterator
@ innermost index expression proportional to innermost loop iterator

FT1 — G|| Ty _ M 0
H|[ T N A1
@ Ggq=0 (with q the final columns of T~)
Note: T T = l ! 0}
T ot 1
= q spans ker T;
= ker Ty CkerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T;
G=AT;
@ Hg=1
H=T,+BT;

= H needs to be linearly independent of G
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Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C

H

given
> Hlinearly independent of G

Goal:
» @G linear combination of outer schedule rows: G = A T4
» H equal to innermost schedulerow : H= T, + B T;
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Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C

H

given
> Hlinearly independent of G

Goal:
» G linear combination of outer schedule rows: G =A T,
» H equal to innermost schedulerow : H= T, + B T;

@ multiple references per statement

= potential conflicts

Possible resolutions:
» maximize number of satisfied consecutivity constraints
» consider constraints in order specified by user
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Multiple References

@ single reference per statement
Consecutivity constraint equal to index expression

F=|C@

H

given
> Hlinearly independent of G
» rows of H linearly independent

Goal:
» G linear combination of outer schedule rows: G =A T,
» H equal to innermost schedule rows: H= T, + B T;

@ multiple references per statement

= potential conflicts

Possible resolutions:
» maximize number of satisfied consecutivity constraints
» consider constraints in order specified by user

= some constraints may be combined constraints with multi-row H
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Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)
for (int j = 0; j < M; ++j)
for (int k = 0; k < K; ++k)
CLil[j1 += A[i][k] * BL[kI[jl;
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Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)
for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)
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Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)

for (int j = 0; j < M; ++3)
for (int k = 0; k < K; ++k)
CLil[j]1 += A[il[k] * B[kI[jl;

F_| 100 o0 1 100
A7 10 o 1 P lo 1 0 ““lo 1 0
0 0 1 100
Fee=|1 0 O Faec=|0 0 1
01 0 010

19/29
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Specifying Schedule Constraints

Intra-Statement Consecutivity

Multiple References Example: Matrix Multiplication

for (int i = 0; 1 < N; ++1)

for (int j = 0; j < M; ++3)
for (int k = 0; k < K; ++k)
CLil[j]1 += A[il[k] * B[kI[jl;

F_| 100 (oo 1 100
A7 10 o 1 P lo 1 0 ““lo 1 0
0 0 1 100
Fee=|1 0 0 Faec=|0 0 1
01 0 010

List: Fagc, Fac, Fag, Fec, Fa, Fs, Fc
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Multiple Final Rows
@ single final row

Fri=|M 0 oo FT'=

N 1 N 10

u]
o)
I
"
it
1
<
¢



Intra-Statement Consecutivity Specifying Schedule Constraints January 23, 2018 20/29

Multiple Final Rows
@ single final row

Fri=|M 0 oo FT'=

@ multiple final rows

0 0 A . 0
L AY0oso00go0
RN '
L el 0
[ E 1

» multiple levels of consecutivity
» multiple levels of temporal locality (optional)
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Constraints on Schedule Coefficients
Affine schedule row:

50 H

Constraints:

@ validity: fr(y) —fs(x) >0
Farkas — constraints on Cgs and ds

@ proximity (temporal locality): fr(y) — fs(x) small
Farkas — constraints on Cg and ds

@ coincidence (parallelism): fr(y) —fs(x) =0
Farkas — constraints on Cs and ds

@ linear independence of previous rows (Ts): Cs # YTsp

= compute orthogonal complement of Tso: Us Té,o =0
= impose Us Cg # 0
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Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, 4+ B T;
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Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and T,

H

AC # Y[TO]
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Constraints on Schedule Coefficients for Consecutivity

@ @G linear combination of outer schedule rows: G = A T4
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)

= but linearly independent of H and Ty T

@ G is linear combination of Ty C=Hp+X [H1 ]

= take C equal to next row of H <h

H

AC # Y[TO]
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Constraints on Schedule Coefficients for Consecutivity

