Splitting Polyhedra to Generate More Efficient
Code

Efficient Code Generation in the Polyhedral Model is
Harder Than We Thought

January 23rd 2017, IMPACT 17, HIPEAC, Stockholm, Sweden

Harenome Razanajato, Vincent Loechner, Cédric Bastoul

University of Strasbourg

HHHHHH T

https://en.wikipedia.org/wiki/Portal:Current_events/2017_January_23
http://impact.gforge.inria.fr/impact2017/
https://www.hipeac.net/2017/stockholm/
http://international.stockholm.se/
https://sweden.se/
mailto:harenome.ranaivoarivony-razanajato@inria.fr
mailto:vincent.loechner@inria.fr
mailto:cedric.bastoul@inria.fr
https://en.unistra.fr
https://en.unistra.fr
https://www.inria.fr/en/
http://icube.unistra.fr/en/
http://www.cnrs.fr/

Introduction to the Z-Polyhedral Model

The polyhedral model — also known as the polytope model — is a mathematical abstraction
that can be used to represent, manipulate and optimize loop nests.

Definition

A parametric polyhedron P, with n parameters is a set of d-dimensional vectors x:
Pp={xeK!|A>Bp+c}

where A € K™*9,B € K™*"and ¢ € K" so that for each fixed value po, Py, defines a
polyhedron in K¢.

Introduction to the Z-Polyhedral Model

1 for (i = 0; i <= N; ++i)
2 for (j = 0; j <= M; ++j)
3 S(i, j);

(a) Loop nest

0<j<M

S(i,j) = {m €7’

OgigN} y

N

(b) Constraints (c) 2D representation

Figure 1: Various representations of a loop nest in the polyhedral model

Overview of the Polyhedral Model Framework

1 for (i = 0; i <=N; ++i)

2 for (j = 0; j <= M; ++j)
3 S(i, §);
1 Raising A
N
2 Transformation ., U
2
3 Code generation I
1 for (c1 = Q; c1 <= N+M; cl++)
2 for (c2 = max(@, c1-N); c2<= min(M, c1); c2++)
3] S1(ct, c2);

A SiImple Polyhedron

Let’s consider the following polyhedron:

0<cl<N+M c2

0<e nlleeeossonnnmases
PN, M) = { (c1,e2) € Z?| c1 =N < 2

c2<cl

2<M cl

N

(a) Constraints (b) 2D representation

Figure 2: A simple polyhedron

What code would you generate?

Code Generation is Easy!

1 for (c1 = @; c1 <= N+M; cl++)
2 for (c2 = max(Q, c1-N); c2<= min(M, c1); c2++)
3 S1(c1, c2);

Most tools would generate this:

Listing 1: Code for scanning the polyhedron P from Figure 2

...and most people would be happy.

Are you?

s Efficient Code Generation Easy?

What about this: P
1 for (c1 = 0; ¢l <= M; cl++) ’ 4
2 for (c2 = 0; c2 <= c1; c2++) L L
3 S1(c1, c2);

4+ for (c1 = M+1; c1 <= N-1; cl++)
5 for (c2 = Q; c2 <= M; c2++)

6 S1(c1, c2);

7 for (c1 = N; cl<= N+M; cl++)

8 for (c2 = c1-N; c2<= M; c2++)
9 S1(c1, c2);

Listing 2: Another way to scan the polyhedron P from Figure 2

Quick Comparison

1
2
3

for (c1 = @; c1 <= N+M; cl++)
for (c2 = max(@, c1-N); c2<= min(M, c1); c2++)
S1(c1, c2);

e high control overhead
e small code size

o fast code generation

© 00O U WN -

for (c1 = Q; c1 <= M; cl++)
for (c2 = Q; c2 <= c1; c2++)
S1(c1, c2);
for (c1 = M+1; c1 <= N-1; cl++)
for (c2 = Q; c2 <= M; c2++)
S1(c1, c2);
for (c1 = N; cl<= N+M; cl++)
for (c2 = c1-N; c2<= M; c2++)
S1(c1, c2);

low control overhead
increased code size
slow code generation

speedups reach 1.32
with gec, 1.67 withicc
and 4.63 with clang

Our goals:

e eliminate min and max computations in order to reduce
control overhead
e help the compiler:
e polyhedra splitting can ease vectorization and branch
prediction
o tiled iteration domains can benefit from polyhedra splitting
« different splitting strategies impact the overall quality of
generated code, code size and generation time

