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Consecutivity Concept

Spatial Locality memory

Consecutive operations access
neighboring memory elements

⇒ reuse of cache lines

Temporal Locality memory

Consecutive operations access
the same memory element

⇒ reuse of data in cache or registers

Consecutivity memory

Consecutive operations access
consecutive memory elements

⇒ vectorization
⇒ hardware cache prefetcher
⇒ burst accesses, e.g., on FPGA (Xilinx)
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Burst Accesses (Sketch)

CC = burst_write_start(C, M * N);

AA = burst_read_start(A, N);

for (int i = 0; i < N; ++i) {

BB = burst_read_start(B, M);

for (int j = 0; j < M; ++j) {

burst_write_iter(CC, &C[j][i]) =

burst_read_iter(AA, &A[i]) *

burst_read_iter(BB, &B[j]);

}

burst_read_end(BB, M);

}

burst_read_end(AA, N);

burst_write_end(CC, M * N);

No burst accesses on C
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Pluto-Style Polyhedral Scheduling
A schedule assigns an execution order to statement instances

original schedule (if any) derived from input
target schedule computed by scheduler

A polyhedral scheduler computes schedule using polyhedral model
instance set: set of schedulable statement instances
access relations: map instances to memory locations
dependence relations:
⇒ pairs of instances that need to be executed in order
⇒ derived from access relations and original schedule

Result (typically):
multiple (quasi) affine functions on instance set
hierarchically organized (sequence, tree)

Types:
Farkas based schedulers (Feautrier 1992)
⇒ use Farkas to transform dependences

into constraints on schedule coefficients
I Pluto-style schedulers, e.g., Pluto, isl
⇒ compute affine functions one by one

I one-shot schedulers (Vasilache 2007)
⇒ compute entire schedule as a whole

. . .
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Pluto-Style Polyhedral Scheduling
Main optimization criteria:

parallelism
temporal locality
permutability⇒ tiling

Remaining freedom (if any)
⇒ isl scheduler tends towards lexicographic ordering of instances

Extreme example:

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

S: A[i][j] = 0;

S[i, j]→ [i, j]

consecutive (by chance)

for (i=0; i<M; ++i)

for (j=0; j<N; ++j)

T: B[j][i] = 0;

T[i, j]→ [i, j]

not consecutive

Goal: steer towards consecutivity in case of sufficient freedom
Current implementation in isl (roughly):
permutability > parallelism > consecutivity > temporal locality
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Consecutivity Criterion
Consecutive operations access consecutive memory elements

Assume (for the purpose of consecutivity)

intra-statement consecutivity (⇒ per statement)

row-major array layout

purely affine access function F

= [G;H]

purely affine per-statement schedule T

= [T1;T2]
S(x)

L(i)

A

F
T

Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator

innermost index expression proportional to innermost loop iterator

[. . .+ 0in] . . . [. . .+ 0in][. . .+ 1in]

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


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Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1



G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Introduction Consecutivity Criterion January 23, 2018 10 / 29

Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G



Introduction Consecutivity Criterion January 23, 2018 11 / 29

Consecutivity Criterion and Spatial Locality

Spatial Locality

F T−1 =

M 0

N x


Temporal Locality

F T−1 =

M 0

N 0



Consecutivity

F T−1 =

M 0

N 1



in case of innermost temporal locality
⇒ consecutivity on next innermost loop iterator

F T−1 =

M 0 0

N 1 0


(Kandemir, Ramanujam, and Choudhary 1999)
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(Kandemir, Ramanujam, and Choudhary 1999)
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Related Work on Spatial Locality

Loop nest transformations (not per-statement)

Wolf and Lam (1991)
I define temporal (ker F) and spatial (kerG) reuse directions
I partition original loop iterators

Kandemir, Ramanujam, and Choudhary (1999)
I aim: spatial locality
I criterion more strict than required (ensures consecutivity)
I incrementally fix elements of T−1

Kandemir, Ramanujam, Choudhary, and Banerjee (2001)
I pick (second to) last column of T−1 from kerG
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Related Work on Spatial Locality
Per-statement schedulers

Bastoul and Feautrier (2004)
I pick proto-schedule T orthogonal to element from kerG (or ker F)
I construct valid schedule C T
I imposing constraints on linear combinations
⇒ not directly applicable in isl