@ G linear combination of outer schedule rows: G = A T;
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and Ty T
@ G is linear combination of Ty C=Hp+X [H1 ]
= take C equal to next row of H <h
@ all rows of H have been handled
= no further constraints (final zero columns in F T~1)

H

AC # Y[TO]
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Constraints on Schedule Coefficients for Consecutivity

@ G linear combination of outer schedule rows: G = A T;
@ H equal to innermost schedule rows: H= T, + B T4

Three stages
To

@ Gis not yet a linear combination of Ty c=X G

= take linear combination of G and Ty,
(heuristic to make progress)
= but linearly independent of H and Ty T
@ G is linear combination of Ty C=Hp+X [H1 ]
= take C equal to next row of H <h
@ all rows of H have been handled
= no further constraints (final zero columns in F T~1)

H

AC # Y[TO]

At any stage To
@ C may also be C+Y|G
linearly independent of Ty, G and H H

(intermediate zero columns in F T~)
@ C of lower-dimensional statement may be

linear combination of T C = XTo
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Solving Constraints on Schedule Coefficients (isl)

@ validity, proximity, coincidence
= encoded in ILP
@ linear independence
C#YTo - UC'#0
= not linear
= backtracking search (in isl): UiC' >1 or U;C'< -1
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Solving Constraints on Schedule Coefficients (isl)

@ validity, proximity, coincidence
= encoded in ILP
@ linear independence
C#YTo - UC'#0
= not linear
= backtracking search (in isl): UiC' >1 or U;C'< -1
@ consecutivity

T
C:X[GO] S UCt=0 linear
C + Y[-II:(I)] -~ U’C'+0 backtracking
Note:

» extra rows H = fewer rows in U” = fewer backtracking cases

» no extra ILP variables, but possibly more backtracking
Differences with linear independence handling:

> optional

» fixed part that applies in each backtracking case

» disjunctive (independent or dependent rows)

» conditional (multiple consecutivity constraints)
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Inter-Statement Consecutivity
Input:
for (int i = 0; i < N; 1 += 2)
for (int j = 0; j < M; j += 2) {

B[j + O][i + 0] = A[i + O][j + 0];
B[j + 1][i + 0] = A[i + OI[j + 11;
B[j + O][i + 1] = A[i + 11[j + 01;
B[j + 1]1[i + 1] = A[i + 11[j + 11;

3

Output (try and obtain distances 0 and 1):
for (int c® = 0; c® < M - 1; c® += 2) {
for (int cl = 0; cl < N - 1; cl += 2) {
B[c®][cl] A[cl][cO0];
B[cOI[cl + 1] = A[cl + 1][cO];
}
for (int cl = 0; cl < N - 1; cl += 2) {
B[cO + 1][cl] = A[cl][c® + 1];
B[c® + 1][cl + 1] = A[cl + 1][c® + 1];
3
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Local Rescheduling

Consecutivity usually only important inside tiles

@ compute schedule without consecutivity (or lower priority)
Q tile
© recompute schedule inside tile with consecutivity

On trps:

float tmp[N][N];
for (int c® = 0; c® < N; cO® += 32)
for (int cl1 = 0; cl < N; cl += 32) {
for (int c2 = c®; c2 <= min(N - 1, c® + 31); c2 += 1)
for (int c3 = cl; ¢3 <= min(N - 1, cl1 + 31); c3 += 1)
tmp[c2][c3] = A[c2][c3];
for (int c2 = cl1; c2 <= min(N - 1, cl1 + 31); c2 += 1)
for (int c3 = c®; ¢c3 <= min(N - 1, c® + 31); c3 += 1)
C[c2][c3] tmp[c3][c2];
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Conclusions and Future Work
Conclusions:

@ slightly generalized criterion for consecutivity

@ combining multiple references per statement

@ approach for integration in Pluto-style scheduler

@ implementation in is1/PPCG (branch consecutivity_CW_709)
Future work:

@ experiment and fine-tune
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