Outline

Splitting polyhedra

Prerequisites

Reminder on CLooG

e CLooG: Chunky Loop Generator
o Generates code for scanning Z-polyhedra

o Extended version of the Quilleré, Rajopadhye, and Wilde
algorithm [2]

http://cloog.org/
http://cloog.org/

CLooG's extended QRW Algorithm

tersect the polyhe h the cont
Project the polyhedra onto the outermost dimension

. Separate the projections into a disjunct list of polyhedra
. (Compute lexicographic order and strides)

S N

Recurse on the inner dimensions

0<A<B<C
Context :
O0L<KD<E<F

0<i<B
0<j<E

A<i<C
D<j<F

sgaa:{moe#

&waam:{moe#

Figure 5: Intersection of the polyhedra with the context

10

http://cloog.org/

CLooG's extended QRW Algorithm

1. Intersect the polyhedra with the context
Project olyhedra or utermost d I)
parate the projections int sjunct list of polyh
4. (Compute lexicographic order and strides)

5. Recurse on the inner dimensions

J
[
1 for (i = Q; i <= A-1; ++i)
. 2 /% S x/
3 for (i = A; i <=B; ++i) {
4 /% 81 and Sy x/
5 1}
D 6 for (i = B+1; i <= C; ++i)
i 7 /x Sy x/
A B C
ST S152 *=*

Figure 6: Projection and separation on the first dimension

11

http://cloog.org/

CLooG's extended QRW Algorithm

$2)

5152

EalE A o

Intersect the polyhedra with the context
Project the polyhedra onto the outermost dimension

Separate the projections into a disjunct list of polyhedra

(Compute lexicographic order and strides)

Recu n the inn mension

Figure 7: Recursion on the second dimension

© 00O U WN =

D e T S S
U W N = O

for (i = 0; i <= A-1; ++i)
for (j = Q; j <= E; ++j)
S1(i, j);
for (i = A; i <=B; ++i) {
for (j = Q; j <= D-1; ++j)
S1(i, §);
for (j =D; j <=E; ++j) {
S1(i, j);
s2(i, j);
}
for (j = E+1; j <= F; ++j)
s2(i, j);
}
for (i = B+1; i <= C; ++i)
for (j =D; j <= F; ++j)
s2(i, j);

12

http://cloog.org/

Chamber Decomposition

e Chamber: a part of the parameter domain in which all vertices
coordinates are affine functions of parameters

o Assuming the number of parameters of a parameterized
polyhedron is m, the validity domains are obtained by
computing the m-faces of the polyhedron using Loechner and
Wilde's algorithm [1]

e The PolyLib allows to compute the validity domains of
parameterized polyhedra

13

http://icps.u-strasbg.fr/polylib/

Splitting Polyhedra in QRW

Splitting polyhedra

Splitting Polyhedrain QRW

Splitting polyhedra in CLooG's extended QRW

o After the separation step of CLooG's algorithm
¢ Relies on chamber decomposition

o Previous parameters, outer loop indices and the current loop
index must be considered as parameters

14

http://cloog.org/
http://cloog.org/

Example |

1. Let's consider the polyhedron from Figure 2 again:

0<c1<N+M

0< 2 c2
PN,M) = { (c1,c2) € Z2[c1 — N < 2 V] O
c2<cl
2<M .
N
(a) Constraints (b) 2D representation
o<
P Mty =4 @ ez NS
c2<cl
2<M