Vasilache et al. (2012)
I aim: spatial locality (ker T1 ⊆ kerG)
I one-shot scheduler called multiple times
I soft constraints encoded in ILP

Pluto (2012) post scheduling intra-tile interchange
Kong et al. (2013)

I aim: consecutivity (stride-1 or stride-0)
I partition original loop iterators
I soft constraints encoded in ILP

Zinenko et al. (2018)
I spatial locality through spatial proximity constraints
I soft constraints encoded in ILP
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Limitations
partition original loop iterators
Kong et al. (2013)

I loop iterators in outer index expressions appear in outer schedule rows
I loop iterators in innermost index expression

do not appear in outer schedule rows

I consecutivity requires innermost index expression to be equal to
innermost schedule row (+ linear combinations of outer schedule rows)

I how to handle iterators that appear in both?

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

S: A[j][j - i] = f(i, j);

Other approaches, e.g., using S[i, j]→ [j,−i]:

for (int c0 = 0; c0 < N; c0 += 1)
for (int c1 = -c0; c1 <= 0; c1 += 1)
A[c0][c0 + c1] = f(-c1, c0);
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Limitations
post-schedule interchange

I does not perform reversal, skewing
I does not differentiate between statements
I does not affect shape of schedule (e.g., distribution)

void trps(int N, __pencil_consecutive float A[N][N],
__pencil_consecutive float C[N][N])

{

float tmp[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {

S: tmp[i][j] = A[i][j];

T: C[j][i] = tmp[i][j];

}

}

I without consecutivity:
⇒ temporal locality on tmp prevents loop distribution

I with consecutivity:
⇒ consecutivity requires different transformation per statement
⇒ loop distribution
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Outline

1 Introduction
Consecutivity Concept
Pluto-Style Polyhedral Scheduling
Consecutivity Criterion
Related Work

2 Intra-Statement Consecutivity
Consecutivity Criterion
Specifying Schedule Constraints
Transformation to Constraints on Schedule Coefficients
Solving Constraints on Schedule Coefficients (isl)

3 Inter-Statement Consecutivity

4 Local Rescheduling

5 Conclusions and Future Work
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Consecutivity Criterion Reformulation
Transformed access function F T−1 exhibits consecutivity if

outer index expressions independent of innermost loop iterator
innermost index expression proportional to innermost loop iterator

F T−1 =

G
H


T1

T2


−1

=

M 0

N 1


G q = 0 (with q the final columns of T−1)

Note:

T1

T2

T−1 =

 I 0

0t 1


⇒ q spans ker T1

⇒ ker T1 ⊆ kerG (Vasilache et al. 2012)
That is, rows of G need to be linear combinations of rows of T1

G = A T1

H q = 1
H = T2 + B T1

⇒ H needs to be linearly independent of G
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Multiple References
single reference per statement
Consecutivity constraint equal to index expression

F =

G
H


given

I H linearly independent of G

I rows of H linearly independent

Goal:
I G linear combination of outer schedule rows: G = A T1
I H equal to innermost schedule row

s

: H = T2 + B T1

multiple references per statement
⇒ potential conflicts
Possible resolutions:

I maximize number of satisfied consecutivity constraints
I consider constraints in order specified by user

⇒ some constraints may be combined constraints with multi-row H
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Multiple References Example: Matrix Multiplication

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

for (int k = 0; k < K; ++k)

C[i][j] += A[i][k] * B[k][j];

FA =
 1 0 0

0 0 1

 FB =
 0 0 1

0 1 0

 FC =
 1 0 0

0 1 0


FBC =


0 0 1
1 0 0

0 1 0

 FABC =


1 0 0

0 0 1
0 1 0


List: FABC,FAC,FAB,FBC,FA,FB,FC
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Multiple Final Rows
single final row

F T−1 =

M 0

N 1

 or F T−1 =

M 0 0

N 1 0



multiple final rows

F T−1 =



0

0

0

0

. . .

0

0

0A

...
...

...

0 0 . . . 0
1 0 . . . 0

1
. . .

...

L
. . . 0

1


I multiple levels of consecutivity
I
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0

0

0

0

. . .

0

0

0A

...
...

...

0 0 . . . 0
1 0 . . . 0

1
. . .

