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Introduction to the Z-Polyhedral Model

The polyhedral model — also known as the polytope model — is a mathematical abstraction
that can be used to represent, manipulate and optimize loop nests.

Definition

A parametric polyhedron P, with n parameters is a set of d-dimensional vectors x:
Pp={xeK!|A>Bp+c}

where A € K™*9,B € K™*"and ¢ € K" so that for each fixed value po, Py, defines a
polyhedron in K¢.



Introduction to the Z-Polyhedral Model

1 for (i = 0; i <= N; ++i)
2 for (j = 0; j <= M; ++j)
3 S(i, j);

(a) Loop nest

0<j<M

S(i,j) = {m €7’

OgigN} y

N

(b) Constraints (c) 2D representation

Figure 1: Various representations of a loop nest in the polyhedral model



Overview of the Polyhedral Model Framework

1 for (i = 0; i <=N; ++i)

2 for (j = 0; j <= M; ++j)
3 S(i, §);
1 Raising A
N
2 Transformation ., U
2
3 Code generation I
1 for (c1 = Q; c1 <= N+M; cl++)
2 for (c2 = max(@, c1-N); c2<= min(M, c1); c2++)
3] S1(ct, c2);



A SiImple Polyhedron

Let’s consider the following polyhedron:

0<cl<N+M c2

0<e nlleeeossonnnmases
PN, M) = { (c1,e2) € Z?| c1 =N < 2

c2<cl

2<M cl

N

(a) Constraints (b) 2D representation

Figure 2: A simple polyhedron

What code would you generate?



Code Generation is Easy!

1 for (c1 = @; c1 <= N+M; cl++)
2 for (c2 = max(Q, c1-N); c2<= min(M, c1); c2++)
3 S1(c1, c2);

Most tools would generate this:

Listing 1: Code for scanning the polyhedron P from Figure 2

...and most people would be happy.



Are you?



s Efficient Code Generation Easy?

What about this: P
1 for (c1 = 0; ¢l <= M; cl++) ’ 4
2 for (c2 = 0; c2 <= c1; c2++) L L
3 S1(c1, c2);

4+ for (c1 = M+1; c1 <= N-1; cl++)
5 for (c2 = Q; c2 <= M; c2++)

6 S1(c1, c2);

7 for (c1 = N; cl<= N+M; cl++)

8 for (c2 = c1-N; c2<= M; c2++)
9 S1(c1, c2);

Listing 2: Another way to scan the polyhedron P from Figure 2



Quick Comparison

1
2
3

for (c1 = @; c1 <= N+M; cl++)
for (c2 = max(@, c1-N); c2<= min(M, c1); c2++)
S1(c1, c2);

e high control overhead
e small code size

o fast code generation

© 00O U WN -

for (c1 = Q; c1 <= M; cl++)
for (c2 = Q; c2 <= c1; c2++)
S1(c1, c2);
for (c1 = M+1; c1 <= N-1; cl++)
for (c2 = Q; c2 <= M; c2++)
S1(c1, c2);
for (c1 = N; cl<= N+M; cl++)
for (c2 = c1-N; c2<= M; c2++)
S1(c1, c2);

low control overhead
increased code size
slow code generation

speedups reach 1.32
with gec, 1.67 withicc
and 4.63 with clang



Our goals:

e eliminate min and max computations in order to reduce
control overhead
e help the compiler:
e polyhedra splitting can ease vectorization and branch
prediction
o tiled iteration domains can benefit from polyhedra splitting
« different splitting strategies impact the overall quality of
generated code, code size and generation time



Outline

Splitting polyhedra

Prerequisites



Reminder on CLooG

e CLooG: Chunky Loop Generator
o Generates code for scanning Z-polyhedra

o Extended version of the Quilleré, Rajopadhye, and Wilde
algorithm [2]


http://cloog.org/
http://cloog.org/

CLooG's extended QRW Algorithm

tersect the polyhe h the cont
Project the polyhedra onto the outermost dimension

. Separate the projections into a disjunct list of polyhedra
. (Compute lexicographic order and strides)

S N

Recurse on the inner dimensions

0<A<B<C
Context :
O0L<KD<E<F

0<i<B
0<j<E

A<i<C
D<j<F

sgaa:{moe#

&waam:{moe#

Figure 5: Intersection of the polyhedra with the context
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CLooG's extended QRW Algorithm

1. Intersect the polyhedra with the context
Project olyhedra or utermost d I )
parate the projections int sjunct list of polyh
4. (Compute lexicographic order and strides)

5. Recurse on the inner dimensions

J
[
1 for (i = Q; i <= A-1; ++i)
. 2 /% S x/
3 for (i = A; i <=B; ++i) {
4 /% 81 and Sy x/
5 1}
D 6 for (i = B+1; i <= C; ++i)
i 7 /x Sy x/
A B C
ST S152 *=*

Figure 6: Projection and separation on the first dimension
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CLooG's extended QRW Algorithm