(c) Considering c1 as a parameter

15

2. Computing the chambers of the parametric polyhedron P.q:

Cq
Cy
C3

{(N,M,c1) € Z°|0 < c1 < M}
{(N,M,c1) € ZPM+1<cl < N—1}
{(N,M,cl) € Z}|N < c1 < N+ M}

y cl

M

N

chamber 1

chamber 2

chamber 3

16

Example i

3. Revert clto aniterator:

Slo<ct<m
P1(N,M) = < (c1,c2) € Z c2
0<c2<ct
Mbeooeeeiens, -
M+1<cl1<N-1 //
PZ(N,M):{(cl,CZ)Elz - = } A
0<2<M y c1
M N
SNt <N+ M
P3(N,M) = 4 (c1,c2) € Z
cl-N<c2<M

17

Experimental Results

Experimental results

Experimental Tools

Compring the results of the mainline CLooG and our
PolyLib-enhanced version:

e CLooG's test suite and PolyBench 4.1

o Code scheduled with PLUTO 0.11.4 (option—-tile)

e Code compiledusinggcec 6.2.1,clang 3.8.1 and icc
17.0.0 with options —-00 and -03 -march=native

o Tested ona 2.40GHz Intel Xeon E5-2620v3, running linux 4.8.

18

http://cloog.org/
http://cloog.org/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://pluto-compiler.sourceforge.net/

Polybenches -00

speedup

| |
1.5} - 00 gccé.2.1 |
1 Doclang 3.8.1
m o |I0icc1700
1 [_ﬁ_ N Ml = M m [P T) P |
0.5+ *
0 N R~ d O ad O
& & L& o & N SV
6\80 < q/@ O (bﬁg\ &bﬂ/ 6Q\ ~E>Q>/q/ 6Q\
O « 'Q% & 'Q&

Figure 11: Speedups on the PolyBench test suite with —-0@ .

http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Polybenches -03 —-march=native

ol - 0o gcc6.2.1 |
Doclang 3.8.1
0o i
15l icc17.00 ||
Q.
S = — —
_O J— ' i M —
0.5 |
L
« .\,bc, & _\%(J

Figure 12: Speedups on the PolyBench tests with-03 -march=native 0

http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Speedups on CLooG's Test Suite

speedup > 1 speedup < 1 geomean

compiler percentage maximum geomean percentage minimum geomean speedup
gcc-00 59 1.34 1.07 41 0.81 0.96 1.02
icc-00 66.7 121 1.03 88k 0.97 0.99 101
clang -O0 825 1.96 1.19 17.5 0.5 0.9 1.12
gcc-0O3 51.2 107 1.03 48.8 0.9 0.97 1.00
icc-03 615 111 1.02 385 0.89 0.98 1.00
clang-O3 63.9 117 1.09 36.1 0.66 0.95 1.03

Figure 13: Overview of the speedups for the CLooG tests

21

http://cloog.org/
http://cloog.org/

Price to pay

¢ Slower CLooG code generation

e 5times slower for CLooG's test suite
e 10 times slower for the PolyBench

e |ncreased code size (geometric mean growth of 257%)

22

http://cloog.org/
http://cloog.org/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Conclusion

Conclusion

Conclusion

o Anew method for splitting polyhedra in order to reduce
control overhead

o Splitting polyhedra may improve the efficiency of the
generated code

¢ Slower code generation and increased code size

o Future work: determining when such splitting should or
should not be performed

o Efficient code generation is harder than we thought!

23

Thank youl!

Réferences |

3 Vincent Loechner and Doran K. Wilde.
Parameterized Polyhedra and Their Vertices.
International Journal of Parallel Programming, 25(6):525-549,
December 1997.

@ Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde.
Generation of efficient nested loops from polyhedra.
International Journal of Parallel Programming, 28(5):469-498,
2000.

	Introduction
	Splitting polyhedra
	Prerequisites
	Splitting Polyhedra in QRW

	Experimental results
	Conclusion
	Appendix