...

L
. . . 0

1


I multiple levels of consecutivity
I multiple levels of temporal locality (optional)
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Constraints on Schedule Coefficients
Affine schedule row:

fS(x) = CS x + dS

Constraints:

validity: fT (y) − fS(x) ≥ 0
Farkas→ constraints on CS and dS

proximity (temporal locality): fT (y) − fS(x) small
Farkas→ constraints on CS and dS

coincidence (parallelism): fT (y) − fS(x) = 0
Farkas→ constraints on CS and dS

linear independence of previous rows (TS,0): CS , YTS,0

⇒ compute orthogonal complement of TS,0: US T t
S,0 = 0

⇒ impose US C t
S , 0
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Constraints on Schedule Coefficients for Consecutivity
G linear combination of outer schedule rows: G = A T1

H equal to innermost schedule rows: H = T2 + B T1

Three stages

1 G is not yet a linear combination of T0
⇒ take linear combination of G and T0

(heuristic to make progress)
⇒ but linearly independent of H and T0

C = X
[
T0

G

]
∧C , Y

[
T0

H

]

2 G is linear combination of T0
⇒ take C equal to next row of H

C = Hh + X
[

T1

H<h

]
3 all rows of H have been handled

⇒ no further constraints (final zero columns in F T−1)

At any stage
C may also be
linearly independent of T0, G and H
(intermediate zero columns in F T−1)

C , Y

T0

G
H


C of lower-dimensional statement may be
linear combination of T0

C = XT0
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Solving Constraints on Schedule Coefficients (isl)
validity, proximity, coincidence
⇒ encoded in ILP

linear independence
C , YT0 → U C t , 0

⇒ not linear
⇒ backtracking search (in isl): UiC t ≥ 1 or UiC t ≤ −1

consecutivity

C = X
[
T0

G

]
→ U′C t = 0 linear

C , Y
[
T0

H

]
→ U′′C t , 0 backtracking

Note:
I extra rows H ⇒ fewer rows in U′′ ⇒ fewer backtracking cases
I no extra ILP variables, but possibly more backtracking

Differences with linear independence handling:
I optional
I fixed part that applies in each backtracking case
I disjunctive (independent or dependent rows)
I conditional (multiple consecutivity constraints)
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Inter-Statement Consecutivity
Input:
for (int i = 0; i < N; i += 2)

for (int j = 0; j < M; j += 2) {
B[j + 0][i + 0] = A[i + 0][j + 0];

B[j + 1][i + 0] = A[i + 0][j + 1];

B[j + 0][i + 1] = A[i + 1][j + 0];

B[j + 1][i + 1] = A[i + 1][j + 1];

}

Output (try and obtain distances 0 and 1):
for (int c0 = 0; c0 < M - 1; c0 += 2) {
for (int c1 = 0; c1 < N - 1; c1 += 2) {
B[c0][c1] = A[c1][c0];

B[c0][c1 + 1] = A[c1 + 1][c0];

}

for (int c1 = 0; c1 < N - 1; c1 += 2) {
B[c0 + 1][c1] = A[c1][c0 + 1];

B[c0 + 1][c1 + 1] = A[c1 + 1][c0 + 1];

}

}
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Local Rescheduling
Consecutivity usually only important inside tiles

1 compute schedule without consecutivity (or lower priority)
2 tile
3 recompute schedule inside tile with consecutivity

On trps:

float tmp[N][N];
for (int c0 = 0; c0 < N; c0 += 32)
for (int c1 = 0; c1 < N; c1 += 32) {
for (int c2 = c0; c2 <= min(N - 1, c0 + 31); c2 += 1)
for (int c3 = c1; c3 <= min(N - 1, c1 + 31); c3 += 1)
tmp[c2][c3] = A[c2][c3];

for (int c2 = c1; c2 <= min(N - 1, c1 + 31); c2 += 1)
for (int c3 = c0; c3 <= min(N - 1, c0 + 31); c3 += 1)
C[c2][c3] = tmp[c3][c2];

}
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Conclusions and Future Work
Conclusions:

slightly generalized criterion for consecutivity

combining multiple references per statement

approach for integration in Pluto-style scheduler

implementation in isl/PPCG (branch consecutivity_CW_709)

Future work:

experiment and fine-tune
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