$2)

5152

EalE A o

Intersect the polyhedra with the context
Project the polyhedra onto the outermost dimension

Separate the projections into a disjunct list of polyhedra

(Compute lexicographic order and strides)

Recu n the inn mension

Figure 7: Recursion on the second dimension

© 00O U WN =
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for (i = 0; i <= A-1; ++i)
for (j = Q; j <= E; ++j)
S1(i, j);
for (i = A; i <=B; ++i) {
for (j = Q; j <= D-1; ++j)
S1(i, §);
for (j =D; j <=E; ++j) {
S1(i, j);
s2(i, j);
}
for (j = E+1; j <= F; ++j)
s2(i, j);
}
for (i = B+1; i <= C; ++i)
for (j =D; j <= F; ++j)
s2(i, j);
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Chamber Decomposition

e Chamber: a part of the parameter domain in which all vertices
coordinates are affine functions of parameters

o Assuming the number of parameters of a parameterized
polyhedron is m, the validity domains are obtained by
computing the m-faces of the polyhedron using Loechner and
Wilde's algorithm [1]

e The PolyLib allows to compute the validity domains of
parameterized polyhedra

13


http://icps.u-strasbg.fr/polylib/

Splitting Polyhedra in QRW

Splitting polyhedra

Splitting Polyhedrain QRW



Splitting polyhedra in CLooG's extended QRW

o After the separation step of CLooG's algorithm
¢ Relies on chamber decomposition

o Previous parameters, outer loop indices and the current loop
index must be considered as parameters
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Example |

1. Let's consider the polyhedron from Figure 2 again:

0<c1<N+M

0< 2 c2
PN,M) = { (c1,c2) € Z2[c1 — N < 2 V] O
c2<cl
2<M .
N
(a) Constraints (b) 2D representation
o<
P Mty =4 @ ez NS
c2<cl
2<M

(c) Considering c1 as a parameter
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2. Computing the chambers of the parametric polyhedron P.q:

Cq
Cy
C3

{(N,M,c1) € Z°|0 < c1 < M}
{(N,M,c1) € ZPM+1<cl < N—1}
{(N,M,cl) € Z}|N < c1 < N+ M}

y cl

M

N

chamber 1

chamber 2

chamber 3
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Example i

3. Revert clto aniterator:

Slo<ct<m
P1(N,M) = < (c1,c2) € Z c2
0<c2<ct
Mbeooeeeiens, -
M+1<cl1<N-1 //
PZ(N,M):{(cl,CZ)Elz - = } A
0<2<M y c1
M N
SNt <N+ M
P3(N,M) = 4 (c1,c2) € Z
cl-N<c2<M

17



Experimental Results

Experimental results



Experimental Tools

Compring the results of the mainline CLooG and our
PolyLib-enhanced version:

e CLooG's test suite and PolyBench 4.1

o Code scheduled with PLUTO 0.11.4 (option—-tile)

e Code compiledusinggcec 6.2.1,clang 3.8.1 and icc
17.0.0 with options —-00 and -03 -march=native

o Tested ona 2.40GHz Intel Xeon E5-2620v3, running linux 4.8.

18
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Polybenches -00

speedup

| |
1.5} - 00 gccé.2.1 |
1 Doclang 3.8.1
m o |I0icc1700
1 [ _ﬁ_ N Ml = M m [ P T ) P |
0.5+ *
0 N R~ d O ad O
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Figure 11: Speedups on the PolyBench test suite with —-0@ .


http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Polybenches -03 —-march=native

ol - 0o gcc6.2.1 |
Doclang 3.8.1
0o i
15l icc17.00 ||
Q.
S = — —
_O J— ' i M —
0.5 |
L
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Figure 12: Speedups on the PolyBench tests with-03 -march=native 0


http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Speedups on CLooG's Test Suite

speedup > 1 speedup < 1 geomean

compiler percentage maximum geomean percentage minimum geomean speedup
gcc-00 59 1.34 1.07 41 0.81 0.96 1.02
icc-00 66.7 121 1.03 88k 0.97 0.99 101
clang -O0 825 1.96 1.19 17.5 0.5 0.9 1.12
gcc-0O3 51.2 107 1.03 48.8 0.9 0.97 1.00
icc-03 615 111 1.02 385 0.89 0.98 1.00
clang-O3 63.9 117 1.09 36.1 0.66 0.95 1.03

Figure 13: Overview of the speedups for the CLooG tests
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Price to pay

¢ Slower CLooG code generation

e 5times slower for CLooG's test suite
e 10 times slower for the PolyBench

e |ncreased code size (geometric mean growth of 257%)
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Conclusion

Conclusion



Conclusion

o Anew method for splitting polyhedra in order to reduce
control overhead

o Splitting polyhedra may improve the efficiency of the
generated code

¢ Slower code generation and increased code size

o Future work: determining when such splitting should or
should not be performed

o Efficient code generation is harder than we thought!
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Thank youl!
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